
Feng et al. J Transl Med          (2021) 19:373  
https://doi.org/10.1186/s12967-021-03050-7

RESEARCH

GSK2126458 has the potential to inhibit 
the proliferation of pancreatic cancer uncovered 
by bioinformatics analysis and pharmacological 
experiments
Yueqin Feng1*, Yuguan Jiang2 and Fengjin Hao3 

Abstract 

Background:  Pancreatic cancer is one of the most serious digestive malignancies. At present, there is an extreme 
lack of effective strategies in clinical treatment. The purpose of this study is to identify key genes and pathways in the 
development of pancreatic cancer and provide targets for the treatment of pancreatic cancer.

Methods:  GSE15471 and GSE62165 were used to screen differentially expressed genes by GEO2R tool. Hub genes 
prognostic potential assessed using the GEPIA and Kaplan–Meier plotter databases. The drug susceptibility data of 
pan-cancer cell lines is provided by The Genomics of Drug Sensitivity in Cancer Project (GDSC). Finally, the effects of 
PI3K–Akt signaling pathway inhibitors on cell viability of pancreatic cancer cells were detected by cell proliferation 
and invasion assays.

Results:  A total of 609 differentially expressed genes were screened and enriched in the focal adhesion, phagosome 
and PI3K–Akt signaling pathway. Of the 15 hub genes we found, four were primarily associated with the PI3K–Akt 
signaling pathway, including COL3A1, EGF, FN1 and ITGA2. GDSC analysis showed that mTOR inhibitors are very sensi-
tive to pancreatic cancer cells with mutations in EWSR1.FLI1 and RNF43. Cell proliferation and invasion results showed 
that mTOR inhibitors (GSK2126458) can inhibit the proliferation of pancreatic cancer cells.

Conclusions:  This study suggested that the PI3K–Akt signaling pathway may be a key pathway for pancreatic cancer, 
our study uncovered the potential therapeutic potential of GSK2126458, a specific mTOR inhibitor, for pancreatic 
cancer.
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Background
Pancreatic cancer is one of the most devastating and 
frequent malignancies worldwide, and its incidence rate 
is still nearly equal to its death rate. It’s the fourth lead-
ing cause of cancer-related death globally and is associ-
ated with the lowest 5-year survival rate of less than 5% 

known for human cancers [1–4]. Although great progress 
in the treatment of pancreatic cancer, it is still one of the 
leading causes of death. The main cause of high mortal-
ity in pancreatic cancer is that pancreatic cancer has the 
biological features that other solid tumors do not have: 
abnormal tumor metabolism, the high degree of cell 
malignancy, lack of blood supply to tumor cells and com-
plex tumor microenvironment. Most tumor growth pro-
cesses need to generate a large number of blood vessels 
to provide nutrition [5, 6]. However, pancreatic cancer 

Open Access

Journal of 
Translational Medicine

*Correspondence:  fengjinyueqin@163.com
1 Department of Ultrasound, The First Affiliated Hospital of China Medical 
University, Shenyang 110022, Liaoning, China
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12967-021-03050-7&domain=pdf


Page 2 of 17Feng et al. J Transl Med          (2021) 19:373 

is not sensitive to nutrient supply and pancreatic can-
cer can still be growing rapidly in a nutrient-deficient 
and sparsely-blood-driven environment [7, 8]. So far, 
although more and more evidence suggested that multi-
ple genes and cellular pathways are involved in the devel-
opment and progression of pancreatic cancer, the lack 
of knowledge about the exact molecular mechanisms 
underlying pancreatic cancer progression has limited the 
ability to treat the diseases. Therefore, identifying the hub 
genes (genes that play a vital role in biological processes) 
and key pathways of this disease is important for fur-
ther studying the pathogenesis of pancreatic cancer and 
develop more effective treatment methods.

Gene chip, a gene detection technology, can quickly 
detect all the gene expression information at the same 
time point [9]. Nowadays, high throughput sequencing is 
becoming more widely used and has been used as a very 
effective tool in life science, such as early diagnosis of 
cancer, classification of tumor and prognosis prediction 
[10]. Therefore, a large number of gene profile data have 
been produced with the widespread use of gene chips, 
and most of the data has been stored in public databases. 
Integrating and re-analyzing these data can provide 
valuable clues for new research, which is especially suit-
able for the screening of differentially expressed genes 
(DEGs). Hence, the integrated bioinformatics methods 
were used to explore the pathogenesis of pancreatic can-
cer. Bioinformatics analysis studies have identified several 
potential biomarkers [11–14]. However, these results do 
not adequately explain how pancreatic cancer cells sur-
vive hypoxic conditions, which are often associated with 
inadequate nutrient supply.

In this work, we identified DEGs in pancreatic can-
cer using bioinformatics methods. The original data 
GSE15471 and GSE62165 were chosen from Gene 
Expression Omnibus (GEO), and DEGs were filtered by 
the GEO2R online tool. GSE15471 and GSE62165 have 
reasonable experimental design and reliable data qual-
ity, which can provide rich information for data min-
ing [11, 13, 15–17]. Followed by, Gene ontology (GO) 
and pathway enrichment analysis were performed with 
DAVID [18, 19]. Moreover, we constructed protein–pro-
tein interaction (PPI) network of the DEGs and modular 
analysis to pick out hub genes in pancreatic cancer. Then 
we used GEPIA to validate the expression of hub genes 
between cancer patients and healthy people. Finally, the 
effects of PI3K–Akt signaling pathway inhibitors (mTOR 
inhibitor, GSK2126458) on cell viability of pancreatic 
cancer cells were detected by MTT, colony and inva-
sion assays. The analysis of DEGs’ biological functions 

and pathways will provide better insight into molecular 
mechanism and potential candidate therapeutic targets 
for pancreatic cancer.

Materials and methods
Cell lines and reagents
The human pancreatic cancer cell lines (PANC-1) were 
purchased from the Chinese Academy of Sciences Cell 
Bank and cultured in DMEM medium with 10%FBS, 
100  U/mL of penicillin, 100  μg/mL of streptomycin. 
The cells were cultured in a 5% CO2 incubator at 37 ℃. 
GSK2126458 was purchased from ApexBio (USA).

MTT assay
Logarithmic growth phase cells were seeded in 96-well 
plates. After 24  h, the cells cultured in different con-
centrations of GSK2126458 (1.0  μmol/L, 0.5  μmol/L, 
0.25 μmol/L) for 24 h, 48 h or 72 h. MTT (final concen-
tration: 5 mg/mL) were added to each well and then incu-
bated for 4 h in the incubator. We discarded the culture 
solution and added 150 μL of DMSO (dimethyl sulfoxide) 
to each well, and measured the absorbance at 490  nm 
after shaking. 

Microarray data information
The gene expression profiles of GSE15471 and GSE62165 
were obtained from the GEO database (https://​www.​
ncbi.​nlm.​nih.​gov/​geo). The microarray data of GSE15471 
was based on GPL570 Platforms ([HG-U133_Plus_2] 
Affymetrix Human Genome U133 Plus 2.0 Array) and 
included 39 pancreatic cancer tissues and 39 normal 
pancreatic tissues (Submission date: Mar 31, 2009) [20]. 
GSE15471 contain “pairs” of normal pancreatic tissues 
and pancreatic cancer tissues samples. The microarray 
data of GSE62165 was based on GPL13667 Platforms 
([HG-U219] Affymetrix Human Genome U219 Array) 
and included 118 pancreatic cancer tissues and 13 nor-
mal pancreatic tissues (Submission date: Oct 08, 2014) 
[21]. The two gene expression profiles obtained from 
pancreatic ductal adenocarcinoma (PDAC). GEO2R 
(https://​www.​ncbi.​nlm.​nih.​gov/​geo/​geo2r/) will give a 
box plot to determine if selected samples are suitable for 
comparison. Viewing the distribution is important for 
determining if the selected samples are suitable for com-
parison; Generally, median-centered values are indicative 
that the data are normalized and cross-comparable.

Cell viability(%) =(ODsample −ODblank)/

(ODcontrol −ODblank) ∗ 100%.

https://www.ncbi.nlm.nih.gov/geo
https://www.ncbi.nlm.nih.gov/geo
https://www.ncbi.nlm.nih.gov/geo/geo2r/
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DEGs identification
GEO2R (https://​www.​ncbi.​nlm.​nih.​gov/​geo/​geo2r/) is 
an interactive web tool for detecting DEGs [22]. GEO2R 
allows users to compare two or more groups of samples 
to analyze most of the GEO series with gene symbol. 
We used GEO2R to identify genes that are differentially 
expressed between pancreatic cancer samples and nor-
mal samples. GEO2R is data processed by ebayes algo-
rithm in limma package in R language [22]. The adjust 
P-value < 0.05 and |logFC|> 1 were set as cut-off criteria. 
We used log2-fold change between two groups. Then the 
co-expression up-regulated and down-regulated genes of 
the two expression profiles were identified in the Venn 
diagram (http://​bioin​forma​tics.​psb.​ugent.​be/​webto​ols/​
Venn/). The heat map was plotted for samples and top 50 
DEGs in Heatmao IIIustrator software (Heml 1.0.3.7) [23].

GO function and KEGG pathway enrichment analysis 
of DEGs
GO analysis is a useful method for annotating genes and 
gene products and for identifying the characteristic bio-
logical properties of high throughput genome or tran-
scriptional data [24, 25]. KEGG is a database including 
biological pathway, diseases, drugs, and chemicals [26]. 
The Database for Annotation, Visualization and Inte-
grated Discovery (DAVID, https://​david.​ncifc​rf.​gov/), a 
functional annotation tool, is a website which can pro-
vide GO analysis and pathway analysis. These analyses 
were performed using DAVID online tool to analyze the 
DEGs at the functional level. P-value < 0.05 was set as the 
cut-off criterion.

The construction of PPI network, module analysis 
and significant candidate genes and pathway 
identification
In order to study the protein–protein interaction (PPI) 
information, Search Tool for the Retrieval of Interact-
ing Genes (STRING, version 10.5, https://​string-​db.​org/) 
database was used and combined score > 0.4 was selected 
as cut-off criteria [27]. Subsequently, the PPI networks 
were built and visualized in Cytoscape software (version 
3.6.0) [28]. The Molecular Complex Detection (MCODE) 
was used to analyze the modules of the PPI network with 
the default parameters settings such as degree cutoff = 2, 
node score cutoff = 0.2, k-core = 2, max. depth = 100. The 
cut-off criteria were set as follows: MCODE score > 4 and 
number of nodes > 4. Moreover, the function and path-
way enrichment analysis of genes in the modules were 
performed by STRING.

Comparison of the hub genes expression level
The GEPIA (http://​gepia.​cancer-​pku.​cn/​index.​html) is 
a newly developed online server for interaction analy-
sis. The standard processing pipeline is used to ana-
lyze the RNA sequence expression data of 9736 tumor 
samples and the 8587 normal samples from the TCGA 
(The Cancer Genome Atlas) and the GTEx (Genotype-
Tissue Expression) projects [29]. TCGA database can 
compare the differential expression analysis between 
normal tissue and tumor tissue. However, due to the 
fact that its normal samples are also from cancer 
patients, the clustering of samples may be confused. 
The normal sample data of GTEx are from health peo-
ple. Considering that there are too few normal samples 
in TCGA, the data of above two databases are merged 
on GEPIA website for analysis. It can provide custom 
functions for tumor and normal differential expression 
analysis. We used the boxplot to display the expression 
of hub genes in pancreatic cancer tissues and normal 
tissues. This study took the P-value less than 0.01 as 
the cutoff point. Furthermore, the human protein 
Atlas (HPA) shows the protein level of 4 hub genes in 
the PI3K–Akt pathway in pancreatic cancer and nor-
mal tissues [30, 31].

Survival curve analysis
Kaplan–Meier plotter was used to analyze the RNA-
seq data in TCGA, EGA and geo databases (http://​
kmplot.​com/​analy​sis/). It can evaluate the effect of 
more than 54,000 biomolecules on the survival rate of 
various tumor tissues. Here, the Kaplan Meier plotter 
was used to analyze the association between key genes 
(COL3A1, FN1 and ITGA2) expression and survival in 
patients with pancreatic cancer. We searched the data-
base with COL3A1, FN1 and ITGA2 as the input and 
analyzed all the samples in the database. The param-
eters are as previously reported [32]: cut-off value of 
grouping: median; hazard ratio: Yes; 95% confidence 
interval: Yes.

Chemotherapeutic response
We analyzed the largest open pharmacogenomics 
database to predict the chemotherapeutic response of 
PI3K–Akt–mTOR specific inhibitors (PI3K: BKM-120, 
Akt: MK-1102, and mTOR inhibitor: GSK2126458) 
to each sample [cancer drug sensitivity genomics 
(GDSG)], https://​www.​cance​rrxge​ne.​org/]. The analy-
sis method is based on the previous reports [32].

https://www.ncbi.nlm.nih.gov/geo/geo2r/
http://bioinformatics.psb.ugent.be/webtools/Venn/
http://bioinformatics.psb.ugent.be/webtools/Venn/
https://david.ncifcrf.gov/
https://string-db.org/
http://gepia.cancer-pku.cn/index.html
http://kmplot.com/analysis/)
http://kmplot.com/analysis/)
https://www.cancerrxgene.org/
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Cell culture
PNAC-1 cells and BxPC-3 cells (purchased from Procell, 
China) in RPMI-1640 medium supplemented with 10% 
fetal bovine serum (FBS) and 1% penicillin–streptomy-
cin, at 37 °C, 5% Incubate in CO2 gas phase.

Cell viability
PNAC-1 cells and BxPC-3 cells were seeded in a 96-well 
plate, cultured overnight in an incubator, and treated 
with or without GSK2126458 (0–10 μM) for 24 h, 48 h, 
and 72  h. Then, the medium was added to the 5  mg/
mL (final concentration) MTT solution and incubated 
for 4  h. The formed formazan crystals were dissolved 
in 150  μL DMSO per well and measured at 490  nm by 
a microplate reader (Elx800 Bio-Tek, USA). Repeat the 
experiment at least 3 times.

Colony formation
The cells were seeded on 6-well plates, cultured over-
night, and treated with different concentrations of DMSO 
or GSK2126458 for 48 h. Then washed with PBS and cul-
tured in complete growth medium for another 10  days. 
The fresh medium was changed every 3  days. The cells 
were fixed with 100% methanol and stained with 0.1% 
crystal violet.

Invasion assay
The experimental operation was carried out according 
to the method previously reported [33]. PANC-1 cells 
in logarithmic growth phase were seeded into the upper 
layer of 8 μm transwell chamber. The diluted matrix glue 
is added to the upper layer of the chamber in advance for 
solidification. After 48  h of culture with different con-
centrations of GSK2126458 (0–1  μmol/L), PANC1 cells 
invading the subventricular layer were stained with 0.1% 
crystal violet. The invasive cells were observed and pho-
tographed under an inverted microscope (OLYMPUS, 
IX71).

FACS assay
The experimental methods refer to the previous literature 
[34]. In general, PANC-1 cells were treated with differ-
ent concentrations of GSK2126458 for 48 h, and the cells 
were digested with trypsin to obtain cell suspension. The 
cells were centrifuged at 4  °C and 3000 rpm for 10 min, 
then completely resuspended and washed. The cells were 
then centrifuged at 4  °C and 2000  rpm for 10  min. We 
discarded the supernatant, added binding buffer, annexin 
V-FITC and PI working solution (BD pharmingen, USA) 
to each sample, mixed them evenly, and then filtered 

them with a 400 mesh filter to obtain single cell suspen-
sion. The number of apoptotic cells was detected by flow 
cytometry (BD, C6).

Quantitative PCR
Total RNA of PNAC-1 cells after treated with 
GSK2126458 for 48  h was extracted using TRIzol rea-
gent (Qiagen, USA), and cDNA was synthesized from 
total RNA (2 μg) using the first-strand synthesis system 
(Vazyme, China). Dilute the cDNA to 2 ng/µL, then add 
4 µL to 10 µL 2×  FastStart Universal SYBR Green PCR 
Master (Vazyme, China). Each sample was tested in 
triplicate using the StepOnePlus qPCR system (Applied 
Biosystems 7500). The Ct value was normalized to the 
housekeeping gene GAPDH, which was amplified in par-
allel. The following qPCR primers were used: COL3A1-
F, 5′-GGA​GCT​GGC​TAC​TTC​TCG​C-3′ and COL3A1-R, 
5′-GGG​AAC​ATC​CTC​CTT​CAA​CAG-3′; EGF-F, 5′-TGG​
ATG​TGC​TTG​ATA​AGC​GG-3′ and EGF-R, 5′-ACC​ATG​
TCC​TTT​CCA​GTG​TGT-3′; FN1-F, 5′-CGG​TGG​CTG​
TCA​GTC​AAA​G-3′ and FN1-R, 5′-AAA​CCT​CGG​CTT​
CCT​CCA​TAA-3′; ITGA2-F, 5′-CCT​ACA​ATG​TTG​GTC​
TCC​CAGA-3′ and ITGA2-R, 5′-AGT​AAC​CAG​TTG​
CCT​TTT​GGATT-3′; GAPDH-F, 5′-TGG​TGT​CTG​AGG​
GTT​CTG​TGG-3′ and GAPDH-R, 5′- TGA​TGA​CCC​
TTT​TGG​CTC​CC-3′.

Statistical analysis
All data were represented by mean ± SD. Significant dif-
ferences were calculated in GraphPad 5.0 (Inc., La Jolla, 
CA, USA) with one-way ANOVA analysis, and then Stu-
dent t-test or Tukey’s multiple comparison test was con-
ducted. P < 0.05 was significant difference.

Results
Identification of DEGs
GSE15471 and GSE62165 were downloaded free from 
GEO database. Due to various reasons such as back-
ground and probe design, the original microarray data 
leads to huge differences between the microarray data. 
Therefore, it is necessary to check whether the data 
is highly standardized gene expression profile data, 
which can be used for subsequent DEGs analysis (Addi-
tional file 1: Figure S1). Then the GEO2R online analysis 
tool was used to detect differentially expressed genes. 
The screening criteria were adjust P-value < 0.01 and 
|logFC|> 1. The volcano plot (Fig.  1) showed the dis-
tribution of DEGs in GSE15471 and GSE62165. A total 
of 776 up-regulated DEGs were identified with the 233 
down-regulated DEGs from GSE15471. And a total of 
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1263 up-regulated DEGs were identified with the 1374 
down-regulated DEGs from GSE62165. Heat maps of 
the top 50 differentially expressed genes (30 up-regulated 
and 20 down-regulated) of GSE15471 and GSE62165 
were all shown in Additional file  1: Figure S2. After a 
comprehensive comparative analysis, 609 differentially 
expressed genes were identified, including 432 up-regu-
lated genes and 177 down-regulated genes in pancreatic 
cancer tissues compared with normal pancreatic tissues 
in two expression datasets (Additional file  1: Table  S1). 
As shown in Fig.  1, the corresponding Venn diagrams 
showed the overlap region of DEGs in two gene expres-
sion profiles.

GO function enrichment analysis
We submitted the 609 DEGs to the online database 
DAVID for Gene ontology analysis in pancreatic can-
cers. In this study, the total of 253 enriched GO terms 
have been identified with the criteria P-value < 0.05, 
and the top 15 enriched GO terms of up-regulated 
DEGs and down-regulated DEGs were listed in Table 1, 
respectively. The significantly enriched go terms 
(top 30) of DEGs in pancreatic cancer were shown in 
Fig.  2A. The GO analysis results showed that DEGs 
were divided into three functional groups: biologi-
cal processes (BP), molecular function (MF) and cell 

component (CC). To summarize, these results showed 
that most of the DEGs were mainly enriched in meta-
bolic process, binding and extracellular part.

KEGG pathway enrichment analysis
The analysis of KEGG pathway enrichment was also 
using the DAVID online analysis tool. In this study, a 
total of 40 KEGG pathways have been identified with 
the criteria P value < 0.05. The significantly enriched 
KEGG pathways (top 30) of DEGs in pancreatic can-
cer were shown in Fig.  2B. Table  2 showed the top 15 
enriched KEGG pathway of up-regulated DEGs and top 
5 enriched KEGG pathway of down-regulated DEGs. 
As shown in Table  2, the KEGG pathway enrichment 
analysis of the DEGs showed that the up-regulated 
DEGs were most significantly enriched in comple-
ment and coagulation cascades; the down-regulated 
DEGs were most significantly enriched in pancreatic 
secretion glycine. Considering the count of genes, the 
top three enriched KEGG pathway are focal adhesion, 
phagosome and PI3K–Akt signaling pathway based on 
the count of genes (Table 2).

Hub genes and pathways screening from PPI network 
and modular analysis
According to the STRING database and Cytoscape soft-
ware [28, 35], the total of 485 differentially expressed 
genes (362 up-regulated and 123 down-regulated genes) 
were screened out of the 609 differentially expressed 
genes to be showed in the PPI network map, including 
485 nodes and 2202 edges (Additional file 1: Figure S3). 
Among the 485 nodes, the top 15 hub nodes with the 
higher degree of connectivity were identified and shown 
in Table 3. ALB had the highest node degree of connec-
tivity, which is 120. The PPI network (15 nodes and 42 
edges) map of the top 15 key genes with the higher degree 
were displayed by STRING (Additional file 1: Figure S4). 
Based on the GO function and KEGG pathway analysis 
using STRING, we found that COL3A1, EGF, FN1 and 
ITGA2 were enriched in focal adhesion and PI3K–Akt 
signaling pathway. Moreover, the whole PPI network was 
analyzed using Cytoscape MCODE to identify significant 
modules. Based on the criteria of MCODE score > 4 and 
number of nodes > 4, the top 4 modules were selected 
(Table  4). The KEGG pathway enrichment analysis of 
the genes involved in the 4 modules was calculated by 
STRING online software (Fig.  3A–D). Pathway enrich-
ment analysis showed that the genes in 4 modules were 
mainly associated with chemokine signaling pathway, 

Fig. 1  A Volcano plot of differentially expressed genes in GSE15471 
(left; scale bar = 1.33) and GSE62165 (right; scale bar = 2.1). Red: 
up-regulated genes; blue: down-regulated genes; B Identification 
of co-expression of up-regulated (left) and down-regulated (right) 
genes in GSE15471 and GSE62165
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PI3K–Akt signaling pathway, phagosome, tuberculosis 
(Fig. 3E–H).

Comparison of the hub genes expression level
In order to validate the expression of hub genes between 
cancer patients and healthy people, we used GEPIA to 
analyze the data from TCGA normal and GTEx data-
base. Ninety percent of Pancreatic Adenocarcinoma 
(PAAD) are pancreatic ductal adenocarcinomas (PDAC). 
Because PAAD is not classified on TCGA website and it 
can only be analyzed with PAAD data. The data of PAAD 
were used to indirectly reflect the situation of PDAC. 
Figure 4A reflected that compared to normal tissue, the 

hub genes identified in this study were also significantly 
abnormal expressed in the TCGA and GTEx pancreatic 
cancers.

We further analyzed the overall survival of COL3A1, 
FN1 and ITGA2 in pancreatic cancer and normal tissues. 
As illustrated in Fig. 4B–D, analysis based on transcrip-
tome sequencing data showed that high FN1 expression 
was significantly associated with low overall survival.

Profiles of protein expression
In addition, the protein levels of COL3A1, FN1 and 
ITGA2 in pancreatic cancer were improved accord-
ing to HPA (Fig.  5). Unfortunately, there is no EGF 

Table 1  Gene ontology analysis of differentially expressed genes associated with pancreatic cancer

Expression Category Term Gene count % P value

Up-regulated GOTERM_BP_DIRECT GO:0030198 ~ extracellular matrix organization 35 8.10 4.85E−20

GOTERM_BP_DIRECT GO:0060337 ~ type I interferon signaling pathway 16 3.70 1.72E−11

GOTERM_BP_DIRECT GO:0030574 ~ collagen catabolic process 16 3.70 1.72E−11

GOTERM_BP_DIRECT GO:0007155 ~ cell adhesion 39 9.03 1.88E−11

GOTERM_BP_DIRECT GO:0051607 ~ defense response to virus 22 5.09 3.53E−10

GOTERM_MF_DIRECT GO:0005509 ~ calcium ion binding 48 11.11 9.05E−11

GOTERM_MF_DIRECT GO:0005518 ~ collagen binding 14 3.24 7.95E−10

GOTERM_MF_DIRECT GO:0008201 ~ heparin binding 19 4.40 3.00E−08

GOTERM_MF_DIRECT GO:0005178 ~ integrin binding 15 3.47 1.25E−07

GOTERM_MF_DIRECT GO:0005201 ~ extracellular matrix structural constituent 12 2.78 3.33E−07

GOTERM_CC_DIRECT GO:0005576 ~ extracellular region 111 25.69 3.52E−26

GOTERM_CC_DIRECT GO:0005615 ~ extracellular space 95 21.99 7.82E−23

GOTERM_CC_DIRECT GO:0070062 ~ extracellular exosome 143 33.10 2.98E−21

GOTERM_CC_DIRECT GO:0031012 ~ extracellular matrix 42 9.72 1.88E−20

GOTERM_CC_DIRECT GO:0005578 ~ proteinaceous extracellular matrix 33 7.64 2.75E−14

Down-regulated GOTERM_BP_DIRECT GO:0072593 ~ reactive oxygen species metabolic process 6 3.39 1.84E−05

GOTERM_BP_DIRECT GO:0008652 ~ cellular amino acid biosynthetic process 5 2.82 9.84E−05

GOTERM_BP_DIRECT GO:0006520 ~ cellular amino acid metabolic process 5 2.82 5.42E−04

GOTERM_BP_DIRECT GO:0071294 ~ cellular response to zinc ion 4 2.26 7.22E−04

GOTERM_BP_DIRECT GO:0006508 ~ proteolysis 14 7.91 9.58E−04

GOTERM_MF_DIRECT GO:0030170 ~ pyridoxal phosphate binding 8 4.52 1.43E−06

GOTERM_MF_DIRECT GO:0005385 ~ zinc ion transmembrane transporter activity 4 2.26 1.28E−03

GOTERM_MF_DIRECT GO:0019899 ~ enzyme binding 11 6.21 1.80E−03

GOTERM_MF_DIRECT GO:0004435 ~ phosphatidylinositol phospholipase C activity 4 2.26 2.34E−03

GOTERM_MF_DIRECT GO:0042803 ~ protein homodimerization activity 17 9.60 2.43E−03

GOTERM_CC_DIRECT GO:0070062 ~ extracellular exosome 55 31.07 8.36E−08

GOTERM_CC_DIRECT GO:0005615 ~ extracellular space 29 16.38 5.61E−05

GOTERM_CC_DIRECT GO:0016323 ~ basolateral plasma membrane 8 4.52 1.57E−03

GOTERM_CC_DIRECT GO:0005887 ~ integral component of plasma membrane 25 14.12 3.38E−03

GOTERM_CC_DIRECT GO:0005576 ~ extracellular region 27 15.25 4.39E−03
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immunohistochemical data. Antibody HPA007583 tar-
geting the COL3A1 protein, HPA027066 targeting the 
FN1 and HPA063558 targeting the ITGA2 were tested 
by immunohistochemistry on the normal and PAAD tis-
sue. COL3A1 exhibited medium immunoreactivity in 
PAAD while staining was low in the normal pancreas; 
FN1 exhibited medium immunoreactivity in PAAD while 
staining was not detected in the normal pancreas; ITGA2 
exhibited high immunoreactivity in PAAD while staining 
was low in the normal pancreas.

Sensitivity of the PI3K–Akt signaling pathway inhibitors 
to pancreatic cancer
Most of these key genes are enriched in PI3K–Akt 
pathway, we investigated the effect of three PI3K–Akt 
signaling pathway inhibitors on the cell growth of 
PANC-1 (human pancreatic cancer cell lines). BKM-
120 is a selective PI3K inhibitor; MK2206 is a highly 
selective Akt1/2/3 inhibitor and the first small mol-
ecule Akt allosteric inhibitor to enter clinical research; 
GSK2126458 is a highly selective, potent p110α/β/γ/δ 
and mTORC1/2 inhibitor. These three compounds 
are inhibitors of three key targets in the PI3K–Akt–
mTOR signaling pathway, respectively. The IC50 values 
on pan-cancer cell lines of BNM-120, MK2206 and 
GSK2126458 were predicted with the GDSC data, and 

our analysis indicated GSK2126458 with a significant 
response sensitivity against pancreatic cancer cell lines 
(Fig.  6A). As shown in Fig.  6B, EWSR1-FLI1 mutant 
pancreatic cell was the most sensitive to GSK2126458. 
In addition, the sensitivity of GSK2126458 to FNR43 
mutant pancreatic cancer cells was significantly higher 
than that of wild-type cells (Fig. 6C).

The effects of mTOR inhibitor‑GSK2126458 on pancreatic 
cancer cells
As illustrated in Fig.  7A, GSK2126458 decreased the cell 
viability of PANC-1 cells in time and dose-dependent man-
ners after 24–72 h treatment. The IC50 of GSK216458 on 
PANC-1 cells were > 10  μM for 24  h, 0.87 ± 0.17  μM for 
48 h, 0.23 ± 0.13 μM, respectively. An ideal therapeutic drug 
of pancreatic cancer is the one that can inhibit cancer cell 
growth but has no toxic effect to normal tissue. Therefore, 
we investigated the effect of GSK2126458 on HL7702 cell. 
We found that the GSK2126458 (1 μM) had no significant 
effect on the cell survival rate of HL7702 cell (Additional 
file 1: Figure S6). After treatment with gsk216458 for 48 h, 
the colony formation of PANC-1 cells was significantly 
inhibited in a dose-dependent manner (Fig.  7C). In addi-
tion, we also investigated the effect of GSK216458 on the 
invasion of PANC-1 cells. As shown in Fig. 7C, GSK216458 
can significantly suppress the invasion of PANC-1 cells. 

Fig. 2  The significant enriched go terms and KEGG pathway (top 30) of DEGs in pancreatic cancer
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Table 2  KEGG pathway analysis of differentially expressed genes associated with pancreatic cancer

Pathway ID Name Count % P value Benjamini 
P value

Genes Total numbera

Up-regulated

 hsa04610 Comple-
ment 
and 
coagu-
lation 
cascades

17 3.94 1.71E−11 3.17E−09 PLAT, C1QA, C3AR1, C1QB, CD55, FGG, 
C5AR1, C3, F3, SERPINE1, CFH, C1R, C1S, 
PROS1, C1QC, PLAU, F2R

78

 hsa05150 Staphylo-
coccus 
aureus 
infec-
tion

15 3.47 6.53E−11 6.07E−09 C3AR1, C5AR1, HLA-DRB1, C3, FPR1, C1R, 
ITGB2, C1S, HLA-DMA, C1QC, C1QA, C1QB, 
FGG, CFH, FCGR3B

39

 hsa04512 ECM-
receptor 
interac-
tion

16 3.7 6.19E−09 3.84E−07 COL4A2, COL4A1, TNC, COL3A1, ITGA2, 
ITGA3, COL5A1, LAMB3, SDC1, COMP, 
COL1A2, LAMC2, THBS2, COL11A1, FN1, 
THBS4

60

 hsa04145 Phago-
some

19 4.4 9.18E−08 4.27E−06 ACTB, HLA-DRB1, NCF2, C3, ITGA2, C1R, 
COLEC12, ITGB2, HLA-B, CTSS, HLA-DMA, 
COMP, TAP1, TUBA4A, THBS2, FCGR3B, 
CD14, TUBA1C, THBS4

95

 hsa04510 Focal 
adhe-
sion

20 4.63 1.84E−06 6.83E−05 ACTB, COL4A2, COL4A1, TNC, COL3A1, 
ITGA2, ITGA3, FLNA, COL5A1, VEGFC, 
LAMB3, RAC2, COMP, COL1A2, LAMC2, 
PDGFC, THBS2, COL11A1, FN1, THBS4

100

 hsa05146 Amoebia-
sis

13 3.01 2.08E−05 6.45E−04 COL4A2, LAMB3, COL4A1, COL3A1, COL1A2, 
SERPINB2, LAMC2, ITGB2, SERPINB3, 
COL11A1, CD14, COL5A1, FN1

69

 hsa05133 Pertussis 11 2.55 2.47E−05 6.57E−04 C1QA, C1QB, GNAI1, C3, LY96, PYCARD, 
ITGB2, C1R, C1S, C1QC, CD14

58

 hsa04974 Protein 
diges-
tion and 
absorp-
tion

10 2.31 4.96E−04 0.011 KCNN4, COL4A2, COL4A1, ATP1B3, COL3A1, 
COL1A2, COL11A1, COL5A1, COL10A1, 
SLC7A7

56

 hsa04670 Leukocyte 
transen-
dothelial 
migra-
tion

11 2.55 1.09E−03 0.022 ACTB, CLDN18, RAC2, NCF2, GNAI1, CXCR4, 
MMP9, CLDN2, ITGB2, RHOH, THY1

75

 hsa05222 Small cell 
lung 
cancer

9 2.08 1.75E−03 0.032 COL4A2, E2F3, LAMB3, COL4A1, CKS2, 
ITGA2, LAMC2, ITGA3, FN1

74

 hsa04151 PI3K–Akt 
signal-
ing 
pathway

19 4.4 4.38E−03 0.066 COL4A2, COL4A1, TNC, COL3A1, ITGA2, 
ITGA3, IL7R, COL5A1, VEGFC, LAMB3, 
COMP, COL1A2, LAMC2, PDGFC, THBS2, 
COL11A1, FN1, THBS4, F2R

99

 hsa04611 Platelet 
activa-
tion

10 2.31 7.40E−03 0.101 ACTB, FGG, GNAI1, COL3A1, COL1A2, 
FCER1G, ITGA2, COL11A1, COL5A1, F2R

89

 hsa05323 Rheu-
matoid 
arthritis

8 1.85 8.51E−03 0.107 CTSK, TNFSF13B, HLA-DRB1, CCL20, IL18, 
ITGB2, HLA-DMA, MMP1

63

 hsa05144 Malaria 6 1.39 9.16E−03 0.108 SDC1, IL18, COMP, ITGB2, THBS2, THBS4 44

Down-regulated

 hsa04972 Pancreatic secretion 10 5.65 2.34E−06 3.78E−04 PNLIPRP1, PNLIPRP2, CHRM3, RAB3D, PRSS3, 
CPA2, CELA2B, PLCB1, SLC4A4, CTRL

67
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FACS results showed that GSK2126458 could significantly 
induce the late apoptosis of PANC-1 cells (Fig. 7E, F). FACS 
results of BxPC-3 cells was seen in Additional file 1: Figure 
S7. These results showed that GSK2126458 can inhibit the 
proliferation and apoptosis of pancreatic cancer cells in a 
time- and dose-dependent manner.

Discussion
Compared with other malignant tumors, the survival rate 
of advanced PDAC is the lowest, with a median overall 
survival of 2–8 months and a 5-year survival rate of 8.5%. 
This is due to the lack of effective screening tools, most 
of which are advanced (~ 80%) and the limited effect of 
FDA approved drugs [36]. Monotherapy with fluoropy-
rimidine, gemcitabine, irinotecan, platinum and Taxane 
in patients with advanced PDAC has low remission rate 
and poor survival benefit, and multi drug combination 
therapy provides slightly higher response rate and slightly 
higher survival benefit [4]. Therefore, our study intends 
to provide a new scheme for the treatment of PDAC 
through bioinformatics technology.

In the current study, a total of 432 up-regulated 
and 177 down-regulated genes were screened out by 

Table 2  (continued)

Pathway ID Name Count % P value Benjamini 
P value

Genes Total numbera

 hsa00260 Glycine, 
serine 
and 
threo-
nine 
metabo-
lism

7 3.95 8.37E−06 6.77E−04 CTH, GATM, GCAT, GAMT, GNMT, PSAT1, CBS 32

 hsa01230 Biosyn-
thesis of 
amino 
acids

6 3.39 2.41E−03 0.122 BCAT1, CTH, MAT1A, PSAT1, GPT2, CBS –

 hsa00280 Valine, 
leucine 
and iso-
leucine 
degra-
dation

5 2.82 2.89E−03 0.110 BCAT1, ALDH6A1, AOX1, ABAT, ACAT1 41

 hsa04146 Peroxi-
some

6 3.39 3.98E−03 0.121 EPHX2, PXMP2, CRAT, PEX5L, SLC27A2, PEX7 71

a Total number: the number of genes in pathway

Table 3  The degree of connectivity of top 15 genes

Gene Gene name Degree of 
connectivity

Expression

ALB Albumin 120 Down-regulation

EGF Epidermal growth factor 73 Down-regulation

MMP9 Matrix metallopeptidase 9 53 Up-regulation

CXCL10 C-X-C motif chemokine 
ligand 10

47 Up-regulation

TOP2A Topoisomerase (DNA) II 
alpha

46 Up-regulation

FN1 Fibronectin 1 42 Up-regulation

CTSS Cathepsin S 40 Up-regulation

ACTB Actin beta 39 Up-regulation

ITGA2 Integrin subunit alpha 2 38 Up-regulation

ISG15 ISG15 ubiquitin-like modi-
fier

37 Up-regulation

CXCR4 C-X-C motif chemokine 
receptor 4

37 Up-regulation

OAS1 2ʹ-5ʹ-Oligoadenylate syn-
thetase 1

35 Up-regulation

COL3A1 Collagen type III alpha 1 
chain

34 Up-regulation

FPR1 Formyl peptide receptor 1 34 Up-regulation

ITGB2 Integrin subunit beta 2 34 Up-regulation
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analyzing two gene expression profiles. These results 
suggested that the common DEGs may play a key 
role in the development of pancreatic cancer. We 
investigated the potential role of DEGs using func-
tional enrichment analysis. Firstly, the GO functional 
enrichment revealed that the function of up-regulated 
genes enriched in areas such as extracellular matrix 
organization with the high significant P-value. Extra-
cellular matrix is a dynamic microenvironment in the 
development of cancer [37–40]. Specifically, one of 
the main characteristics of pancreatic cancer is the 
rich extracellular matrix, which plays a vital role in the 
growth and metastasis of tumor cells [41]. Molecular 
markers such as COL11A1, SERPINE1, TGFBI, TNC 
and LUM were enriched in the extracellular matrix 
organization. Among them, the COL11A1 gene is 
overexpressed in pancreatic cancer and the protein 
encoded by the COL11A1 gene may be involved in 
fibrous proliferative events in pancreatic cancer [42]. 
LUM regulates collagen fibrillogenesis in the extra-
cellular matrix. Recently, LUM has been reported to 
regulate cell behavior during embryonic development, 
tissue repair and tumor progression [43, 44]. These 
findings suggested that the microenvironment, espe-
cially the abnormality of the extracellular matrix, plays 
a key role in the development of pancreatic cancer.

Similarly, GO functional enrichment showed that 
down-regulated genes were mainly involved in reac-
tive oxygen species metabolic process with the high 
significant P-value. It was reported that some fac-
tors associated with the increasing incidence of pan-
creatic cancer are also factors that lead to reactive 

oxygen species (ROS) overexpression [45]. For pan-
creatic cancer, ROS is a double-edged sword based 
on the concentration of intracellular ROS. At mild to 
moderate levels, ROS contributes to the proliferation, 
metastasis and invasion of tumor cells.

After analysis, we found that the above KEGG path-
way is not related to the mechanism of tolerance to 
starvation in pancreatic cancer. Then we analyze the 
signal pathways with more enriched genes. The three 
KEGG pathways that enrich most genes are focal adhe-
sion, phagosome and PI3K–Akt signaling pathway. 
Focal adhesion kinase, a member of the FAK subfam-
ily, is mainly found in the focal adhesion signaling 
pathway. Previous studies have shown that inhibition 
of FAK signaling helps to suppress various types of 
cancer, including non-small cell lung cancer, breast 
cancer, ovarian cancer, etc. [46–48]. Phosphorylated 
FAK can activate or inhibit several downstream path-
ways, including PI3K/Akt and p53, which initiate tum-
origenesis or induce apoptosis [49]. All these are signal 
pathways which are closely related to the occurrence 
and development of tumors. Tumor phagosome sign-
aling pathway is mainly autophagy, which is a double-
edged sword in cancer treatment [50]. Although these 
two over-expressed signaling pathways are inextricably 
linked to the development of pancreatic cancer, there 
is no better explanation for the specific mechanisms 
by which pancreatic cancers can be high tolerance of 
hypoxic and nutrient-deficient environments. Finally, 
we focused on the PI3K–Akt signaling pathway.

Table 4  Four modules from the PPI network with the criteria of MCODE score > 4 and number of nodes > 4

Score = Density*#Nodes

Cluster Score Nodes Edges Node IDs

1 19.128 40 373 IFITM1, IFI35, CXCL9, CXCL10, GBP2, FPR1, ANXA1, CCL19, CXCL13, NMU, C5AR1, GNAI1, GBP1, AGT, HLA-B, PSMB8, 
C3, SAMD9, SUCNR1, MX1, CXCL3, ISG15, IFITM3, IFIT1, OAS1, C3AR1, RSAD2, IFI6, IFI44, IFI27, CCL20, DDX60, MX2, 
CXCR4, UBE2L6, C5, XAF1, RNASEL, IFI44L, RTP4

2 12.062 33 193 ALB, EGF, HTR2B, VEGFC, CCKBR, PLOD2, HRH1, SERPINE1, EDNRA, PLAU, F8, SERPINH1, COL16A1, TIMP1, PLCB1, P4HB, 
PROS1, COL11A1, LGALS3BP, ISLR, COL4A1, COL4A2, COL10A1, COL8A1, FGG, TNC, FN1, COL5A1, CHRM3, SPARC, 
COL3A1, F2R, COL1A2

3 6.556 19 59 COMP, EREG, DLGAP5, TUBA1C, TOP2A, CTSE, LUM, TUBA4A, GMNN, FBN1, NDC80, THBS2, CKS2, CCNB1, ANLN, RND3, 
CEP55, CENPK, FAM83D

4 6.545 23 72 CD14, ITGB2, SDC1, IGFBP3, CD163, F3, CRP, MMP7, CD69, MMP1, C1orf162, PLAT, NCF2, CCL18, VSIG4, MMP9, CTSB, 
FCGR3B, FCER1G, C1QA, ALOX5AP, C1QB, IL18
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Fig. 3  Top four modules from the PPI network. A Module 1, B module 2, C module 3, D module 4, E the enriched pathways of module 1, F the 
enriched pathways of module 2, G the enriched pathways of module 3, H the enriched pathways of module 4
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Akt is a key regulator of cell proliferation and 
growth, which is often overexpressed in cancer cells 
[51, 52]. As we all known, the lack of blood supply in 
pancreatic cancer leads to the limited availability of 
nutrients and oxygen to the tumor cells [53, 54]. For 
further verification, we built the PPI network with 
609 DEGs and screened the top 15 hub genes with 
the high degree: ALB, EGF, MMP9, CXCL10, TOP2A, 
FN1, CTSS, ACTB, ITGA2, ISG15, CXCR4, OAS1, 
COL3A1, FPR1 and ITGB2. Of these, ALB and EGF 
were down-regulated and the others were all up-
regulated. Among them, ALB was the highest degree 
of connectivity gene in the hub genes. Then we used 
GEPIA to estimate the expression level of hub genes in 

cancer and normal tissues. As shown in the box plots, 
these results were consistent with the trend of expres-
sions of hub genes that we identified involved in the 
PPI network. It further demonstrated that the results 
of the hub genes we have identified are reliable. It is 
noticeable that 4 (COL3A1, EGF, FN1 and ITGA2) of 
the top 15 highly expressed genes were key proteins 
in the PI3K–Akt signaling pathway. After the mod-
ule analysis of the PPI network, 4 significant modules 
were selected and then the pathway enrichment anal-
ysis was carried out. Here we continue to notice the 
PI3K–Akt signaling pathway, which involves the larg-
est number of genes. The PI3K–Akt signaling pathway 
in module 2 contains 11 genes, of which 2 (COL3A1 

Fig. 4  Expression level of hub genes and overall survival in pancreatic cancer and normal tissues. A COL3A1, FN1 and ITGB2 level in TCGA and GTEx. 
PAAD Pancreatic adenocarcinoma; *P < 0.01. Red box: tumor; grey box: normal. B Overall survival of COL3A1. C Overall survival of FN1. D Overall 
survival of ITGB2. n = 177
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and FN1) belong to the hub genes. All these suggested 
that the PI3K–Akt signaling pathway plays a key role 
in the development of pancreatic cancer, which is con-
sistent with the previous literature. They suggested 
that about 50% of pancreatic cancers exhibit increased 
activation of PI3K signaling, which is usually associ-
ated with the undifferentiated state of the tumor and 
poor prognosis [55–57].

In pre-clinical studies of pancreatic cancer, many 
mTOR inhibitors have shown a variety of inhibitory 
effects on pancreatic cancer cells and inhibit epithelial 
to mesenchymal transition, including the first generation 
of mTOR inhibitors rapamycin, the second generation of 
mTOR inhibitors such as KU63794 and PP242, and the 
new mTOR inhibitor INK-128 dual mTOR inhibition [58, 
59]. In addition, there are currently 22 clinical trials using 
mTOR inhibitors to treat pancreatic cancer (https://​clini​

caltr​ials.​gov). Therefore, the prospect of mTOR inhibi-
tors in the treatment of pancreatic cancer is optimistic.

However, preclinical studies have shown that the com-
bination of mTOR inhibitors and drugs targeting the 
emergency drug resistance pathway provides a strong 
theoretical basis for PDAC treatment, it is regrettable 
that clinical trials have failed to achieve this expected 
effect. Failure to obtain a meaningful response is multi-
factorial, due to the reactivation of upstream RTK-driven 
pathways, the poor vascularization caused by significant 
interstitial fibrosis, and the toxicity that limits the opti-
mal biological dosing treatment [60].

This is the first report on the anti pancreatic can-
cer effect of GSK2126458 through bioinformatics and 
in vitro experiments. There are still many problems to be 
solved in our research, especially the essential problem 

Fig. 5  Validation of COL3A1, FN1 and ITGA2 protein level of PI3K–Akt pathway in the HPA database

https://clinicaltrials.gov
https://clinicaltrials.gov
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in vivo research: the toxicity of limiting the optimal bio-
logical dose.

Conclusion
In summary, our study provided a comprehensive 
bioinformatics analysis to identify the DEGs which 
may be involved in the progression of pancreatic can-
cer. In this study, we screened 609 DEGs and then 
found 15 significantly changed hub genes from them 
which mainly related to PI3K–Akt signaling pathway. 

In addition, we used the GDSC database analysis to 
prove that the mTOR inhibitor (GSK2126458) is very 
sensitive to pancreatic cancer cell lines, especially for 
EWSR1.FLI2 and RNF43 mutant. This is the first time 
that we report that GSK2126458 has a potential role in 
the treatment of pancreatic cancer. We will explore the 
role of GSK2126458 against pancreatic cancer through 
systematic studies in vitro and in vivo, in order to pro-
vide a new strategy for the treatment of pancreatic 
cancer.

Fig. 6  The predictive effects of mTOR inhibitor-GSK2126458 on cancer cells. A IC50 distribution of GSK2126458 by tissue type. B Volcano map of 
sensitivity of GSK2126458 to cancer cell lines. C IC50 of GSK2126458 on pancreatic cancer gene mutant cell line
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Fig. 7  The effects of mTOR inhibitor-GSK2126458 on pancreatic cancer cells. A MTT result of GSK216458 on PANC1 cell. B MTT result of GSK216458 
on BxPC-3 cell. C Colony formation invasion results of GSK216458 on PANC1 cell. D FACS result of GSK216458 on PANC1 cell. E Statistical histogram 
of FACS results. F The mRNA expression of COL3A1, EGF, FN1 and ITGA2. The data came from three independent experiments. *P < 0.05, **P < 0.01, 
***P < 0.001, compared with the control group
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Additional file 1: Figure S1. Normalized expression value data box plots. 
Black line in each box represents the median of each sample. All the 
black lines are almost in the same position, which indicates high degree 
of standardization (“the black lines” refers to “median-centered values”). 
Figure S2. Heat maps of the top 50 differentially expressed genes (30 
up-regulated and 20 down-regulated) of GSE15471 (A) and GSE62165 
(B). Gray, case group; yellow, control group. Red: high expression level; 
blue: low expression level. Figure S3. The PPI network of 485 DEGs 
(Pink: 362 up-regulated genes; blue: 123 down-regulated genes) which 
were screened out by STRING. Figure S4. The PPI network of top 15 hub 
genes. Figure S5. Expression level of hub genes and overall survival in 
pancreatic cancer and normal tissues. Figure S6. MTT result of GSK216458 
on HL7702 cells. Figure S7. FACS results of GSK216458 on GxPC-3 cells. 
Table S1. 609 DEGs were identified from two profile datasets.
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