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Abstract 

Background:  Tumor microenvironment (TME) is associated with tumor progression and prognosis. Previous studies 
provided tools to estimate immune and stromal cell infiltration in TME. However, there is still a lack of single index to 
reflect both immune and stromal status associated with prognosis and immunotherapy responses.

Methods:  A novel immune and stromal scoring system named ISTMEscore was developed. A total of 15 datasets 
were used to train and validate this system, containing 2965 samples from lung adenocarcinoma, skin cutaneous 
melanoma and head and neck squamous cell carcinoma.

Results:  The patients with high immune and low stromal scores (HL) were associated with low ratio of T cell co-
inhibitory/stimulatory molecules and low levels of angiogenesis markers, while the patients with low immune and 
high stromal scores (LH) had the opposite characteristics. The HL patients had immune-centered networks, while the 
patients with low immune and low stromal scores (LL) had desert-like networks. Moreover, copy number alteration 
burden was decreased in the HL patients. For the clinical characteristics, our TME classification was an independent 
prognostic factor. In the 5 cohorts with immunotherapy, the LH patients were linked to the lowest response rate.

Conclusions:  ISTMEscore system could reflect the TME status and predict the prognosis. Compared to previous TME 
scores, our ISTMEscore was superior in the prediction of prognosis and immunotherapy response.

Keywords:  Tumor microenvironment, Multi-task learning, Scoring system, Prognosis, Immunotherapy

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
With the discovery of immune checkpoint molecules, 
immunotherapy becomes more promising strategy 
for cancer patients to elicit clinical responses dura-
bly [1]. It has been approved for the treatment of lung 

adenocarcinoma (LUAD), skin cutaneous melanoma 
(SKCM), and head and neck squamous cell carcinoma 
(HNSC). These tumors have high PD-L1 and CD8A 
expression levels [2]. Nevertheless, immunotherapy only 
benefits a minor subset of patients for long-term sur-
vival [3]. Identification of potentially therapeutic indexes 
linked to tumor prognosis and immunotherapy responses 
will remarkedly contributed to precision medicine.

Tumor microenvironment (TME) consists of immune 
and non-immune stromal components, both of which 
were reported to be closely associated with oncogenesis 
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and malignant behaviors of tumors [4]. The existing evi-
dences demonstrate that abundant immune components 
in TME are positively associated with immunotherapy 
responses [5]. To date, a range of algorithms have been 
developed to estimate the immune and stromal cell infil-
tration including CIBERSORT, TIMER, ESTIMATE and 
MCPcounter [6–9]. These tools perform well in the esti-
mation of TME cells, but not in the prediction of tumor 
prognosis and immunotherapy responses. Although 
ESTIMATE provides the immune and stromal infiltration 
scores [8], LUAD, SKCM and HNSC were not included in 
the training datasets. There is still a lack of single index to 
reflect both immune and stromal activation signals asso-
ciated with prognosis and immunotherapy responses.

Here we developed a novel immune and stromal scor-
ing system named ISTMEscore, which followed a unique 
design: (1) Isolate TME signals associated with prognosis 
from bulk gene expression data; (2) Extract specific gene 
signatures from the above TME signals; (3) Calculate 
ISTME scores with single-sample gene set enrichment 
analysis (ssGSEA) algorithm [10]. In addition, we col-
lected 15 datasets with 2965 patients to train and validate 
our ISTMEscore system, and depicted the landscapes 
of immune and stromal cell infiltration, transcriptome, 
genome, prognosis and immunotherapy responses in 
patients with different ISTME scores. Finally, we com-
pared ISTMEscore with previous TME indexes on pre-
diction of TME status and cancer prognosis.

Methods
Data collection and processing
Transcriptomic cohorts
We collected 15 transcriptomic cohorts for LUAD, 
SKCM and HNSC with clinical annotations from The 
Cancer Genome Atlas (TCGA) [11], Gene Expression 
Omnibus (GEO) [12–17] and PubMed [5]. Their basic 
information was presented in Additional file 9: Table S1. 
Samples without prognostic information were excluded. 
The normalized data of 3 TCGA cohorts (TCGA LUAD, 
TCGA SKCM and TCGA HNSC) were downloaded from 
Firehose RSEM files [18]. The microarray data from GEO 
were processed with RMA standardization, except that 
NanoString nCounter data were processed using House-
keeper genes [19]. All transcriptomic data were normal-
ized by Z-score and min–max for further analysis [20]. R 
sva package was used for batch effect correction [21].

Mutation and copy number alteration data
The TCGA somatic mutations were called by Mutect2 
[22]. Only non-silent mutations were included in this 
study. Copy number alteration (CNA) of the TCGA 

cohorts was detected by Affymetrix SNP 6.0 array and 
GISTIC2 after germline subtraction [23].

Immunotherapy cohorts
A total of 5 independent transcriptomic cohorts con-
taining patients with immune checkpoint inhibitor (ICI) 
treatment were used to validate the ISTMEscore system 
[5, 24–27]. The detailed information of these immu-
notherapy cohorts was presented in Additional file  10: 
Table S2. The immunotherapy dataset 1 [5] included 28 
melanoma patients before and after anti-PD-1/CTLA4 
therapies. The immunotherapy dataset 2 (GSE91061) 
[24] included 65 melanoma patients before and after 
anti-PD-1 therapies. The immunotherapy dataset 3 
(GSE93157) [25] included 35 NSCLC, 5 HNSC and 25 
melanoma patients before anti-PD-1 therapy. The immu-
notherapy dataset 4 (GSE67501) [26] included 11 renal 
cell carcinoma patients before anti-PD-1 therapy. The 
immunotherapy dataset 5 (GSE35640) [27] included 56 
melanoma patients before anti-MAGE-A3 therapy.

Development of novel immune and stromal scores
Step 1: Extraction of low dimensional feature associated 
with TME signals via non‑negative matrix factorization
Non-negative matrix factorization (NMF) was an unsu-
pervised algorithm for low dimensional feature extrac-
tion, which was performed by R NMF package based on 
brunet methods [28]. The specific formula was as follows:

where Vi∗j is gene expression matrix with i gene and j 
sample, Wi∗k represents basis matrix with i gene and k 
the low dimensional features (LDF). Hk∗j is the coefficient 
matrix considered as a low dimensional matrix of Vi∗j . 
The k means the number of NMF clusters. The j sample 
and i gene can be divided into the k clusters, respectively:

The number of NMF clusters (k) was determined by 
hierarchical clustering of gene expression matrix. Nor-
mally, k ∗

(

i + j
)

< i ∗ j , thus high dimensional genes in 
transcriptome data (i gene) were transformed into low 
dimensional eigenvalues (k feature).

In this study, we first defined k as 11 through hierarchical 
clustering of Vi∗j from the training datasets. Next, enrich-
ment analysis was performed based on genes with high 

V∈ R+
i∗j;w∈ R+

i∗k;H∈ R+
k∗j

Vi∗j ≈ Wi∗k ∗Hk∗j

sample_clusterj = k , when Hk∗j = Max(Hj)

gene_clusteri = k , when Wi∗k = Max(Wi)
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NMF weights (top 100) to identify clusters associated with 
immune and stromal signals. In addition, we extracted 
eigenvalues ( Hk ) from each cluster by NMF, and used uni-
variate Cox regression to identify prognosis-related clus-
ters. Finally, we identified one immune- ( kimmu-th) and 
one stromal-related clusters ( kstro-th), both of which were 
associated with immune/stromal signals and the overall 
survival (OS).

Step 2: Identification of TME‑related signatures 
with the ℓ2,1‑norm multitask learning linear model
Multitask learning (MTL) was an ensemble approach, 
which can train multiple tasks at the same time. By intro-
ducing ℓ2,1 regularization term into cost function, the out-
put of regression coefficient matrix was sparse. The cost 
function of the MTL model was based on least squares loss:

where Wt denotes the coefficient matrix of multi-fac-
tor linear regression model in the task t, Xt is the gene 
expression matrix ( Vi∗j in NMF) of the task t, Yt is sample 
label (immune or stromal scores), ||W ||2,1 denotes ℓ2,1-
norm term, and ||W | |F denotes Frobenius-norm term. 
The accelerated gradient methods were used to minimize 
the cost function. Compared to Lasso or Ridge, the ℓ2,1-
norm regularization resulted in grouped sparsity across 
sub-tasks. Thus, we selected the small subset of genes 
with the effective information in the input Vi∗j matrix. 
The MTL code was based on MATLAB from the previ-
ous studies [29].

In this study, there were 2 sub-tasks (t = 2), and Yt was 
defined as follow:

where Hkimmu
 is kimmu-th column of coefficient matrix of 

NMF, and Hkstro is kstro-th column of coefficient matrix 
of NMF. Moreover, addition of ℓ2,1 regularization term 
contributed to avoid impact of multicollinearity among 
genes. Through ℓ2,1-norm MTL, we identified the genes 
associated with TME-related LDF (criterion: the coeffi-
cient of each gene in coefficient matrix Wt  = 0).

m
∑

t=1

||WT
t Xt − Yt ||

2
F + ρ1||W ||2,1 + ρL2||W | |2F

||W ||2,1 =

n
∑

i=1

√

√

√

√

m
∑

j=1

W 2
i,j

||W | |F =

√

√

√

√

n
∑

i=1

m
∑

j=1

W 2
i,j

Yt = [Y1,Y2] =
[

Hkimmu
,Hkstro

]

Step 3: Optimization of the gene list through different gene 
expression analysis and consensus clustering
Consensus clustering (number of clusters = 2) for MTL 
genes was performed to divide the TCGA training data-
sets into 2 clusters through NMFConsensus (GenePat-
tern module) [30]. Different gene expression (DGE) 
analysis was then used to identify differentially expressed 
genes in these 2 consensus clusters by R limma package 
[31]. Benjamini-Hochberg (BH) method was used for 
multiple hypothesis adjustment of DGE [32]. To verify 
whether the consensus clustering was related to TME, 
enrichment analysis of the genes with top 1,000 positive 
and top 1,000 negative logFC was performed. Accord-
ing to results of enrichment analysis, we defined the 108 
genes from MTL list with P < 0.05 and logFC > 0 as the 
immune-related genes and the 58 genes with P < 0.05 and 
logFC < 0 as the stromal-related genes. DGE had 2 effects: 
(1) Remove the genes not significantly expressed in the 
consensus clusters; (2) Distinguish immune- and stro-
mal-related genes by the direction of logFC.

Step 4: Quantification of novel immune and stromal scores 
through ssGSEA
The ssGSEA was used to construct novel immune and 
stromal scores based on immune- and stromal-related 
genes using the R GSVA package [10]. Compare with the 
generalized linear model, the normalized ssGSEA score 
was the enrichment score based on gene rank, and was 
therefore not sensitive to different platforms (microarray 
or RNA-seq) or incomplete information of a few genes.

ISTMEscore R package
We provided an R package named ISTMEscore to cal-
culate our immune and stromal scores, and to estimate 
TME classification (GitHub: https://​github.​com/​ZengZ​
ihang/​ISTME​score).

Cell‑receptor‑ligand communication networks
The connections of cells, receptors and ligands were 
retrieved from the FANTOM5 resource [33]. The edges 
of interaction networks in each TME subtype were deter-
mined by Thorsson’s method [34]. Core subnetworks 
were determined by the Molecular Complex Detection 
tool in Cytoscape [35].

Cell infiltration scores
Cell infiltration was estimated by the MCPcounter [9], 
containing T cells, CD8+ T cells, cytotoxic lymphocytes, 
NK cells, B lineages, monocytic lineages, myeloid den-
dritic cells, neutrophils, endothelial cells and fibroblasts. 

https://github.com/ZengZihang/ISTMEscore
https://github.com/ZengZihang/ISTMEscore
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Estimation of stromal and immune cells in malignant 
tumors using expression (ESTIMATE) [8] scores pro-
vided the purity of immune and stromal components 
through ssGSEA.

Propensity score matching analysis
Propensity score matching (PSM) through 1:1 nearest 
neighbor matching with caliper was performed to adjust 
clinical confounders. Sample pairs with similar propen-
sity scores (calipers = 0.05) were matched one-to-one in 
different groups to make the baseline levels consistent. 
PSM was performed by R MatchIt package [36].

Gene enrichment analysis
Gene set enrichment and over-representation analysis 
were performed by R clusterProfiler packages based on 
Gene Ontology (GO) corpus [37].

Decision curve analysis
Decision curve analysis (DCA) evaluated the clinical net 
benefit of risk prediction model using the R rmda pack-
age [38].

Statistical analysis
All statistical analysis was implemented by R software 
3.6.1. R survival package was used to perform Cox pro-
portional hazards regression, Kaplan–Meier analysis and 
calculation of concordance index (C-index) [39]. R stats 
package was used to perform Pearson, Spearman correla-
tion and chi square test. The receiver operating charac-
teristic (ROC) curve analysis was performed by R pROC 
package [40]. P value less than 0.05 was considered as sta-
tistically significant. All the P values were two-sided. The 
significant threshold of false discovery rate (FDR) was 
0.05 in enrichment analysis.

Additional analysis
To explore the possible pathways of the stromal-related 
genes, we performed additional analysis (Additional 
file 18). The relevant parts were included in the supple-
mentary materials.

Results
Feature extraction of TME signals and construction 
of ISTMEscore
The designs of our studies were demonstrated in Figs. 1, 
2 and Additional file 1: Figure S1. To isolated the TME-
related signals from mixed tumor tissues, we first divided 
RNA-seq data of the training cohort (TCGA LUAD) [11] 
into 11 heterogeneous clusters based on NMF (Fig. 3A). 
Enrichment analysis of clusters’ high NMF weight genes 
(top 100) was performed to identify clusters with immune 
or stromal signals. Only one cluster was linked with T 

cell activation and IFN-γ production (Additional file 11: 
Table  S3, Fig.  3B). We extracted the LDF of this cluster 
by NMF. Univariate Cox regression indicated that the 
LDF was a favorable prognostic factor (Cox-P < 0.0001). 
Therefore, this cluster was defined as "immune activation 
cluster". On the other hand, extracellular matrix organi-
zation, cell–matrix adhesion and TGF-β signal were 
enriched in another cluster (Additional file 12: Table S4, 
Fig. 3B), and its LDF was identified as an adverse prog-
nostic factor (Cox-P < 0.0001), suggesting this cluster was 
a "stromal activation cluster". Enrichment results of other 
9 clusters were displayed in Additional file 13: Table S5.

We next identified gene signatures from the immune 
and stromal clusters using our novel workflow (Fig. 2, see 
“Methods”—“Development of novel immune and stromal 
scores” for details). A total of 166 genes were identified 
as TME-related signatures, containing 108 immune- 
(e.g. CD40LG, CD8A, IFNG, PTPRC, CXCL10) and 
58 stromal-related genes (e.g. MMP13, FN1, COL1A1, 
COL1A2, COL11A1, COL3A1, VEGFA, Additional 
file 14: Table S6). Novel immune and stromal scores were 
calculated by immune- and stromal-related signatures 
using ssGSEA.

ISTMEscore was linked to prognostic, cellular 
and molecular characteristics
The association of ISTMEscore with prognostic, cellular 
and molecular patterns were then investigated. Kaplan–
Meier curves indicated that our immune scores were 
significantly associated with better OS, while stromal 
scores were associated with poorer OS in the training 
datasets (Fig.  3C, D). We next characterized the asso-
ciation between ISTMEscore and TME cell infiltration 
(estimated by MCPcounter) in the TCGA LUAD training 
dataset [11]. All 6 immune cells (T cells, CD8+ T cells, B 
cells, NK cells, monocytic lineage and myeloid dendritic 
cells) were positively correlated with the immune scores 
(Spearman correlation P < 0.0001, Fig. 3E), and the stro-
mal scores were positively correlated with fibroblasts and 
negatively correlated with myeloid dendritic cells (Spear-
man correlation P < 0.0001).

Differentially expressed gene analysis was then per-
formed in patients with high-low immune and stromal 
scores (Up 50% vs. Low 50%). The GSEA of differen-
tially expressed genes suggested that T cell activation 
was highly enriched in the patients with high immune 
scores, while leukocyte activation was less enriched in 
the patients with high stromal scores (Fig. 3F, G).

The correlation between T cell co-stimulatory/inhibi-
tory molecules and our scores were subsequently ana-
lyzed. The stromal scores were negatively correlated 
with CD28 and CD40LG, and positively correlated with 
PD-1 (Additional file  2: Figure S2), suggesting that the 
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stromal scores were positively associated with exhaustive 
immunity.

Identification of TME subtypes by ISTMEscore
To explore the roles of immune and stromal activa-
tion in tumors, patients were divided into 4 TME sub-
types according to the median values of ISTME scores. 

The patients with high immune and stromal scores were 
considered as the “HH type”, and high immune and low 
stromal scores were identified as the “HL type”. The “LH 
type” patients had low immune and high stromal scores, 
and the patients with low immune and stromal scores 
were defined as the “LL type”.

Fig. 1  The design of this study. TME, tumor microenvironment
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Comprehensive analysis of multi‑dimensional landscape 
of the 4 TME subtypes in LUAD, SKCM and HNSC
The landscape of TME cell infiltration in different TME 
subtypes
To depict the TME immune landscape of the 4 sub-
types, the infiltration of immune cells was calculated 
using MCPcounter. In the TCGA LUAD, SKCM and 
HNSC cohorts, the HH and HL patients had signifi-
cantly high levels of immune cell infiltration, includ-
ing T cells, CD8+ T cells, cytotoxic lymphocytes, 
NK cells, B lineages, monocytic lineages and myeloid 

dendritic cells (Fig.  4A–C). We further assessed the 
cellular patterns of TME subtypes in other independ-
ent cohorts, containing GSE11969 (NSCLC, n = 149) 
[12], GSE68465 (LUAD, n = 442) [13], GSE68571 
(LUAD, n = 86) [14], GSE37745 (NSCLC, n = 196) 
[15], GSE50081 (NSCLC, n = 172) [16] and GSE65904 
(SKCM, n = 214) [17]. Consistent with the outcomes in 
the TCGA cohorts, the HH and HL patients also had 
high immune cell infiltration (Additional file  3: Fig-
ure S3), except GSE68571, due to the lack of mapping 
genes.

Fig. 2  The road map of identification of immune and stromal signatures. a Identification of immune and stromal NMF clusters associated with 
prognosis. b Identification of gene list related to NMF eigenvalue via MTL. c Optimization of gene list via different gene expression analysis and 
consensus clustering. NMF, Non-negative matrix factorization; MTL, multitask learning



Page 7 of 18Zeng et al. J Transl Med          (2021) 19:330 	

TME subtype was associated with the functional markers of T 
cells and angiogenesis
Downregulation of co-stimulatory molecules (CD28, 
CD40LG) and upregulation of co-inhibitory mol-
ecules (PD-1, CTLA4, LAG3, TIM-3) were detected 

in the exhaustive T cells. In the TCGA LUAD dataset, 
the ratio of co-inhibitory/co-stimulatory molecules 
(PD-1 + CTLA4 + LAG3 + TIM-3)/(CD28 + CD40LG) 
was significantly different in the 4 TME subtypes (anal-
ysis of variance, ANOVA, P < 0.0001, Fig. 4D). Contrary 

Fig. 3  Characteristics of our immune and stromal scores. a Eigenvalue matrix in training dataset TCGA LUAD (n = 501). b GO enrichment analysis 
of top 100 weight genes of immune and stromal related clusters. All FDR < 0.05. c The immune score was linked to favorable OS in training dataset 
(Log-rank test). d The stromal scores were linked to unfavorable OS in the training datasets (Log-rank test). e Correlation Between Novel TME Scores 
and cell infiltration (Spearman’s correlation). f GSEA of differently expressed genes in patients with high-low immune scores (Up 50% vs. Low 50%). 
g GSEA of differently expressed genes in patients with high-low stromal scores (Up 50% vs. Low 50%). NMF, Non-negative matrix factorization; TME, 
tumor microenvironment; IF, inflammation; GSEA, gene set enrichment analysis; OS, overall survival; FDR, false discover rate
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to the LH patients, the HL patients had the lowest ratio. 
Similar patterns were also found in the TCGA SKCM 
(ANOVA, P = 0.0072) and TCGA HNSC datasets 
(ANOVA, P < 0.0001).

In addition, angiogenic markers, VEGFA levels and 
ANGPT1/ANGPT2 ratios had significantly different lev-
els among TME subtypes in the TCGA LUAD and TCGA 
HNSC datasets (ANOVA, P < 0.0001, Fig. 4E, F). The HL 

Fig. 4  The TME subtype was associated with TME cellular infiltration, functional markers and communication networks. a The patterns of cellular 
infiltration of TME subtypes in TCGA LUAD (n = 501). b The patterns of cellular infiltration of TME subtypes in TCGA SKCM (n = 352). c The patterns of 
cellular infiltration of TME subtypes in TCGA HNSC (n = 514). d The ratios of co-inhibitory/co-stimulatory molecules (PD-1 + CTLA4 + LAG3 + TIM-3) 
/ (CD28 + CD40LG) of TME subtypes in TCGA LUAD (n = 501). e The ratios of co-inhibitory/co-stimulatory molecules of TME subtypes in TCGA SKCM 
(n = 352). f The ratios of co-inhibitory/co-stimulatory molecules of TME subtypes in TCGA HNSC (n = 514). g TME communication networks of 
different TME subtypes in the training datasets. LUAD, lung adenocarcinoma; SKCM, skin cutaneous melanoma; HNSC, head and neck squamous 
cell carcinoma; TME, tumor microenvironment; HH, immunehigh stromalhigh; HL, immunehigh stromallow; LH, immunelow stromalhigh; LL, immunelow 
stromallow
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patients had low levels of VEGFA and high ANGPT1/
ANGPT2 ratios, suggesting inhibited angiogenesis. 
VEGFA levels were associated with TME subtypes in the 
TCGA SKCM dataset (ANOVA, P = 0.0004).

TME subtype was associated with distinct TME networks 
composed of cells, receptors and ligands
In TME, signal transmission between cells was medi-
ated by secreted proteins and direct communications. 
The TME communication networks were established to 
characterize cell interactions, as well as receptors and 
ligands, with Thorsson’s method in the training datasets 
(Fig. 4G) [34]. The TME networks of the HH type com-
posed of CD8+ T cells, B cells, NK cells and fibroblasts 
as the center of the subnetworks mediated by integrins 
and chemokines. The immune cell-centered network 
was identified in the HL type. The fibroblast-centered 
networks were observed in the LH type. However, no 
network was identified in the LL type, suggesting its 
desert-like TME.

TME subtype was linked to clinicopathological characteristics
According to the above findings, our TME subtypes 
could represent TME patterns and were associated with 
immune regulation in LUAD, SKCM and HNSC. The 
correlations between TME subtypes and clinicopatho-
logical characteristics were next analyzed. In the TCGA 
LUAD dataset, the LH type was concentrated on young 
patients at pathologic N2–3 and stage III–IV (Table  1), 
which were related to higher malignancy and poorer sur-
vival. In the TCGA HNSC dataset, the LH type was sig-
nificantly enriched in male patients at pathologic T3–4, 
which was contrary to HL. In the TCGA SKCM dataset, 
TME subtype was independent of clinicopathological 
characteristics.

TME subtype was an independent prognostic factor
The prognostic features (age, gender, pathologic stage 
and TME subtype) were identified by clinical value and 
univariate Cox regression (Fig. 5A–C). Pathological T, N 
and M have collinearity with pathologic stage, thus we 
only included the pathologic stages in the Cox model. In 
the TCGA LUAD dataset, multivariate Cox regression 
analysis indicated that age (HR = 1.02, P = 0.03), patho-
logic stage (HR = 1.58, P < 0.0001) and TME subtype (HL 
vs. LH, HR = 0.42, P < 0.0001) were independently prog-
nostic factors (Fig.  5D). In the TCGA SKCM dataset, 
age (HR = 1.02, P = 0.0006), pathologic stage (HR = 1.36, 
P = 0.002) and TME subgroup (HL vs. LH, HR = 0.39, 
P < 0.0001) were independently prognostic factors 
(Fig.  5E). In the TCGA HNSC dataset, age (HR = 1.02, 
P = 0.006), gender (male vs. female, HR = 0.76, P = 0.1), 
pathologic stage (HR = 1.45, P < 0.001) and TME 

subgroup (HL vs. HH, HR = 0.74, P = 0.168) were inde-
pendently prognostic factors (Fig. 5F). Combining the 4 
prognostic factors using Cox model, DCA revealed that 
the inclusion of TME subtype had higher potential clini-
cal utility (Fig. 5G–I).

In the Kaplan–Meier curves (Fig.  5J), the HL patients 
had the best OS in the TCGA LUAD (logrank-P < 0.0001), 
SKCM (logrank-P < 0.0001) and HNSC (logrank-P = 0.39) 
datasets. To adjust the impacts of prognostic covariates 
(age, gender and pathologic stage) on prognosis of TME 
subtypes, we performed PSM to baseline correction. 
In the TCGA LUAD dataset, the HL type had signifi-
cantly favorable OS, while the LH type had unfavorable 
OS (logrank-P = 0.043, Additional file  4: Figure S4A&B) 
after PSM (For all subtypes: age, ANOVA, P = 0.986; 
gender, Chi-squared test, P = 0.418; stage, Chi-squared 
test, P = 0.228). In the TCGA SKCM dataset, the survival 
curve was similar to that of the TCGA LUAD dataset 
(logrank-P = 0.00061, Additional file  4: Figure S4C&D) 
after PSM (For all subtypes: age, ANOVA, P = 0.882; 
gender, Chi-squared test, P = 0.43; stage, Chi-squared 
test, P = 0.796). In the TCGA HNSC dataset, survival 
curve also showed difference (logrank-P = 0.096, HL 
vs. LH: P = 0.03, Additional file  4: Figure S4E&F) after 
PSM (For all subtypes: age, ANOVA, P = 0.622; gen-
der, Chi-squared test, P = 0.931; stage, Chi-squared test, 
P = 0.471).

To validate our TME subtypes in the other 6 independ-
ent datasets [12–17], we performed Kaplan–Meier analy-
sis in each dataset. The HL patients were associated with 
significantly favorable prognosis in all validation datasets 
(Fig. 5J).

TME subtype was associated with mutation profile and copy 
number alteration
To determine whether TME subtypes were driven by 
gene mutations, we analyzed the somatic mutation 
profile in the 3 cancers from TCGA (Fig.  6A–C). Gene 
mutations in the 4 TME subtypes were compared using 
Fisher’s test (Additional file  5: Figure S5A–F). However, 
there was no duplicated differentially mutated genes in 
the 3 cancers. The mutation frequencies of traditional 
driving genes were then compared (Additional file 6: Fig-
ure S6A–I). In LUAD and HNSC, the mutation frequency 
of TP53 was significantly downregulated in the HL type, 
and the mutation sites of TP53 were concentrated at 
DNA binding domains (Additional file 7: Figure S7A&B). 
In SKCM, there were no differently mutated driver genes 
in the 4 TME subtypes.

Despite the controversy, tumor mutation burden 
(TMB) was the novel biomarker for ICI therapy accord-
ing to CheckMate-032 (SCLC) and CheckMate-026 
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Fig. 5  The TME subtype was an independent prognosis factor in LUAD, SKCM and HNSC. a Univariate Cox regression of the 4 prognostic features 
(age, gender, Pathologic stage and TME subtype) in TCGA LUAD. b Univariate Cox regression of the 4 prognostic features (age, gender, pathologic 
stage and TME subtype) in TCGA SKCM. c Univariate Cox regression of the 4 prognostic features (age, gender, pathologic stage and TME subtype) in 
TCGA HNSC. d Multivariate Cox regression of prognostic features in TCGA LUAD. e Multivariate Cox regression of prognostic features in TCGA SKCM. 
f Multivariate Cox regression of prognostic features in TCGA HNSC. g DCA of 3-year prediction in TCGA LUAD. h DCA of 3-year prediction in TCGA 
SKCM. i DCA of 3-year prediction in TCGA HNSC. j The Kaplan–Meier curves of the 4 subtypes in the training and validation cohorts, including TCGA 
cohorts, GSE68465 (LUAD, n = 442), GSE68571 (LUAD, n = 86), GSE50081 (NSCLC, n = 172), GSE37745 (NSCLC, n = 196), GSE11969 (NSCLC, n = 149), 
GSE65904 (SKCM, n = 214). DCA, decision curve analysis; LUAD, lung adenocarcinoma; SKCM, skin cutaneous melanoma; HNSC, head and neck 
squamous cell carcinoma; TME, tumor microenvironment; HH, immunehigh stromalhigh; HL, immunehigh stromallow; LH, immunelow stromalhigh; LL, 
immunelow stromallow



Page 13 of 18Zeng et al. J Transl Med          (2021) 19:330 	

(NSCLC) [41, 42], and its roles in prognosis of patients 
without ICIs remained unclear. The non-silent muta-
tion counts in the exon region represent relative values 
of TMB [43]. In this study, the HH and LH types were 
associated with high non-silent mutation count (ANOVA 
P < 0.0001, Fig.  6D), which was linked to better OS 
(logrank-P = 0.055, Fig.  6E) in the TCGA LUAD data-
set. In the TCGA SKCM and HNSC datasets, the TME 

subtype had no significant mutation count that was also 
linked to prognosis.

The association between CNA burden and prognosis 
was still unclear. Here, we defined CNA count burden 
(CNACB) as the total gene counts with CNA in each 
sample. In the 3 TCGA cohorts, the HL type had low-
est CNACB (Fig.  6F), which was an unfavorable prog-
nostic factor in HNSC (logrank-P = 0.0056) and LUAD 

Fig. 6  The TME subtype was associated with mutation profile and copy number alteration. a Mutation profile of TCGA LUAD. b Mutation 
profile of TCGA SKCM. c Mutation profile of TCGA HNSC. d Mutation count of different TME subtypes in the 3 TCGA cohorts. e The Kaplan–Meier 
curves of patients with high-low mutation count in the 3 TCGA cohorts. f Copy number alteration count burden of different TME subtypes in 
the 3 TCGA cohorts. g The Kaplan–Meier curves of patients with high-low copy number alteration count burden in the 3 TCGA cohorts. LUAD, 
lung adenocarcinoma; SKCM, skin cutaneous melanoma; HNSC, head and neck squamous cell carcinoma; TME, tumor microenvironment; HH, 
immunehigh stromalhigh; HL, immunehigh stromallow; LH, immunelow stromalhigh; LL, immunelow stromallow
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(logrank-P = 0.1), but a favorable factor in SKCM 
(logrank-P = 0.1, Fig. 6G).

TME subtype was related to ICI responses
Five independent transcriptomic cohorts contain-
ing patients with immunotherapy were used to vali-
date the predictive effects of our TME subtype on ICI 

responses. In the immunotherapy dataset 1 (Chen et al.) 
of 53 melanoma cases [5], there were 5 biopsy time-
points: pre-anti-CTLA4, on-anti-CTLA4, pre-anti-
PD-1, on-anti-PD-1 and prog-anti-PD-1. Immune scores 
were markedly increased in on-anti-CTLA4 (P = 0.078) 
and on-anti-PD-1 (P = 0.0002) responders (Fig.  7A), 
while stromal scores were decreased in on-anti-PD-1 

Fig. 7  TME subtype could predict response to ICIs. a The levels of immune score in different biopsy times (Chen et al.). b The stromal scores in 
different biopsy times (Chen et al.). c ICI responses of different TME subtypes (Chen et al.). d Sankey diagram revealed the subtype changes of 
patients at different time points (Chen et al.). e The immune scores in different biopsy times (GSE91061). f The stromal scores in different biopsy 
times (GSE91061). g ICI responses of different TME subtypes (GSE91061). h Sankey diagram revealed the subtype changes of patients at different 
time points (GSE91061). i ICI responses of different TME subtypes (GSE93157). j ICI responses of different TME subtypes (GSE67501). k ICI responses 
of different TME subtypes (GSE35640). l TME subtype was linked to PFS of patients with ICI treatment in GSE93157. ICI, immune checkpoint inhibitor; 
LUAD, lung adenocarcinoma; SKCM, skin cutaneous melanoma; HNSC, head and neck squamous cell carcinoma; TME, tumor microenvironment; HH, 
immunehigh stromalhigh; HL, immunehigh stromallow; LH, immunelow stromalhigh; LL, immunelow stromallow
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therapy (P = 0.0013) responders (Fig.  7B). The HL 
patients showed higher responses than the LH patients 
with on-anti-CTLA4/PD-1 therapy (HH vs. HL vs. LH vs. 
LL: 100% vs. 100% vs. 0% vs. 0%, Fisher’s test P = 0.0012, 
Fig.  7C). Notably, 41.9% patients experienced transition 
of TME subtype at the 5 biopsy timepoints (Fig.  7D). 
There were 8 patients with changes from the LH and LL 
types before anti-CTLA4 therapy to HH and HL types at 
later times, and 75% patients were responsive.

The immunotherapy dataset 2 (GSE91061) included 65 
melanoma patients with anti-PD-1 therapy [24]. Similar 
to immunotherapy dataset 1, immune scores were signifi-
cantly higher in responders with on-anti-PD-1 therapy 
(P = 0.0049, Fig.  7E), but stromal scores were not sig-
nificantly lower (Fig. 7F). The LH patients were linked to 
low responses of on-anti-PD-1 therapy (HH vs. HL vs. 
LH vs. LL: 54.5% vs. 78.9% vs. 37.5% vs. 44.4%, Fisher’s 
test P = 0.07, Fig.  7G). Moreover, 29% patients expe-
rienced transition of TME subtype before and during 
treatment (Fig.  7H). Furthermore, 66.7% patients, who 
changed to LH and LL types, were not responsive, while 
66.7% patients, who changed to HH and HL types, were 
responsive.

Other immunotherapy datasets only included tran-
scriptomic data before treatment. There was no statistical 
significance between TME subtype and immunotherapy 
response in these datasets (Fig. 7I–L).

Comparison of ISTMEscore system with other studies
The overlap between our TME gene signatures and existing 
signatures
To test the robustness of this study, we compared our 
TME signatures (“Results”—“Feature extraction of TME 
signals and construction of ISTMEscore”) with existing 
signatures [44–49]. There were 30.6% and 31% overlaps 
of ISTMEscore signatures with ESTIMATE and MCP-
counter, respectively (Additional file 15: Table S7).

Comparison with other algorithms for prediction 
of prognosis and ICI responses
Since ESTIMATE [8] and MCPcounter [9] algorithms 
also provided TME-related scores, it was necessary to 
compare these indicators with our ISTMEscore. We first 
calculated C-index for each score on prognosis predic-
tion in all 9 datasets with prognostic annotation (Addi-
tional file 16: Table S8). The top 5 indicators of C-index 
were our stromal score (mean C-index: 0.587), our 
immune score (mean rank: 0.58), B lineage infiltration 
(mean C-index: 0.578), myeloid dendritic cell infiltra-
tion (mean C-index: 0.567), ESTIMATE immune score 
(mean C-index: 0.566). We next applied ROC analysis 
on ICI responses, and calculated area under receiver 

(AUC) of ROC in the 5 immunotherapy cohorts (Addi-
tional file 16: Table S8). The top 5 indicators of AUC were 
monocytic lineage infiltration (mean AUC: 0.73462), our 
immune score (mean AUC: 0.72636), myeloid dendritic 
cell infiltration (mean AUC: 0.72574), T cell infiltration 
(mean AUC: 0.72034) and our stromal score (mean AUC: 
0.71854).

Moreover, we compared our scores with ESTIMATE 
scores in GSE9014 [50], which included 111 arrays of 
stroma through Laser Capture Microdissected from 53 
breast cancer patients. Only our stromal scores were 
significantly associated with the histologic GRADE 
(Additional file  8: Figure S8A-D, P < 0.0001). Table 
of abbreviations was displayed in Additional file  17: 
Table S9.

Discussion
In this study, we built the novel ISTMEscore system with 
unique workflow, and depicted the multi-dimensional land-
scape of different TME subtypes. Our TME subtypes could 
represent TME patterns, and were associated with clinical 
features and immunotherapy responses in LUAD, SKCM 
and HNSC. Additional analysis suggested that high col-
lagen, matrix metalloproteinases, glycolysis and acid envi-
ronment, VEGF signaling were the integral parts of stromal 
activation. Whether the stromal signals were involved in 
immune exhaustion remained to be further studied.

Although immunotherapy benefited LUAD, SKCM 
and HNSC patients, only a small proportion of patients 
had long-term survival [5]. Identification of potentially 
sensitive population for ICIs helped to decrease medical 
expenses and improve quality of life. Our studies found 
that the LH type with malignant TME and the LL type 
with desert-like TME had low ICI responses (Fig. 7). Inter-
estingly, the TME subtypes determined by transcriptome 
before treatment did not demonstrate significant associa-
tion with immunotherapy response. In the 3 immunother-
apy cohorts with biopsies taken before treatment, TME 
subtype was not significantly associated with ICI response: 
HH vs. HL vs. LH vs. LL: 100% vs. 94.7% vs. 94.7% vs. 
78.6%, Fisher’s test P = 0.2 in GSE93157 (Fig. 7I) [25]; and 
HH vs. HL vs. LH vs. LL: 100% vs. 33.3% vs. 33.3% vs. 0%, 
Fisher’s test P = 0.26 in GSE67501 (Fig. 7J) [26]; and HH vs. 
HL vs. LH vs. LL: 50% vs. 52.9% vs. 13.3% vs. 40%, Fish-
er’s test P = 0.09 in GSE35640 (Fig. 7K) [27]. In GSE93157, 
there was a difference of progression-free survival only in 
subgroup comparisons of HL vs. LH (logrank-P = 0.056, 
Fig.  7L). Chen et  al. also found positive implications 
for dynamic monitoring of the immune microenviron-
ment [5]. The protein levels of CD3, CD4, CD8, PD-1, 
PD-L1 and LAG3 during the treatment could reflect the 
responses (all, P < 0.01) better than those before treatment. 
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Moreover, Riaz et  al. found that patients with TME of 
immune activation or “hot tumor” were associated with 
high CR/PR rates in the group receiving ICIs in advance, 
whereas TME immune infiltration was not linked to ICI 
responses in the patients without prior immunotherapy 
[24]. In stromal environment, the desmoplastic stroma was 
the physical barrier for tumor to resist immunotherapy 
and chemotherapy [51]. Kim et al. reported the single-cell 
sequencing analysis of the longitudinal samples from 20 
triple-negative breast cancer patients during neoadjuvant 
chemotherapy [52]. They found that degradation of ECM 
and angiogenesis signals were upregulated in the chem-
oresistant tumors. In preclinical studies, cancer-associated 
fibroblasts were reported to compensate immunotherapy 
through crosstalk with myeloid-derived suppressor cells 
and CD8+ T cells [53, 54]. In this study, we found that the 
majority of patients, who switched to the LH and LL types 
during ICI therapy, were non-responders. Accordingly, 
longitudinal detection of TME-related indicators might 
be a better choice for patients with ICI treatment, which 
required studies with large sample size.

The HL patients had high immune activation, inhibi-
tory angiogenesis and long OS, which was considered 
as balanced states of TME. As previous studies, there 
were synergistic effects between immune normaliza-
tion and vascular normalization [55]. VEGF induced 
immunosuppressive cells such as myeloid suppressive 
cells, tumor-related macrophages and Tregs, which 
developed immune exhaustion. On the other hand, the 
infiltration and activation of intratumoral effector T 
cells promoted the remodeling and normalization of 
vessels. The immune and vascular normalization might 
explain the results of IMpower150 study, in which the 
first-line immunotherapy combined with anti-angio-
genic drugs benefited non-squamous NSCLC patients 
[56]. The immune and vascular normalization seemed 
to correspond to the HL type in our study.

Compared with the existing methods (ESTIMATE 
and MCPcounter) [8, 9], our scores showed advantages 
on the prediction of prognosis and immunotherapy 
response. However, the improvement in predictive per-
formance was not large. B lineage and myeloid dendritic 
cell infiltration scores of MCPcounter were also good 
predictors of prognosis (Additional file  16: Table  S8). 
For prediction of ICI responses, monocytic lineage 
infiltration scores also had excellent performance.

The effects of TMB on prognosis were controversial. 
Some clinical studies revealed opposite prognostic effects 
of TMB in NSCLC patients without immunotherapy. In 
LACE-Bio-II study with 908 NSCLC patients [57], high 
TMB group (≥ 8 m/Mb) showed better OS, while the low 
TMB group (< 4 m/Mb) had worse prognosis (P = 0.016). 
However, another clinical study indicated that higher 

TMB (≥ 62 m/Mb) was correlated with worse OS in the 
90 NSCLC patients (P = 0.0003) [58]. TMB may not be 
a very robust prognostic marker due to lack of consid-
eration on the threshold, complex effects of mutation, as 
well as the gene mutations from immune or stromal cells.

There were some limitations in this study: All datasets 
were retrospective, requiring prospective clinical trials 
to further verify. Whether our scores worked in other 
tumors, especially tumors lacking immune cell infiltra-
tion, remained to be further investigated. In addition, the 
link between our ISMEscore system and ICI response 
was not strong. Our system needed to be applied cau-
tiously for the prediction of immunotherapeutic efficacy.

Conclusions
In conclusion, we proposed the novel ISTMEscore and 
TME classification. We comprehensively depicted TME 
classification associated with the cellular, molecular, 
TME communication networks, mutation, CNA burden 
and clinical features of LUAD, SKCM and HNSC. Our 
TME classification was an independent prognostic factor 
and associated with immunotherapy responses, which 
was superior to previous studies.
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