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Abstract 

Background:  Misdiagnosis of multiple sclerosis (MS) and neuromyelitis optica (NMO) may delay the treatment, 
resulting in poor prognosis. However, the precise identification of these two diseases is still challenging in clinical 
practice. We aimed to evaluate the value of quantitative radiomic features extracted from the brain white matter 
lesions for differential diagnosis of MS and NMO.

Methods:  We recruited 116 CNS demyelinating patients including 78 MS, and 38 NMO. Three neuroradiologists per-
formed visual differential diagnosis based on brain MRI for comparison purpose. A multi-level scheme was designed 
to harness the selection of discriminative and stable radiomics features extracted from brain while mater lesions in 
T1-MPRAGE, T2 sequences and clinical factors. Based on the imaging phenotype composed of the selected radiomic 
and clinical features, Multi-parametric Multivariate Random Forest (MM-RF) model was constructed and verified with 
both 10-fold cross-validation and independent testing. Result interpretation was provided to build trust in diagnostic 
decisions.

Results:  Eighty-six patients were randomly selected to form the training set while the rest 30 patients for independ-
ent testing. On the training set, our MM-RF model achieved accuracy 0.849 and AUC 0.826 in 10-fold cross-validation, 
which were significantly higher than clinical visual analysis (0.709 and 0.683, p < 0.05). In the independent testing, the 
MM-RF model achieved AUC 0.902, accuracy 0.871, sensitivity 0.873, specificity 0.869, respectively. Furthermore, age, 
sex and EDSS were found mildly correlated with the radiomic features (p of all < 0.05).

Conclusions:  Multi-parametric radiomic features have potential as practical quantitative imaging biomarkers for dif-
ferentiating MS from NMO.
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Background
Multiple sclerosis (MS) and Neuromyelitis optica (NMO) 
are demyelinating diseases of the central nervous system 
(CNS), which are the most common causes of neuro-
logical disability in young people [1]. In the pathogen-
esis of these two diseases, a variety of immune-related 
molecules and pathways are different [2]. In clinical 
practice, the differential diagnosis of these two diseases 
is still challenging. It is reported that around 30% of the 
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misdiagnosed MS cases were diagnosed as NMO [3]. 
There are several factors contributing to the difficulty of 
differential diagnosis, e.g., they share overlapped features 
in clinical symptoms such as myelitis, optic neuritis [1, 4], 
and laboratory examinations (30% of the NMO patients 
had the same negative results of NMO immunoglobulin 
G as MS patients [5]). Misdiagnosis can lead to unprecise 
treatment and sometimes even exacerbation of the dis-
ease, as the treatment for MS differs greatly from that of 
NMO [6].

Magnetic resonance imaging (MRI) is routinely used in 
the differential diagnosis of MS and NMO; however, its 
specificity is limited because partial lesions in brain white 
matter of two diseases share similar lesion appearance, 
location distribution, and signal characteristics on MRI 
[3, 7–9]. In addition to similar neuroimaging character-
istics, another common cause of MS misdiagnosis is the 
subjective visual observation and analysis, such as misin-
terpretation and misapplication of abnormal MRI find-
ings as suggested by Solomon et al. [3]. Therefore, it is in 
high demand for a quantitative, repeatable and objective 
measurement for the differential diagnosis.

Radiomics is an emerging field with a surge of interest 
due to its capabilities to extract quantitative biomedical 
imaging “markers” for automated objective diagnosis [10, 
11], and potentially to foster individualized diagnosis. 
Empowered with machine learning and deep learning, 
radiomics methodology mines the valuable information 
underlying imaging that could be beyond the percep-
tion capacity of human beings and has been successfully 
applied for differential diagnosis of other CNS diseases 
[12–14]. Though radiomic models are able to produce 
promising diagnostic results with higher accuracy, clini-
cians often find it difficult to interpret the results from 
machine learning models. To be clinically applicable, 
there is an urgent need to address the “lacking interpret-
ability” problem [15].

In this study, we aim to investigate a quantitative and 
objective MRI-based radiomics platform, equipped with 
individualized result interpretation, to provide clinicians 
with trustworthy assistance for diagnostic differentiation.

Methods
Subjects and MRI acquisition
This study was approved by the institutional review 
board of Xuanwu Hospital, Capital Medical University, 
and written informed consent was obtained from all par-
ticipants. Totally 116 participants were recruited includ-
ing 78 relapsing–remitting MS and 38 NMO patients. 
The impact of unbalanced data was comprehensively 
assessed with metrics including AUC, diagnosis accu-
racy, sensitivity and specificity. The patients were com-
posed of two cohorts with different MRI protocols as 

shown in Additional file  1: Table  S1. The first cohort 
included patients from April 2004 to December 2004 
who underwent brain scanning on 1.5  T MRI (Sonata; 
Siemens Medical Systems, Erlangen, Germany) with an 
8-channel head coil. The second cohort included patients 
from November 2009 to April 2014 who had brain scan-
ning on 3 T MRI (Siemens Magnetom Trio Tim System, 
Munich, Germany). As a proportion of patient cohorts 
were recruited before the introduction of the new MS 
and NMO criteria, our diagnosis of MS and NMO was 
based on the 2010 McDonald criteria, and the revised 
NMO diagnostic criteria, respectively [16, 17]. None of 
these patients had been treated with medications within 
three months before the MRI was obtained. The demo-
graphic and clinical characteristics including Expanded 
Disability Status Scale (EDSS) score [18] and Disease 
Duration of the patients were recorded.

Clinical MRI review
Three neuroradiologists with 5, 7, and 10  years of MRI 
reading experience were involved in the visual assess-
ment of the brain lesion and differential classification of 
MS and NMO patients. The assessment was based on 
T1-MPRAGE and T2 MRI sequences, while the clini-
cal data (age, sex, disease duration and EDSS score) was 
allowed to refer during the assessment. Each neurora-
diologist produced a diagnostic result for each patient 
based on their own clinical experience. In case of any dis-
crepancy, it shall be jointly reviewed to reach an agree-
ment. The assessments such as AUC, diagnosis accuracy, 
sensitivity and specificity were calculated.

Radiomic analysis overview
Radiomic analysis framework was composed of five main 
modules, including image segmentation, feature extrac-
tion, feature selection (phenotype building), machine 
learning modeling, and quantitative interpretation of 
results. An overview was provided in Fig. 1.

Image processing and feature extraction
Marking of hyperintense brain lesions volume on T2 
sequences was performed by a neuroradiologist with 
more than 9  years of experience (J.H.) using MRIcro 
software (https://​people.​cas.​sc.​edu/​rorden/​mricro/), and 
validated by a senior neuroradiologist (Z.Q.), who had 
more than 20  years of experience. The volume of inter-
ests (VOIs) delineated on T2 sequence were mapped to 
T1-MPRAGE sequence through rigid image registration 
to automatically obtain the corresponding VOIs from 
T1-MPRAGE sequence.

Then, from the VOIs of both MRI sequences, we 
extracted 1118 quantitative radiomic features for each 
sequence that embraced 18 intensity, 68 texture, 344 

https://people.cas.sc.edu/rorden/mricro/
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Laplace of Gaussian (LoG) features, and 688 wavelet fea-
tures [19]. LoG and wavelet filters were applied before the 
texture feature extraction to reduce the impact of noise. 
After feature extraction, all features were standardized 
to be comparable in scale. Other descriptions and imple-
mentation details of radiomic features are described in 
Additional file 1: Appendix S1 and Table S2 respectively.

Statistical analysis
Multi‑level Feature Selection for imaging phenotype 
construction
Our Multi-level Feature Selection algorithm aimed to 
solve two key challenges in feature selection in the clini-
cal context, including: (1) selecting relevant and dis-
criminative features from high-dimensional small-sample 
multimodal data, and (2) mining robust features across 
MRI images with different imaging quality (e.g., MRI 
images with different magnetic field strength), which is 
often neglected by feature selection algorithms [20]. To 
address these two challenges, we design a Multi-level 
Feature Selection algorithm, composed of univariate-
level and multivariate-level module, to jointly explore 
feature relevancy, robustness and discriminability.

In univariate-level module, we design a statistical fil-
ter scheme on the basis of Wilcoxon Rank-sum test to 
simultaneously select: (1) robust features by testing the 
statistical consistency across MRI with different image 
quality, and (2) relevant features through calculating 
statistical relevancy towards the outcome. Specifically, 
robust features across different magnetic field strength 
of MRI scanners (1.5 T and 3 T) were first selected with 
Wilcoxon test [21]. Then, discriminative features were 
selected by assessing whether there was a significant 
distribution difference between MS patients and NMO 
patients via Wilcoxon test [22].

In multivariate-level module, we propose a pyramid 
searching structure to first exploit intra-modal feature 
relationships and then explore inter-modality relation-
ships. This pyramid searching scheme boosted feature 
discriminability and mining efficiency. In contrast, con-
ventional feature selection often uses a flattened search 
space by concatenating all features for feature selec-
tion. In specific, Random Forest-based sequential for-
ward selection (RF-SFS) was firstly employed to select 
discriminative features and construct preliminary phe-
notypes from T2, T1-MPRAGE and clinical features 
separately [23]. Then, a multi-parametric phenotype was 

Fig. 1  Flowchart of our radiomics pipeline. MPR magnetization-prepared rapid gradient-echo
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constructed by further applying RF-SFS to a fused feature 
set of three preliminary phenotypes. The mathematical 
details of Multi-level Feature Selection were summarized 
in Additional file 1: Appendix S2.

Classification analysis
To compare the diagnostic performance of preliminary 
phenotypes of T2, T1-MPRAGE and clinical and the 
multi-parametric phenotype, three preliminary Multi-
variate Random Forest models and Multi-parametric 
Multivariate Random Forest model (MM-RF) were con-
structed based on the corresponding phenotype respec-
tively. To handle data imbalance, balanced bootstrap 
mechanism and balanced weight [24] were incorporated 
into the Random Forest model. Common evaluation 
metrics for imbalanced datasets were used for assess-
ing the diagnostic performance of models, including the 
area under the receiver operating characteristic curve 
(AUC), accuracy, sensitivity, and specificity. The stability 
of diagnostic performance was assessed with the mean of 
relative standard deviation (RSD) of AUC. The lower the 
AUC_RSD value, the higher the stability.

To validate the feature selection, our Multi-level Fea-
ture Selection algorithm was compared with eight 
state-of-the-art feature selection algorithms that were 
commonly used in radiomics studies [25–27]. These 
algorithms included three Filter Selection methods (Wil-
coxon filter [28], Anova filter [29], mRMR filter [30]), two 
Wrapper Selection methods (RF wrapper [31], and SFS 
wrapper [32]), and three Embedded Selection methods 
(Lasso [33], ElasticNet [34], RFE_SVM [35]).

Validation
To rigorously validate the diagnostic performance of the 
imaging phenotypes, both 10-fold cross-validation on 

(1)AUC_RSD =

AUC_STD

AUC_MEAN

the training set and independent validation on the test-
ing set were computed. From a total of 116 patients, 86 
patients were randomly selected to form the training set, 
while the rest 30 patients was used for independent test-
ing. Bootstrapping with 1000 times resampling was used 
in the independent validation.

All statistical analysis was two-sided, with the sig-
nificance level of 0.05. Multi-level statistical analysis 
was performed with “scipy”, “sklearn”, “mlxtend”, “mifs”, 
“imblearn” modules in Python 3.6. Correlation analysis 
was performed in R 3.5.1.

Quantitative interpretation of results
Lack of interpretability is a key challenge as the basis 
for trustworthy decision making [36]. To provide quan-
titative interpretation, we utilized SHAP method [37] to 
analyse the differential decision from our MM-RF model 
at both individual-level and model-level. The individual-
level interpretation explained the output of an individual 
prediction by visualizing the important features in the 
phenotype and unveiling their importance for discrimi-
nation decisions. The model-level interpretation com-
puted the average feature importance across all patients 
and revealed the relationship between the feature value 
and its importance.

Results
Demographics and clinical and MRI characteristics
Seventy-eight relapsing–remitting MS patients (mean 
age ± SD: 36.5  years ± 10.0), 38 NMO patients (mean 
age ± SD: 40.9  years ± 11.7) participated in this study. 
The percentages of males out of all patients were 34.6%, 
18.4%, respectively. There were no significant differ-
ences in sex and age between MS and NMO patients. 
NMO group showed a trend towards higher EDSS score 
than the MS group (p = 0.005). Other demographic 
characteristics of the participants were provided in 
Table 1.

Table 1  Patient characteristics

MS multiple sclerosis, NMO neuromyelitis optica, EDSS expanded disease severity scale, SD standard deviation
a Two-sample t-test
b Chi-squared test

Characteristics 3 T MRI cohort 1.5 T MRI cohort Both cohorts P

MS (n = 38) NMO (n = 30) MS (n = 40) NMO (n = 8) MS (n = 78) NMO (n = 38)

Age, year, mean ± SD 35.7 ± 9.5 41.5 ± 10.8 37.4 ± 10.6 38.5 ± 15.4 36.5 ± 10.0 40.9 ± 11.7 0.053a

Female/male 25/13 23/7 26/14 8/0 51/27 31/07 0.114b

EDSS, mean ± SD 3.1 ± 1.7 3.8 ± 1.7 2.8 ± 1.4 4.1 ± 1.6 2.9 ± 1.5 3.8 ± 1.6 0.005a

Disease duration, month, 
mean ± SD

62.5 ± 56.4 61.7 ± 56.3 50.8 ± 50.9 84.0 ± 67.0 56.8 ± 54.1 66.4 ± 58.4 0.396a
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Clinical visual analysis
The AUC of the visual analysis was 0.683 with 95% Con-
fidence Interval (CI) 0.571–0.789. The visual analysis 
successfully diagnosed 61 out of 86 patients, with accu-
racy reaching 0.709 (95% CI 0.616–0.802). In the misdi-
agnosed 25 cases, 10 NMO patients were misdiagnosed 
as MS while 15 MS patients were misdiagnosed as 
NMO. Its sensitivity and specificity were 0.615 and 0.750 
respectively.

Radiomic feature selection and phenotype construction
Figure 2A demonstrates the differentiation ability of top 
univariately selected features and clinical factors. It shows 
that T2 and MPR radiomics features generally achieved 
higher AUC than clinical features at univariate level. Fig-
ure 2B illustrates the process of multivariate SFS feature 
selection, which shows multivariate imaging phenotypes 
had higher discriminability compared with clinical fea-
tures. The multi-parametric phenotype was established 

with three T2, four T1-MPRAGE and one clinical fea-
ture. These eight features and their corresponding feature 
identification number (id) were H-T2-waveletHHL-glcm-
Idn (116), H-T2-log2-glcm-Autocorrelation (18), 
H-T2-waveletLLH-glcm-JE (551), H-MPR-waveletLHL-
glszm-GLNU (500), H-MPR-log4-gldm-SDLGLE (225), 
H-MPR-log3-firstorder-Median (95), H-MPR-log5-glcm-
Idmn (287), and EDSS. Other details of feature selection 
results are summarized in Additional file 1: Appendix S3.

Evaluation of multi‑parametric phenotype in terms 
of discriminative ability
The multi-parametric phenotype was evaluated with 
both 10-fold cross validation and independent testing. 
In cross-validation, the multi-parametric phenotype 
achieved AUC 0.826 (95% CI 0.732–0.912), which was 
significantly higher than that of visual analysis (p = 0.016). 
The diagnostic accuracy was 0.849 (95% CI 0.767–0.919), 

Fig. 2  Results of Multi-level Feature Selection and phenotype testing. AUC​ area under the curve, RSD relative standard deviation, MPR 
magnetization-prepared rapid gradient-echo. A Results of univariate feature selection and analysis. Top six T2 and T1-MPRAGE features and four 
clinical factors were selected and ranked according to AUC. The asterisk (*) represents statistical significance (p < 0.05) with Wilcoxon test. B Results 
of multivariate feature selection. The algorithm selected a subset of features having the highest AUC. The arrows indicate the stoping points 
where the highest AUC was achieved. C Comparison of diagnostic performance of T2, T1-MPRAGE, clinical phenotypes and the multi-parametric 
phenotype in the independent testing
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higher than that of visual analysis (p = 0.008). Its sensitiv-
ity and specificity were 0.769 and 0.883, respectively.

In the independent testing, the multi-parametric phe-
notype based on Random Forest model achieved AUC 
0.902 ± 0.027, which was higher than the performance 
of preliminary T2, T1-MPRAGE and clinical phenotypes 
(Fig.  2C). The diagnostic AUC of T2, T1-MPRAGE and 
clinical phenotype was 0.852 ± 0.053, 0.880 ± 0.033 and 
0.573 ± 0.055, respectively. Figure 2C also illustrates that 
multi-parametric phenotype achieved better stability of 
diagnostic performance. Other assessments of the multi-
parametric phenotype such as diagnostic accuracy, sen-
sitivity and specificity were 0.871 ± 0.044, 0.873 ± 0.083 
and 0.869 ± 0.051, respectively, as reported in Table 2. To 
assess the impact of 3 T and 1.5 T MRI, a further experi-
ment showed that high diagnostic accuracy was achieved 
by both 3  T (0.856 ± 0.046) and 1.5  T (0.976 ± 0.074) 
cohort (p < 0.05).

Evaluation of Multi‑level Feature Selection compared 
with eight state‑of‑the‑art methods
Table 2 shows the performance comparison of our Multi-
level Feature Selection methods with eight state-of-
the-art methods. From a combined feature pool of T2, 
T1-MPR and clinical features, these comparison meth-
ods selected at most eight features as in our method, and 
were evaluated with the same Random Forest model as 
ours. The experimental results in Table 2 showed that our 
Multi-level Feature Selection algorithm outperformed 
these SOTA methods in comparison. Our multiparamet-
ric phenotype achieved highest AUC 0.902 ± 0.027, fol-
lowed by our MPR phenotype (AUC 0.880 ± 0.033) and 
Anova Filter (AUC 0.879 ± 0.037).

Case studies for individual‑level interpretation
As illustrated in Fig.  3, the two selected cases included: 
(a) an MS case, and (b) an NMO case, whose lesions 
were difficult to differentiate due to similar lesion loca-
tion and signal characteristics. With extracted pheno-
type from VOIs in the MR images, our MM-RF classified 
the cases correctly with 89% confidence for MS case 
and NMO case with 86% confidence, respectively. For 
the MS case, our case-level interpretation revealed that 
H-MPR-log3-firstorder-Median, H-MPR-waveletLHL-
glszm-GLNU, and EDSS were the three most significant 
contributors for accurate classification, with 29.86%, 
27.61% and 21.07% contribution, respectively. As a con-
trast, for the NMO case, three T1-MPRAGE features 
(H-MPR-log3-firstorder-Median, H-MPR-log4-gldm-
SDLGLE, H-MPR-waveletLHL-glszm-GLNU) were three 
major contributors, contributing 25.06%, 24.78%, 17.46% 
towards the correct decision.

Model‑level result interpretation
Model-level interpretation investigated the feature 
importance and the relationship between feature value 
and its importance from the perspective of all patients. 
Figure  4A shows case-level interpretation results of all 
patients in one graph, which visualizes how feature con-
tributions differ for different cases. Of all eight features, 
H-MPR-log4-gldm-SDLGLE, H-MPR-log3-firstorder-
Median, and H-T2-waveletLLH-glcm-JE were the top 
three important features in the model decision making, 
as shown in Fig. 4B, C. In terms of relationship between 
the feature value and its importance, there was a nega-
tive linear relationship for H-T2-waveletLLH-glcm-JE 
(Fig. 4D) and H-MPR-log4-gldm-SDLGLE (Fig. 4E), and 

Table 2  Diagnostic performance of our method compared with 8 SOTA feature selection algorithms

The Bolded value indicates the highest value in each column

AUC​ area under the curve, Anova analysis of variance, mRMR maximum relevance minimum redundancy, RF random forest, SFS sequential forward selection, Lasso 
least absolute shrinkage and selection operator, RFE recursive feature elimination

Category Method Roc_auc Sensitivity Specificity Accuracy

Filter Wilcoxon [28] 0.625 ± 0.120 0.604 ± 0.145 0.585 ± 0.137 0.593 ± 0.104

Filter Anova [29] 0.879 ± 0.037 0.883 ± 0.042 0.726 ± 0.067 0.789 ± 0.036

Filter mRMR [30] 0.846 ± 0.041 0.823 ± 0.091 0.754 ± 0.076 0.782 ± 0.050

Wrapper RF [31] 0.846 ± 0.041 0.828 ± 0.091 0.750 ± 0.075 0.781 ± 0.048

Wrapper SFS [32] 0.858 ± 0.038 0.782 ± 0.073 0.829 ± 0.121 0.810 ± 0.067

Embedded Lasso [33] 0.873 ± 0.050 0.884 ± 0.046 0.737 ± 0.087 0.796 ± 0.056

Embedded ElasticNet [34] 0.850 ± 0.064 0.868 ± 0.070 0.719 ± 0.135 0.779 ± 0.086

Embedded RFE [35] 0.814 ± 0.072 0.846 ± 0.058 0.612 ± 0.141 0.705 ± 0.090

Ours Clinical 0.573 ± 0.055 0.716 ± 0.190 0.446 ± 0.179 0.554 ± 0.070

Ours T2 MRI 0.852 ± 0.053 0.887 ± 0.067 0.733 ± 0.057 0.795 ± 0.045

Ours T1-MPR MRI 0.880 ± 0.033 0.798 ± 0.102 0.859 ± 0.073 0.835 ± 0.060

Ours Multi-parametric MRI 0.902 ± 0.027 0.873 ± 0.083 0.869 ± 0.051 0.871 ± 0.044
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a positive linear relationship for H-MPR-log3-firstorder-
Median (Fig. 4F).

Association of selected radiomic features with clinical 
variables
As showed in Fig.  5, sex was found significantly 
negatively correlated with H-MPR-log4-gldm-
SDLGLE (p = 0.008), while positively correlated 
with H-T2-log2-glcm-Autocorrelation (p = 0.035). 
EDSS scores was significantly positively corre-
lated with H-T2-waveletLLH-glcm-JE (p = 0.036). 
Age was significantly negatively correlated with 
H-MPR-waveletLHL-glszm-GLNU (p = 0.007), 
and H-T2-waveletHHL-glcm-Idn (p = 0.010), and 
H-T2-log2-glcm-Autocoorelation (p = 0.035).

Discussion
In this research, we extracted the imaging phenotype 
from multi-parametric MRI sequences with the machine 
learning framework for automated differentiating MS 
from NMO, which provided an additional reference for 
timely differential diagnostic decision making. The major 
findings of this study include: (1) our multi-parametric 
phenotype was able to achieve high differential diagnos-
tic performance, generalizability and robustness, mined 
by our designed Multi-level Feature Selection algorithm; 
(2) our radiomics platform provided individualized dif-
ferential diagnosis and interpretation which was illus-
trated with a case study; and (3) the correlation between 
radiomic and clinical features was revealed to enhance 
trust in radiomic features.

The first finding of our study is that the multi-paramet-
ric phenotype demonstrated high differential diagnostic 
performance, which statistically outperformed visual 
analysis in terms of AUC (0.826 vs. 0.683, p = 0.016), 
and the diagnosis accuracy (0.849 vs. 0.709, p = 0.008) 
in 10-fold cross-validation. The accuracy of clinical vis-
ual analysis in our study complied with the studies [38–
42] with the reported accuracy ranging from 0.573 to 
0.739. In this study, doctors misdiagnosed about 25% of 
patients with MS as NMO, similar to the previous study 
[2], which justified the machine learning model provide 
valuable assistance for clinical decisions. Remarkably, the 
multi-parametric phenotype demonstrated the highest 
discriminative ability (AUC 0.902 ± 0.027) in the inde-
pendent testing, outperforming the discriminative per-
formance of the T2 (AUC 0.852), T1-MPRAGE (AUC 

0.880) and clinical phenotypes (AUC 0.573). It indicates 
that the multi-parametric phenotype successfully fused 
pathological characteristics such as the information 
about edema, demyelination in T2 images, axonal dam-
age in T1-MPRAGE images [43] and clinical information. 
This finding is consistent with previous studies in the 
differential diagnosis of brain tumors where the model 
embracing MRI-based radiomic features and clinical fea-
tures can achieve the highest classification accuracy [44]. 
The present study, for the first time, constructs a multi-
parametric phenotype including T2, T1-MPRAGE and 
clinical information for differentiating MS from NMO.

Our Multi-level Feature Selection algorithm outper-
formed SOTA feature selection methods because the 
proposed algorithm comprehensively considered: (1) fea-
ture robustness across MRI images with different mag-
netic fields strength, (2) feature relevancy towards the 
outcome, and (3) intra-modal and inter-modal feature 
discriminability. Comparatively, filter methods [28–30] 
select features using the defined feature relevancy such 
as mutual information; however, these methods might 
not take account of the interaction with the learning 
algorithm, and hence feature discriminability might not 
be optimized [45]. To address this issue, both Wrapper 
[31, 32] and Embedded [33–35] methods involve learn-
ing algorithms to assess the predictive performance of 
feature combinations. However, these methods might 
be prone to overfitting due to the dependency of the 
learning algorithm [46]. In contrast, our univariate-level 
selection selected robust and relevant features based 
on Wilcoxon testing, which addressed feature gener-
alizability issue across different MRI imaging qualities 
(as analysed in [20]) and facilitated alleviating the risk 
of overfitting. Further, our multivariate-level selection 
boosted feature discriminability by exploiting intra-
modal feature interaction and inter-modality interaction 
using a pyramid search structure. Due to the reduced risk 
of overfitting and boosted feature discriminability, our 
algorithm outperformed SOTA methods.

Secondly, individual-level interpretation was provided 
to articulate machine learning-based decision making 
for individual patients and thus to facilitate the trust-
worthy and individualized differential diagnosis. It was 
achieved by graphical visualization of important features 
and unveiling of quantitative contribution of features in 
the machine learning models which facilitates under-
standing on both radiomic features and model decisions, 

Fig. 3  Results of individual-level interpretation. LoG Laplace of Gaussian, MPR magnetization-prepared rapid gradient-echo; The interpretation 
of two representative cases from MS (case A) and NMO (case B) was illustrated. For each case, visualization of three key radiomic features was 
provided. The classification results were computed with Random Forest. Lastly, the classification results were explained by revealing feature 
contribution

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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as illustrated in case studies in Fig. 3A, B. Specifically, for 
the case in Fig.  3A, this patient was correctly classified 
as MS with 89% confidence by our phenotype, in which 
the top three important features were two T1-MPRAGE 
features and EDSS. And for the case in Fig.  3B, three 
T1-MPRAGE radiomic features were major contribu-
tors. Interpretability enables doctors to gain insight why 
the diagnosis is made, thus assisting clinicians to provide 
precise differential diagnosis [47, 48].

Furthermore, the trust in the radiomic features was 
enhanced by revealing its connection with the clinical 
information. Mild correlations were observed between 
the radiomic features and clinical features (age, sex, 
and EDSS). Interestingly, we found that one T2 feature 
was related to EDSS (Fig. 5). The reason underlying the 

correlation between EDSS and T2 features might be that 
EDSS was found correlated with lesion load and brain 
atrophy [49, 50], while T2 and T1-MPRAGE images 
could also reflect the information of lesion and brain 
structure, respectively. As a result, we may potentially use 
radiomic features to objectively and conveniently assist 
EDSS in evaluating the treatment and disability manage-
ment in the future. Although the above assumptions are 
preliminary, our study provides a perspective for under-
standing the clinical significance of radiomic features, in 
response to the urgent clinical need [51].

We suggest that our multi-parametric phenotype 
may serve as an objective, quantitative tool to assist 
clinical differential diagnosis of MS and NMO. Com-
pared with the current diagnostic criteria of these two 

Fig. 4  Results of model-level interpretation. LoG Laplace of Gaussian, MPR magnetization-prepared rapid gradient-echo, EDSS expanded disease 
severity scale; A Visualization of feature contribution for all individual cases. Each vertical line corresponds to interpretation for individual diagnosis. 
Red represents a diagnosis of MS, blue for NMO. B Summary plot of feature contribution for all individual cases. C Mean contribution of features in 
the multi-parametric phenotype. D–F Relationship between feature value and feature importance. The straight lines were obtained through curve 
fitting with linear regression
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diseases using MR, our phenotype holds advantages 
in three aspects: (1) Instead of diagnosis by naked eye 
based on vague clinical experience, our multi-paramet-
ric phenotype provide a quantitative solution by feature 
extraction of medical images, thus help complement 
and clarify the current diagnostic criteria; (2) The phe-
notype reduces inter-observer variety and subjectivity 
because the whole system is highly automated; and (3) 
The current model can achieve high diagnostic accu-
racy with conventional MR sequences, which is simple 
and operable in clinical practice [52].

Conclusion
Radiomic features extracted from T1-MPRAGE and T2 
sequences are potential practical imaging biomarkers 
for differentiating the lesions of demyelinating diseases. 
They have been shown to be discriminative and robust 
in classifying the brain white matter lesions between 
MS and NMO. Effective interpretation of radiomic fea-
tures coupled with machine learning methods can be 
used as an adjunct to traditional radiology to support 
the diagnostic process in clinical practice.
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