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Abstract 

Background: Pelvic magnetic resonance imaging (MRI) and whole-body positron emission tomography-computed 
tomography (PET-CT) play an important role at primary diagnostic work-up and in detecting recurrent disease in 
endometrial cancer (EC) patients, however the preclinical use of these imaging methods is currently limited. We 
demonstrate the feasibility and utility of MRI and dynamic 18F-fluorodeoxyglucose (FDG)-PET imaging for monitoring 
tumor progression and assessing chemotherapy response in an orthotopic organoid-based patient-derived xenograft 
(O-PDX) mouse model of EC.

Methods: 18 O-PDX mice (grade 3 endometrioid EC, stage IIIC1), selectively underwent weekly T2-weighted MRI 
(total scans = 32), diffusion-weighted MRI (DWI) (total scans = 9) and dynamic 18F-FDG-PET (total scans = 26) during 
tumor progression. MRI tumor volumes (vMRI), tumor apparent diffusion coefficient values  (ADCmean) and meta-
bolic tumor parameters from 18F-FDG-PET including maximum and mean standard uptake values  (SUVmax/SUVmean), 
metabolic tumor volume (MTV), total lesion glycolysis (TLG) and metabolic rate of 18F-FDG  (MRFDG) were calculated. 
Further, nine mice were included in a chemotherapy treatment study (treatment; n = 5, controls; n = 4) and tumor 
 ADCmean-values were compared to changes in vMRI and cellular density from histology at endpoint. A Mann–Whitney 
test was used to evaluate differences between groups.

Results: Tumors with large tumor volumes (vMRI) had higher metabolic activity (MTV and TLG) in a clear linear 
relationship  (r2 = 0.92 and 0.89, respectively). Non-invasive calculation of  MRFDG from dynamic 18F-FDG-PET (mean 
 MRFDG = 0.39 μmol/min) was feasible using an image-derived input function. Treated mice had higher tumor  ADCmean 
(p = 0.03), lower vMRI (p = 0.03) and tumor cellular density (p = 0.02) than non-treated mice, all indicating treatment 
response.

Conclusion: Preclinical imaging mirroring clinical imaging methods in EC is highly feasible for monitoring tumor 
progression and treatment response in the present orthotopic organoid mouse model.
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Background
Successful translation of preclinical discoveries in oncol-
ogy is unfortunately rare [1]. This may partly be due to 
lack of clinically relevant model systems and that pre-
clinical imaging methods utilized for disease monitoring 
(e.g., optical imaging using fluorescence) are not feasible 
in the clinic [2]. Commonly used immortalized cancer 
cell lines are cost-effective and convenient to work with; 
however, they are genetically unstable and less repre-
sentative of the clinical phenotype observed in patients 
[3]. Previous preclinical endometrial cancer (EC) stud-
ies have mostly relied on caliper size measurements of 
less relevant subcutaneous models using cell lines, or 
endpoint-only measurements in orthotopic models [4, 
5]. Very few preclinical studies have used imaging meth-
ods mimicking those employed in the clinic [6]. We have 
recently developed EC organoid-based orthotopic mouse 
xenograft models (O-PDX) that recapitulate the histo-
pathologic architecture, protein biomarker expression 
and the genetic profile of the donor tumor tissue [7]. 
These clinically relevant models respond well to con-
ventional chemotherapeutic treatment and non-invasive 
imaging enables quantitative assessment of morphologic- 
and metabolic tumor characteristics indicative of tumor 
progression or treatment response [7, 8].

EC is the second most common gynecological can-
cer in industrialized countries and the incidence rate is 
increasing [9, 10]. Hysterectomy with bilateral removal of 
the ovaries is the primary treatment, which is curative in 
most patients with low-risk early-stage disease. However, 
about 15% of patients experience recurrence with a poor 
prognosis [11–13]. These patients, and patients present-
ing with advanced disease at time of diagnosis, usually 
receive adjuvant chemotherapy which is associated with 
toxicity and only moderate improvement of survival [14, 
15]. Preoperative imaging plays an important role in risk 
stratification and surgical planning in EC. Local staging 
by pelvic MRI at primary diagnostic work-up is recom-
mended for preoperative assessment of deep myometrial 
invasion, cervical stroma invasion, extrauterine tumor 
extension and metastatic pelvic lymph nodes [16]. MRI 
is also the preferred modality to assess local recurrence. 
Diffusion-weighted MRI (DWI) depicts the microscopic 
mobility of water in the tissue, which is strongly influ-
enced by tissue microstructure, microcirculation and 
cellularity. DWI allows calculation of apparent diffusion 
coefficient (ADC)-maps, and low tumor ADC is linked 
to high tumor cellularity and predicts aggressive EC dis-
ease [17]. Preoperative, static 18F-fluorodeoxyglucose 
(18F-FDG)-PET-CT is often recommended in putative 
high-risk disease and in patients with clinical suspicion of 
recurrent disease, as 18F-FDG-PET-CT yields high accu-
racy for detecting lymph node metastases and distant 

spread in EC [18, 19]. Primary ECs are typically highly 
18F-FDG avid [18]. Interestingly, a recent study using 
a dynamic 18F-FDG-PET-CT protocol demonstrated 
the clinical feasibility and superior performance of the 
dynamic imaging parameter, metabolic rate of 18F-FDG 
 (MRFDG), compared to the static imaging parameters; i.e., 
standardized uptake values (SUV) in 101 patients diag-
nosed with cancers from different origins [20].

Preclinical use of standard clinical imaging methods in 
endometrial cancer (EC) is currently limited. We dem-
onstrate the feasibility and utility of MRI and dynamic 
18F-FDG-PET imaging for monitoring tumor progression 
and assessing chemotherapy response in an orthotopic 
O-PDX mouse model of EC.

Methods
Animal model
Hysterectomy specimen was donated by a consent-
ing woman (approval ID 2015/2333 and 2018/548 REK 
vest) diagnosed with grade 3, endometrioid EC, and 
International Federation of Gynecology and Obstet-
rics (FIGO) stage IIIC1. Preoperative pelvic MRI and 
18F-FDG-PET in this patient (Fig. 1A–E) was acquired as 
part of the routine diagnostic work-up. Organoids were 
established, expanded and orthotopically implanted as 
described previously [7, 21]. Briefly, fresh tumor tis-
sue was enzymatically dissociated before embedding 
into growth factor reduced (GFR) Matrigel (Corning) 
(1:2). Organoid:Matrigel suspension was seeded as 25 µl 
droplets in 48-well plates and covered with expansion 
medium. Organoid expansion was performed weekly by 
breaking the organoids mechanically into smaller frag-
ments, followed by resuspension in fresh GFR Matrigel 
and seeding. At passage 14, organoids were immersed 
1:1 in GFR Matrigel prior to orthotopic implantation 
(2 ×  106 cells) into the left uterine horn of female NOD/
SCID IL2rγnull (NSG) mice (21 mice in total). All animal 
experiments were conducted in accordance with Norwe-
gian and European regulations (approval ID 20194). Mice 
were monitored for disease symptoms including lethargy, 
ataxia and weight loss (> 10%) and were sacrificed fol-
lowing any of these symptoms or at the end of the study 
(8 weeks post-implantation).

Study design
18 mice were imaged by weekly MRI and PET-scanning 
from Week 3–5 post-implantation in order to monitor 
primary tumor growth. Table 1 includes a detailed over-
view of all imaging sequences employed for each mouse 
in the different weeks. The PET images were acquired two 
days post-MRI due the scanners being located in differ-
ent buildings; this setup allowed one day acclimatization 
after transport. Correlation analyses for the MRI- and 
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PET imaging parameters included examinations acquired 
within 3  days. A subcohort of nine mice were further 
included in a treatment study with imaging after chem-
otherapy (Table  1). These were randomized into treat-
ment- (n = 5) or control groups (n = 4) and received 
combined carboplatin (15  mg/kg)/paclitaxel (12  mg/
kg) (treatment group) or saline (100  μl, control group) 
intraperitoneally (ip) twice per week, starting at vMRI 
> 145   mm3 and continuing until the end of study. Imag-
ing included T2-weighted MRI and DWI prior to sacri-
fice for all. Additionally, one mouse from each group was 
followed longitudinally with weekly T2-weighted MRI 
and DWI during Weeks 4–8. For DWI analyses, the 4 
control mice in the treatment study were combined with 
the mice scanned outside the treatment study, in order to 
capture a larger variety of tumor sizes and increase the 
statistical power (Table 1).

MRI scanning and image reconstruction
Images were acquired on a small-animal 7 Tesla MRI 
scanner (Pharmascan, Bruker) using a mouse body quad-
rature volume resonator in a single-coil configuration. 
Mice were anesthetized by sevoflurane mixed in oxygen 
and breathing and body temperature were monitored 
during scanning. T2-weighted sequences were acquired 
coronally (TE/TR 25/2500  ms, 5 averages, matrix 
160 × 160, field of view 32 × 32  mm, slice thickness 
1 mm, resolution 0.2 × 0.2 mm) and included the whole 

tumor volume. Coronal DW-images (TE/TR 17/3000 ms, 
3 averages, matrix 67 × 93, field of view 20 × 28 mm, slice 
thickness 1 mm, resolution 0.3 × 0.3 mm) were generated 
using b-values of 0 and 1000  s/mm2. ADC parametric 
maps were automatically generated from the DWI-series 
using the manufacturer’s software (Paravision 6.0).

MR image analyses
Manual segmentation aiming at including all primary 
tumor tissue on the coronal T2-weighted images were 
performed using the free software ITK-SNAP (Version 
3.8) [22]. The anatomic tumor volume (vMRI) was cal-
culated by summing the segmented volumes from all 
slices depicting tumor tissue. One reader with 9  years 
of preclinical MRI experience (H. Espedal) performed 
the segmentation with case-by-case consensus discus-
sion with another observer (clinical radiologist I.S Hal-
dorsen) with 6/12 years of gynecological cancer imaging 
experience (preclinical/clinical). Segmentation was car-
ried out blinded to treatment group. The average tumor 
ADC  (ADCmean) was similarly measured by segmenting 
tumor tissue in all slices on the ADC-maps using ITK-
SNAP. The reported  ADCmean represents the mean value 
throughout the whole tumor.

PET‑CT scanning and image reconstruction
The PET images were acquired on a small-animal PET-
CT scanner (Nanoscan, Mediso) and mice were scanned 

Fig. 1 Preoperative MRI and 18F-FDG-PET imaging in the donor patient and corresponding preclinical MRI and 18F-FDG-PET imaging in the 
developed orthotopic O-PDX mouse model. Upper panel: Axial-oblique MRI sequences (A–C) displaying an irregularly shaped large uterine primary 
tumor invading > 50% the myometrial wall (white arrows) and enlarged pelvic left sided lymph node (yellow arrows), all exhibiting restricted 
diffusion (B and C). On PET-CT high 18F-FDG avidity is seen both in the primary tumor (white arrows) and in the bilateral pelvic lymph nodes (yellow 
arrows) (axial (D) and coronal (E) planes). Lower panel: Coronal MRI of a representative mouse tumor (white arrows) in the left uterine horn (F–H) 
3 weeks after implantation displaying characteristic hyperintensity on T2 (F) and high b-value image (DWI) (G) and corresponding hypointense on 
the ADC map (H) indicating restricted diffusion. Abdominal axial (I) and maximum intensity projection (MIP) images from 18F-FDG-PET-CT (J) depict 
a highly 18F-FDG- avid uterine tumor in the same mouse, 2 days after the MRI examination. b bladder, k kidney, ADC apparent diffusion coefficient, 
DWI diffusion-weighted MRI, 18F-FDG fluorodeoxyglucose, O-PDX organoid-based patient-derived xenograft, SUV standardized uptake value
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in pairs using a dual bed. Prior to imaging, mice were 
fasted (average 19 ± 2  h) to minimize gastrointesti-
nal background uptake. Mice were anesthetized using 
sevoflurane mixed in oxygen, and 18F-FDG was diluted 
in saline to a total volume of 150  μl at average injected 
dose 8.3 ± 1.2  MBq. 18F-FDG was injected in the lat-
eral tail vein at start of the 1-h dynamic PET acquisi-
tion. Two mice were imaged with a static protocol only 
(30  min uptake time followed by 30  min acquisition), 
due to technical issues. Prior to the PET, a low-dose CT 
(50 kVp, 0.2 mAs, 0.38 mm slice thickness) was acquired 
for anatomical reference and attenuation correction. 
The mice were monitored for breathing and tempera-
ture during scanning. Static images were reconstructed 
using the list-mode data from 30 to 60  min post 18F-
FDG injection. Dynamic images were reconstructed into 
the following time frames: 5 × 2  s, 5 × 10  s, 2 × 120  s, 
3 × 300 s, 4 × 600 s. All reconstructions were performed 
applying a maximum likelihood estimation method 

algorithm by four iterations and six subsets resulting in 
0.4 × 0.4 × 0.4 mm voxel size corrected for randoms and 
scatter.

Static PET image analyses
From the static images, tumor volumes of interests 
(VOIs) were segmented by applying an automated iso-
contour tool that included all voxels with > 40%SUVmax 
or by a set threshold of 2.5 SUV carefully excluding the 
bladder and kidneys (detailed in next paragraph). Within 
each tumor VOI the following PET parameters were 
calculated: mean and maximum standardized uptake 
values  (SUVmean, and  SUVmax, respectively), metabolic 
tumor volume (MTV) and total lesion glycolysis (TLG; 
TLG =  SUVmean x MTV). The static analyses were carried 
out using InterView Fusion software (Mediso, version 
3.01).

In oncology in general and for EC patients, a fixed 
threshold of > 2.5 SUV is typically applied to segment 

Table 1 Overview of imaging examinations in naïve mice and treatment study

L indicates weekly longitudinal T2 + DWI imaging (in two mice) in the treatment study from week 4 until week 7/8 (control/treated mouse) DWI diffusion-weighted 
MRI, L longitudinal, T2 T2-weighted MRI
a Static PET only due to technical issues
b PET refers to PET-CT imaging, however CT images were used as PET anatomical reference and attenuation correction only

Mouse Week 3 Week 4 Week 5 Total scans, week 
3–5

Treatment study (end‑point 
imaging, week 7/8) DWI + T2Naïve, untreated tumors

M1 T2 + DWI + PET

M2 T2 + DWI + PET T2 + PET T2 Control (L)

M3 T2 + DWI + PET T2 + PET

M4 T2 + DWI

M5 T2 + DWI T2 + PET

M6 T2 + PET T2 + PET T2 + PET

M7 T2 + PET T2 + PET T2 + PET

M8 T2 + PET T2 + PET T2

M9 T2 + PET T2 +  PETa T2

M10 T2 + PET T2 +  PETa T2 Control

M11 T2 + PET Treatment (L)

M12 T2 + PET

M13 T2 + PET Treatment

M14 T2 + PET

M15 T2 + PET

M16 T2 + PET

M17 T2 + PET Treatment

M18 T2 + PET Control

M19 Control

M20 Treatment

M21 Treatment

T2—scans 14 10 8 32 9

DWI—scans 5 – – 5 9

PETb—scans 12 10 4 26 0
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tumors, aiming to omit normal surrounding tissue from 
the VOIs while including all likely tumor voxels. By apply-
ing this threshold to our cohort we were able to segment 
tumor in > 95% of the scans; however, the derived VOIs 
did not include all apparent tumor tissue (See Additional 
file  1). We measured the mean liver uptake in our PET 
mice cohort to 0.53 ± 0.06 SUV on average (See Addi-
tional file 2), which is substantially lower than the 2.0–3.0 
 SUVmean reported for human livers [23]. Consequently, 
we decided to threshold at values 40% of  SUVmax. This 
led to an average threshold of 1.6 SUV (Additional file 2), 
which was also more in line with the visual impression 
of tumor boundaries based on PET and MRI and yielded 
more similar ratios of vMRI to MTV to that observed in 
human EC cohorts [24] (See Additional file 3).

Dynamic PET image analyses
The individual tumor VOIs from the static images were 
further used as input regions for the dynamic analyses 
generating tumor time-activity curves in PMOD software 
(Version 3.8).

To generate the arterial input function (AIF) needed 
for absolute quantitative modeling of dynamic imaging, 
we placed a cube-shaped VOI covering the vena cava and 
selected the seven hottest voxels therein to generate the 
AIF for each mouse [25, 26]. The shape of each AIF was 
visually inspected prior to further analyses. The images 
were analyzed using the kinetic modeling tool (PKIN)-
package of PMOD (Version 3.8), extracting the tumor net 
influx constant  (Ki) by applying the Patlak linear model 
[27]. We used 0.6 as lumped constant [28] and assumed 
equal blood glucose level for all mice (6.0 mmol/l) based 
on previous low intra-animal variation of blood glucose 
measurements in fasted EC PDX implanted in NSG mice. 
All fits resulted in < 10% standard error. Tumor metabolic 
rate of glucose  (MRFDG) was calculated by the equation 
 MRFDG =  Ki (blood glucose/lumped constant) [27].

Histological analyses
To ensure best possible matching of excised tumor tis-
sue to MRI, animals were euthanized immediately after 
the  last imaging. Hematoxylin and eosin (HE) slides 
(4  μm) of formalin fixed paraffin-embedded tumor tis-
sue were scanned at 20X using a slide scanner (VS120, 
Olympus). Automatic counting of nuclei was done using 
the free QuPath (V0.2.0) software [29] in 3–4 rectangu-
lar regions of interest (number depending on tumor size) 
covering the tumor area.

Statistical analyses
Linear regression analyses for the image-derived tumor 
markers were performed to examine a possible relation-
ship between the anatomic (MRI) and metabolic (PET) 

imaging features, between the dynamic- and static PET 
parameters, and between the anatomic tumor volume 
(vMRI) and diffusion restriction  (ADCmean). Differences 
in tumor markers between the treatment- and control 
groups were assessed using a Mann–Whitney test. Nor-
mality was tested for all variables using Shapiro–Wilk 
test. P-values were considered to indicate statistical sig-
nificance when < 0.05. Analyses were done using Graph-
Pad Prism version 9.0.

Results
Imaging characteristics of the tumor in the mouse model 
versus the donor patient
Preoperative pelvic MRI (Fig.  1A–C) and 18F-FDG-
PET-CT (Fig. 1D and E) in the donor woman with grade 
3, endometrioid EC, FIGO stage IIIC1, exhibit tumor 
characteristics that are shared by the uterine tumor of 
the derived animal model (Fig.  1F–J). The T2-weighted 
images (Fig.  1A and F) depict a slightly hyperintense 
uterine tumor in the patient (Fig. 1A) and an even more 
hyperintense uterine tumor in the mouse (Fig.  1F); and 
both tumors have heterogenous signal intensities. Fur-
thermore, both tumors exhibit restricted diffusion with 
hyperintensity on the DWI b1000 images (Fig.  1B and 
G) and corresponding hypointensity on the ADC-maps 
(Fig. 1C and H). Similarly, the uterine tumors are highly 
18F-FDG-avid on 18F-FDG-PET-CT both in the patient 
(Fig. 1D and E) and the mouse (Fig. 1I and J).

MRI for monitoring of tumor growth and restricted 
diffusion
Tumors were detected by T2-weighted MRI in all mice 
3 weeks post-implantation. The estimated tumor volumes 
(vMRI) increased during Week 3–5 post-implantation 
with mean (range) vMRI = 177   mm3 (2–403) in Week 3 
(n = 14), vMRI = 666  mm3 (158–1075) in Week 4 (n = 10) 
and vMRI = 936   mm3 (192–1707) in Week 5 (n = 8) 
(Fig.  2, B). Mean (range) vMRI estimated on all scans 
acquired Weeks 3–5 (32 scans) was 519 (2–1707)   mm3 
(Table  2). Individual vMRI-values for each mouse are 
shown in Additional file  4. At DWI (Fig.  1, G and H) 
the tumors uniformly exhibited restricted diffusion with 
a mean (range) tumor  ADCmean-value of 1.07 (0.86–
1.48) ×  10–3   mm2/s (Table  2), extracted from whole-
volume tumor segmentations on the ADC maps (n = 9) 
3–8 weeks post-implantation. The 95% confidence inter-
vals of the means are listed in Table 2.

18F‑FDG‑PET for monitoring tumor metabolism 
and quantification of tumor metabolic features
All 18F-FDG-PET scans (26 total) depicted FDG-avid 
primary uterine tumors (Fig.  1I and J and Fig.  2C). The 
estimated mean (range) MTV increased during Week 
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Fig. 2 Longitudinal monitoring of tumor growth by MRI and 18F-FDG-PET. Upper panel A Graph displaying weekly tumor volumes (mean, standard 
deviation) from T2-weighted MRI (vMRI) and metabolic tumor volume (MTV) from 18F-FDG-PET imaging in non-treated mice. The graph is based on 
imaging of 12 mice in Week 3 (14 mice for MRI), 10 mice in Week 4 and four mice (eight mice for MRI) in Week 5. B (T2-MRI) and C (18F-FDG-PET-CT 
maximum intensity images, MIP) display the growth of a tumor (arrows) imaged weekly by MRI and PET in a single, representative mouse. b bladder, 
k kidney, 18F-FDG fluorodeoxyglucose, MTV metabolic tumor volume, SUV standardized uptake value, vMRI tumor volume from MRI

Table 2 Mean values, range and 95% confidence intervals (CI) for 18F-FDG-PET and MRI tumor parameters during tumor progression

CI confidence interval, SUV standardized uptake value, MTV metabolic tumor volume, TLG total lesion glycolysis, MRFDG metabolic rate of fluorodeoxyglucose 
(obtained from dynamic imaging), vMRI anatomic tumor volume from MRI, ADC apparent diffusion coefficient
a Includes the four scans from the control mice from the treatment study

SUVmax SUVmean MTV  (mm3) TLG  (SUVmean x MTV) MRFDG (μmol/min) ADCmean  (103  mm2/s) vMRI  (mm3)

Scans 26 26 26 26 24 9a 32

Mean 3.9 2.2 389 847 0.39 1.07 519

Range [min, max] [2.1–5.2] [1.5–2.8] [49–1271] [73–2389] [0.12–0.61] [0.86–1.48] [2–1707]

95% CI [lower, upper] [3.7–4.2] [2.1–2.3] [263–515] [585–1108] [0.34–0.45] [0.94 -1.20] [355–684]
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3–5 post-implantation with MTV = 215  mm3 (49–366) in 
Week 3 (n = 12), to MTV = 490   mm3 (65–767) in Week 
4 (n = 10) and MTV = 660   mm3 (117–1271) in Week 
5 (n = 4) (Fig.  2C). Altogether, the lesions (scans = 26) 
had the following mean (range) tumor values for the 
derived metabolic markers:  SUVmean = 2.2 (1.5–2.8), 
 SUVmax = 3.9 (2.1–5.2), MTV = 389 (49–1271)  mm3 and 
TLG = 847 (73–2389) (Table  2). Individual MTV val-
ues for each mouse are shown in Additional file  5. The 
dynamic series (24 scans) displayed rapid influx of tracer 

in the vena cava following the 18F-FDG bolus injection 
(Fig.  3A and D) and the tumors characteristically had a 
rapid accumulation of 18F-FDG during the first 20  min, 
followed by a slow increase in 18F-FDG activity dur-
ing the consecutive 40  min (Fig.  3B and C). The tumor 
metabolic rate  MRFDG, non-invasively calculated from 
the dynamic scans using vena cava as the image-derived 
input function, had a mean (range) of 0.39 (0.12–0.61) 
µmol/min (Table 2). The 95% confidence intervals of the 
means of all PET image parameters are listed in Table 2.

Fig. 3 Dynamic 18F-FDG-PET imaging. Upper panel A Abdominal maximum intensity projection (MIP) images showing the rapid inflow of 
18F-FDG through the vena cava to the heart (h) and kidneys (k) after an 18F-FDG bolus intravenous injection. Middle panel B Coronal view of the 
lower abdomen displaying accumulation of tracer in the tumor (encircled with a yellow ROI) throughout the 1-h dynamic scan, quantified as the 
time-activity curve of the tumor (C) and the image-derived input function quantified from vena cava (insert) (D). 18F-FDG fluorodeoxyglucose, ROI 
region of interest, SUV standardized uptake value
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Correlation between the image‑derived tumor markers
For imaging markers acquired during Week 3–5 there 
was a strong positive linear association between vMRI 
and both MTV and TLG (TLG =  SUVmean × MTV) 
 (r2 = 0.92 and 0.89, respectively) (Fig.  4A and B). The 
standard PET parameters  SUVmax and  SUVmean were 
strongly positively associated  (r2 = 0.93) (Fig.  4D) 
whereas  MRFDG was moderately positively associated 
with  SUVmax and  SUVmean  (r2 = 0.42 for both) (Fig. 4, E). 
Tumor  ADCmean had a moderate negative association 
with vMRI  (r2 = 0.35) (Fig.  4C), whereas no linear asso-
ciation was observed between  SUVmean/max and vMRI 
(Fig.  4F). Similar statistical correlations between imag-
ing markers were observed in weekly comparison of the 
same imaging markers using Spearman correlation-test 
(Additional file 6).

Tumor ADC, vMRI and cellular density after chemotherapy
Mice in the treatment group (n = 5) with DWI prior 
to sacrifice, had mean (range) tumor  ADCmean of 1.2 
(1.0–1.3) ×  10–3   mm2/s, which were significantly higher 
than the mice in the control group (n = 4) having mean 
(range) tumor  ADCmean of 1.0 (0.9–1.1) ×  10–3   mm2/s 
(p = 0.03) (Fig.  5A, D). Mean vMRI was signifi-
cantly lower in the treated mice [vMRI = 779 (range, 
38–1947)   mm3] compared to the controls [vMRI = 2245 

(935–2905)   mm3; p = 0.03] (Fig.  5E). Furthermore, 
the tumor HE-sections at sacrifice displayed sig-
nificantly lower cellular densities for treated tumors 
[mean(range) = 8.7(5.6–9.6) ×  103  cells/mm2] than for 
untreated tumors [mean = 11.3 (10.7–11.7) ×  103  cells/
mm2; p = 0.02] (Fig. 5F).

One mouse from each group were longitudinally moni-
tored by weekly T2-weighted imaging and DWI, starting 
at week 4 (one-week after start of treatment) (Fig. 5G and 
H). At Week 4, the tumor  ADCmean-value was lower for 
the treated mouse (0.92 ×  10–3   mm2/s) compared to the 
control mouse (1.11 ×  10–3   mm2/s), whereas the vMRI 
was slightly larger in the treated mouse (1272   mm3) 
compared to the control mouse (714   mm3). The tumor 
 ADCmean-values in the treated mouse increased during 
treatment (from 0.92 to 1.04 ×  10–3   mm2/s) indicating 
normalization of the restricted diffusion observed prior 
to treatment, whereas the control mouse had a gradual 
decrease (from 1.11 to 0.86 ×  10–3  mm2/s) in tumor 
 ADCmean indicating increased diffusion restriction. Simi-
larly, the vMRI for the treatment mouse was gradually 
decreasing (from 1272 to 571  mm3 at endpoint) indicat-
ing treatment response, whereas the mouse in the control 
group had rapidly increasing tumor vMRI (from 714 to 
2905  mm3 at endpoint) and had to be sacrificed prior to 
end of study due to high disease burden.

Fig. 4 Linear regression analyses of imaging parameters quantified from MRI and 18F-FDG-PET. Linear regression analyses of anatomical tumor 
volume (vMRI) versus metabolic tumor volume (MTV) (A), total lesion glycolysis (TLG;  SUVmean × MTV) (B) and Tumor  ADCmean (C). Linear regression 
analyses of  SUVmean versus  SUVmax (D), metabolic rate of 18F-FDG  (MRFDG) versus  SUVmax/SUVmean (E) and vMRI versus  SUVmean/max (F). Graphs are 
based on data presented in Table 2. Each dot represents a scan, and the line represents linear regression, with dotted bands representing the 95% 
confidence bands.  r2 = goodness of fit (linear regression). ADC apparent diffusion coefficient, 18F-FDG fluorodeoxyglucose,  MRFDG metabolic rate of 
18F-FDG, MTV metabolic tumor volume, SUV standardized uptake value, TLG total lesion glycolysis, vMRI tumor volume from MRI
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Fig. 5 Tumor  ADCmean, vMRI and cellular density after chemotherapy. ADC-map depicting a large tumor of the left uterine horn (A), photograph 
of tumor in situ immediately after MRI scanning, prior to excision (B) and histology section through a representative central part of tumor stained 
with HE (C). A-C are from the same mouse. Tumor  ADCmean was significantly higher in treated animals compared to controls (D), the tumor volume 
(vMRI) (E) and the tumor cellular density (F) was significantly lower in the treated animals compared to the controls. Lines represent mean ± SD, and 
each dot represents a single sample. Significance was tested using a Mann–Whitney test. Longitudinal data for tumor  ADCmean (G) and vMRI (H) is 
plotted for one mouse from each group. ADC apparent diffusion coefficient, vMRI tumor volume from MRI
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Discussion
In this study we demonstrate that advanced MRI and 
PET imaging methods in preclinical EC allow non-inva-
sive and quantitative monitoring of tumor progression 
and treatment response. To our knowledge, this is the 
first study demonstrating the feasibility of a preclinical 
imaging platform, mirroring imaging methods widely 
employed in the clinic, for characterization of clinically 
relevant orthotopic EC mouse models.

We found a strong positive linear relationship between 
vMRI and MTV and a slightly negative linear relationship 
between vMRI and tumor ADC, indicating increased 
glycolysis and cellularity in tumors with large volume. 
Similarly, preoperative imaging studies in high-grade EC 
patients also report that vMRI and MTV are positively 
correlated [24], and that vMRI and ADC are negatively 
correlated [17, 24, 30], supporting the high clinical rel-
evance and potential translatability of our preclinical 
model. In our study, no evident relationship between 
vMRI and  SUVmean/SUVmax was observed. This finding 
is different from that reported in a recent large clinical 
EC study (n = 215) finding strong positive correlations 
between vMRI and  SUVmean/max (Spearman r = 0.61/0.56) 
though even stronger positive correlation was reported 
between vMRI and MTV [24]. Importantly, the findings 
in this preclinical EC study suggests that the commonly 
reported PET parameters  SUVmean/max cannot substitute 
vMRI or MTV for assessing tumor burden in preclinical 
models. However, more preclinical studies are needed to 
explore whether the observed lack of correlation between 
SUV mean/max and tumor volume is the same for all EC 
models. Furthermore, segmentation methods and thresh-
old values should be systematically evaluated as the cur-
rent use of these are highly variable in the literature.

This study is the first to present data from dynamic 
18F-FDG-PET imaging  (MRFDG) in an orthotopic EC PDX 
model. The  MRFDG values were similar to that reported 
for subcutaneous breast- and brain cell line tumors in 
preclinical studies [31]. Moreover, tumor  MRFDG values 
from a large cohort including 11 different cell line tumors 
were in the same range as ours [32]. Interestingly, a recent 
dynamic 18F-FDG-PET study including 101 patients 
diagnosed with a range of cancers, demonstrated clini-
cal feasibility and superior quantification using  MRFDG 
with higher tumor-to-background- and contrast-to-noise 
ratios compared to conventional tumor SUV values [20]. 
Interestingly, they reported a significant positive correla-
tion between  Ki (which is directly derived from  MRFDG) 
and  SUVmean, which is in line with our finding.

We demonstrate the usefulness of T2-weighted MRI for 
non-invasive monitoring of tumor volume in mice treated 
with paclitaxel and carboplatin, which is the standard 
adjuvant chemotherapy for EC [33]. In line with our 

study, T2-weighted MRI has been used to monitor tumor 
volume reduction after monotherapy with rapamycin in 
a genetically engineered mouse model of EC (Lkb1-defi-
cient) [34] and after combined treatment with Olaparib 
and a PI3K-inhibitor (BKM120) in PTEN-deficient endo-
metrioid EC model [35]. We additionally included DWI 
at the end of the experiment to explore tumor cellularity 
in the treatment-versus the control group. Treatment-
induced cell death is known to normalize tumor cellular-
ity and tumor microstructure, making it more similar to 
that of nonmalignant tissues; this effect can be detected 
by increased tumor ADC values [36]. Our longitudi-
nal imaging data showcased restricted diffusion prior to 
treatment, followed by increased tumor  ADCmean during 
treatment. The increase in  ADCmean was evident prior 
to tumor volume reduction on the T2-weighted images. 
This may suggest that tumor  ADCmean is a powerful imag-
ing parameter for early detection of treatment response 
preceding the decrease in tumor volumes depicted by 
T2-weighted anatomical series.

To our knowledge, no previous preclinical studies have 
utilized DWI and ADC to assess treatment response in 
EC. However, early increase in tumor ADC values has 
been reported in subcutaneous ovarian cancer xeno-
grafts 3  days post-treatment with a PI3K/mTOR-inhibi-
tor [37], a pathway of therapeutic interest also in EC [38]. 
Similarly, increased tumor ADC values 24 h after radio-
therapy (20  Gy) has been shown in subcutaneous U14 
cervical allografts, also prior to changes in tumor volume 
[39]. Unfortunately, in the present study the COVID-19 
lockdown precluded PET-imaging in treated mice; thus, 
we were not able to compare potential response mark-
ers, static or dynamic, from 18F-FDG-PET with that 
from MRI. In a previous preclinical EC treatment study 
(with treatment groups: paclitaxel, trastuzumab or con-
trols) imaged by 18F-FDG-PET at study endpoint, similar 
tumor  SUVmean was found for treated mice and controls 
and also similar tumor weights at the end of the experi-
ment [21]. Wang et  al. recently reported significant 
decrease in  SUVmax values in lung metastases from a cell 
line-based EC model following treatment with an inhibi-
tory PI3K-pathway agent [40]. Thus, future studies are 
needed to establish the optimal role of imaging markers 
from 18F-FDG-PET and MRI for monitoring treatment 
response in preclinical EC models.

Although increased tumor metabolism (relative to nor-
mal surrounding tissue) is clearly evident by 18F-FDG-
PET imaging in our preclinical orthotopic EC cohort, 
the mean  SUVmax/SUVmean of 3.9/2.2 is lower than that 
reported for human primary EC  (SUVmax/SUVmean 
median of 14.1/5.4 [24]). This is not surprising given the 
differences in 18F-FDG metabolism, employed segmen-
tation threshold and fasting period prior to imaging in 
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our preclinical setting compared to the clinical setting. 
Interestingly, the tumor  ADCmean values in our mouse 
cohort (mean 1.07 ×  10–3   mm2/s) were more similar 
to that typically reported for human tumors (median 
0.78 ×  10–3   mm2/s in a recent EC study [24]). Thus, the 
combination of utilizing our relevant organoid model 
and preclinical DWI seems to very well reproduce the 
microstructural tumor features (reflected in ADC values) 
observed in human EC.

Several tumor segmentation methods have been devel-
oped in PET, including both manual-, boundary- and 
region-based techniques and the chosen approach will 
inherently impact the calculated parameter outputs [41]. 
Deploying two commonly used clinical segmentation 
methods yielded largely different results for MTV in our 
study. Future preclinical PET studies should ideally assess 
multiple segmentation methods in order to determine 
the optimal approach for valid tumor segmentations in 
that particular study. Which segmentation algorithm 
that is preferable will depend on various factors including 
type of mouse model, fasting protocol, PET tracer, dis-
ease type as well as other physiological factors.

Our study has some limitations. A combined MRI and 
PET scanner would have been beneficial in this study 
since it would allow more accurate co-registration of 
anatomic tumor volumes and a detailed comparison 
of morphologic- and functional tumor features in the 
same voxels. However, as small-animal hybrid PET-MRI 
scanners are becoming more common, this opens the 
avenue for utilizing this novel imaging platform in the 
future. Dynamic quantitative PET imaging requires an 
arterial input function (AIF) which in preclinical stud-
ies can be challenging to obtain with the gold standard 
of blood sampling, since mice have small blood volumes 
[6]. Hence, we used an image-derived input function 
from vena cava that allowed noninvasive and longitudinal 
analyses. Studies have shown that an image-derived input 
function using the vena cava in small animals is an accu-
rate method for obtaining the AIF [25, 26]. However, our 
input function has not been corrected for partial volume 
effect nor experimentally validated. Additionally, former 
studies show that  MRFDG is highly dependent on blood 
glucose levels [31, 32]. In our study, the blood glucose 
was set to 6.0 mmol/ for all mice based on low intra-ani-
mal variation in previously measured values in the same 
mouse strain, tumor type and fasting protocol. Thus, our 
choice of using a fixed blood glucose level for modelling, 
may potentially have led to both over- and underestima-
tion of the calculated  MRFDG in the present study.

Finally, the whole tumor  ADCmean-values in this study 
were compared to tumor cellular density quantified from 
a single histology section. Using whole tumor segmenta-
tion rather than single or multiple regions of interest to 

calculate  ADCmean-values removes the potential selection 
bias regarding placement of the ROIs. Nevertheless, we 
are comparing data extracted from 3D (ADC) with data 
from 2D (cellular density), the latter being potentially 
less representative of the entire tumor volume. This limi-
tation is, however, typically shared in a clinical patient 
setting, and where exact co-registration of preoperative 
MRI images with tissue slices from hysterectomy speci-
men is very difficult to achieve.

Conclusions
We have demonstrated the feasibility of advanced MRI- 
and PET imaging methods in a preclinical organoid EC 
model for monitoring tumor size, microstructural- and 
metabolic features during tumor progression. Follow-
ing treatment with standard chemotherapy, ADC-val-
ues from DWI-MRI may represent a powerful imaging 
marker for detecting early treatment response. Relevant 
imaging platforms, mirroring imaging methods widely 
employed in the clinical diagnostic work-up, should be 
utilized in future preclinical studies in order to enhance 
the potential for clinical translatability and add momen-
tum to the development of new imaging-guided thera-
peutic strategies in EC.
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