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Abstract 

Background:  Early prediction of acute kidney injury (AKI) after liver transplantation (LT) facilitates timely recognition 
and intervention. We aimed to build a risk predictor of post-LT AKI via supervised machine learning and visualize the 
mechanism driving within to assist clinical decision-making.

Methods:  Data of 894 cases that underwent liver transplantation from January 2015 to September 2019 were 
collected, covering demographics, donor characteristics, etiology, peri-operative laboratory results, co-morbidities 
and medications. The primary outcome was new-onset AKI after LT according to Kidney Disease Improving Global 
Outcomes guidelines. Predicting performance of five classifiers including logistic regression, support vector machine, 
random forest, gradient boosting machine (GBM) and adaptive boosting were respectively evaluated by the area 
under the receiver-operating characteristic curve (AUC), accuracy, F1-score, sensitivity and specificity. Model with the 
best performance was validated in an independent dataset involving 195 adult LT cases from October 2019 to March 
2021. SHapley Additive exPlanations (SHAP) method was applied to evaluate feature importance and explain the 
predictions made by ML algorithms.

Results:  430 AKI cases (55.1%) were diagnosed out of 780 included cases. The GBM model achieved the highest AUC 
(0.76, CI 0.70 to 0.82), F1-score (0.73, CI 0.66 to 0.79) and sensitivity (0.74, CI 0.66 to 0.8) in the internal validation set, 
and a comparable AUC (0.75, CI 0.67 to 0.81) in the external validation set. High preoperative indirect bilirubin, low 
intraoperative urine output, long anesthesia time, low preoperative platelets, and graft steatosis graded NASH CRN 1 
and above were revealed by SHAP method the top 5 important variables contributing to the diagnosis of post-LT AKI 
made by GBM model.

Conclusions:  Our GBM-based predictor of post-LT AKI provides a highly interoperable tool across institutions to 
assist decision-making after LT.
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Introduction
Acute kidney injury (AKI) after liver transplantation 
(LT) holds unique etiology and risk factors compared to 
AKI in other clinical settings. The reported incidence 
of post-LT AKI, which derived from various diagnostic 
criteria, varies from 17 to 95% [1, 2], with an average 
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around 40.7% [3]. Kollmann et  al. demonstrated that 
when using KDIGO criteria, the incidence of post-LT 
AKI observed was 61% in the DCD group and 40% in 
the DBD group [2]. AKI after LT is associated with 
increased post-operative mortality, potential progres-
sion to chronic kidney disease (CKD), longer length 
of stay and increased medical expenditure [1].Graft 
characteristics, intraoperative hemodynamic instabil-
ity and post-operative exposure to nephrotoxic immu-
nosuppression have been considered to be associated 
with AKI after LT [4–6]. Early interventions like perio-
perative continuous renal replacement therapy (CRRT) 
and restraint on nephrotoxic medications shall be con-
sidered in patients with AKI, but the timing of such 
decisions depends largely on personal experience and 
a reliable predicting model can greatly facilitate these 
decisions [7].

Machine learning (ML) algorithms have demon-
strated satisfactory performance in building robust 
predictive models of inpatient AKI [8]. However, many 
of these studies fed relatively abundant features to 
ML algorithms without dimensionality reduction [9]. 
Highly correlated features without regularization are 
of limited utility in enhancing the predictive power of 
the model [10]. Moreover, high dimensional features 
are susceptible to missing data once being externally 
validated across institutions, hindering clinical appli-
cation of these models. With current surge of these 
ML-derived clinical assisting tool [11, 12], criteria for 
evaluation and regulation of such predictive algorithms 
have been advocated, which include setting meaningful 
endpoints and appropriate benchmarks, and ensuring 
generalizability among institutions [13].

Besides these criteria, relational validity of ML-derived 
predictive models, that is, the extent to which physicians 
can interpret them, has been emphasized lately, since a 
sound statistical validity does not necessarily guarantee 
the usability of these models [14]. The “black magic” of 
ML remains to be debated for the difficulty to understand 
the mechanisms driving within [15]. SHapley Additive 
exPlanations (SHAP) method developed by Lundberg 
[16] is a Game Theory-based method, within which the 
individual features act as players in a prediction task and 
the Shapley value helps to fairly distribute the prediction 
performance among the features [17]. This method ena-
bles black-box ML algorithms to be explained on individ-
ual level. In this study we aimed to select a ML classifier 
that outperforms statistically in predicting post-LT AKI 
and further visualize the decision made by  ML algo-
rithms to clinicians to assist their decisions. Meanwhile 
we also validated an AKI prediction score developed by 
Kalisvaart et al. [5] with our data set and compared the 
performance of our ML model to this score.

Experimental procedures
Source of data and participants
This was a retrospective, single center research con-
ducted in The Third Affiliated Hospital of Sun Yat-sen 
University-Lingnan Hospital. This study was approved 
by the Ethnic Committee of the Third Affiliated Hospi-
tal of Sun Yat-sen University (NO. [2019]02-609-01), with 
waiver of informed consent.

Medical data collected by natural language process 
module from EMRs included demographic data, daily 
documentation, laboratory and imaging results, anes-
thesia records, medications, interventions and diagnosis 
[18]. Donor characteristics were manually collected from 
the China Organ Transplant Response Systems (CORS, 
www.​cot.​org.​cn). All data were anonymized. This study is 
reported as per the Transparent Reporting of a Multivari-
able Prediction Model for Individual Prognosis or Diag-
nosis (TRIPOD) guidelines [19].

As a result, data of 894 cases that underwent LT from 
January 2015 to September 2019 were extracted. After 
excluding pediatric cases, simultaneous liver-kidney 
transplantation, living donor transplantation and cases 
that lack sufficient post-operative records of serum cre-
atinine (SCr), 780 cases were included in the primary 
cohort for model development and internal validation. 
Since recipients with impaired pre-transplant renal func-
tion are prioritized during organ allocation determined 
by the model of end-stage liver disease (MELD) score [5], 
and around 90% of these patients can recover after trans-
plantation [20], we agreed with including patients with 
preoperative renal injury or diagnosed with hepato-renal 
syndrome, out of the purpose to predict new onset AKI 
simply associated with perioperative treatment. As for 
survival analysis, the end of follow-up was set at Decem-
ber 31st, 2019. Data of patients that underwent deceased 
donor liver transplantation meeting the same inclusion 
criteria during October 2019 to March 2021 were exclu-
sively extracted for external validation.

Perioperative treatment
The grafts were procured from either donation after cir-
culatory death (DCD), donation after brain death (DBD) 
or donation after brain death followed by circulatory 
death (DBCD) [21]. No organs from executed prisoners 
were used. The implantation technique consisted of pig-
gyback, standard and split liver transplantation. Liver 
biopsy samples were collected before and after graft 
reperfusion. Intraoperative extracorporeal venovenous 
bypass was hardly applied since it was not significantly 
advantageous [22]. Transfusion, fluid management and 
use of vasoactive and hemostatic agent were adjusted 
according to an overall assessment of volume balance and 
hemodynamic stability. Boluses of vasoactive agents were 
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mostly given to counter post-reperfusion syndrome, oth-
erwise continuous infusion were preferred. Colloids were 
only used during reperfusion phase when coagulation 
deficiency was corrected and satisfactory urine output 
was observed. For patients receiving ABO-incompatible 
graft, Tacrolimus introduction was initiated at Day 2 
after the surgery, otherwise a renal sparing therapy that 
initiated Tacrolimus at Day 4 was adopted. A detailed 
description of anesthesia and immunotherapy can be 
found in Additional file 4: Appendix S4.

Outcome
The primary outcome was postoperative AKI, diagnosed 
within 7  days post-operatively according to the criteria 
proposed by The Kidney Disease: Improving Global Out-
comes (KDIGO) guideline [23] (Additional file  5). Cri-
teria concerning urine output in KDIGO guideline were 
not adopted, since it required urine output to be less than 
0.5 ml·kg−1·h−1 for 6 h to diagnose AKI, which was not 
as timely as the SCr result obtained immediately after the 
surgery. Moreover, for patients receiving LT we tested 
post-operative SCr on a daily basis, which was sufficient 
to identify AKI within one week after the surgery.

Predictors and selection
A total of 111 variables were chosen for initial analysis 
(Additional file 1: Appendix S1, Table S2), mainly cover-
ing demographics and donor characteristics; preopera-
tive comorbidities, laboratory values, etiology of liver and 
complications; intraoperative incidents, medication, fluid 
infusion and blood product transfusion; post-operative 
medications. Certain categorical variables were gener-
ated by imposing specific rules according to their defini-
tions (Additional file  1: Appendix S1, Table  S1). MELD 
score was calculated according to the standard of the 
United Network for Organ Sharing (UNOS) Liver and 
Intestinal Organ Transplantation Committee (Additional 
6). Graft steatosis was graded according to Nonalcoholic 
Steatohepatitis Clinical Research Network (NASH CRN) 
(https://​jhucc​s1.​us/​nash/).

For variables with a missing proportion less than 
10%, we imputed categorical variables with the mode 
and continuous variable with Multivariate Imputation 
by Chained Equations (MICE) algorithm [24]. To mini-
mize potential over-fitting brought by high dimension-
ality of the features, only features that were statistically 
significant (p < 0.05) in univariate test were chosen and 
subjected to a least absolute shrinkage and selection 
operator (LASSO) regression approach. Finally, features 
with non-zero coefficients after LASSO regression were 
used to build our models (Additional file 3: Appendix S3, 
Table S4).

Statistics
Data cleaning was conducted using Python (Anaconda 
Distribution, Version 3.7) package. Pandas and Numpy. 
Scikit-learn (https://​github.​com/​scikit-​learn/​scikit-​
learn) package was used to build base models includ-
ing logistic regression (LR), support vector machine 
(SVM), random forest (RF), gradient boosting machine 
(GBM) implemented by decision tree and adaptive 
boosting (ADA). We also calculated Kalisvaart’s AKI 
prediction score that use donor and recipient body 
mass index (BMI), DCD grafts, plasma requirements, 
and recipient warm ischemic time (WIT) as variables 
for risk stratification [5].

The primary cohort was randomly separated into 70% 
development set and 30% internal validation set. Boot-
strap method was implemented 1000 times on internal 
validation set to derive confidence interval of AUC, 
accuracy, sensitivity and specificity. Grid search method 
with five-fold cross validation was used to choose best 
hyperparameters for each model (Additional file  2: 
Appendix S2, Table S1). Mean with standard deviation, 
or median with interquartile range was used to analyze 
and express continuous variables, the comparisons of 
which were made using the Independent-sample T test 
or Mann–Whitney U test. Categorical variables were 
expressed in quantities and percentages and compared 
by the Chi-square test. Post-operative survival was 
estimated by Kaplan–Meier methods and examined 
by Gehan-Breslow-Wilcoxon test. SHAP method was 
implemented using Python shap package (https://​shap.​
readt​hedocs.​io/​en/​latest/).

Results
Baseline characteristics of the participants
The internal validation set consisted of a majority of 
male (n = 682, 87.44%), with a mean age of 50.7  years 
and BMI around 22.78 (Table 1). Among the 780 cases 
included, 430 (55.13%) were diagnosed with AKI (AKI 
group), within which 159 cases (36.97%) were stage 3 
AKI requiring postoperative CRRT.

Patients that did not end up with AKI (Non-AKI 
group) presented comparable percentage of preopera-
tive AKI and CKD to that of AKI group. With evident 
use of CRRT in AKI group (16.27% vs. 6.85%, p < 0.001), 
the biomarkers of renal function were not significantly 
different in clinical settings. Meanwhile, AKI group 
presented more severe liver dysfunction and coagu-
lopathy, and higher MELD score (median 30 vs. 22, 
p < 0.001). AKI group also held less cases with hepatic 
malignancy (28.37% vs. 54.28%, p < 0.001) and higher 
the percentage of hepatic encephalopathy (HE) (32.33% 
vs. 11.71%, p < 0.001). The percentage of graft steatosis 
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Table 1  Characteristics, diagnosis and perioperative features of current cohort

All (N = 780) Non-AKI (n = 350) AKI(n = 430) P value

Age (y) 50.719 (10.638) 51.051 (10.433) 50.449 (10.808) 0.295

Height (cm) 167.954 (9.065) 167.734 (6.428) 168.134 (10.753) 0.052

Weight (kg) 64.628 (11.304) 63.404 (10.889) 65.628 (11.548) 0.004

Body Mass Index 22.782 (3.574) 22.539 (3.529) 22.98 (3.602) 0.018

Preoperative LOS (d) 11 (2–26) 14 (4–28) 8 (2–23) 0.001

Diagnosis of AKI

 No AKI 350.0 (100.0%) /

 Stage 1 AKI / 177.0 (41.163%)

 Stage 2 AKI / 63.0 (14.651%)

 Stage 3 AKI / 190.0 (44.186%)

 Stage 3 AKI requring CRRT​ / 159.0 (36.977%)

 AKI diagnosis during POD1 / 288 (66.977%)

Preoperative renal function

 CKD (n) 121.0 (15.513%) 49.0 (14.0%) 72.0 (16.744%) 0.34

 AKI (n) 172.0 (22.051%) 67.0 (19.143%) 105.0 (24.419%) 0.093

 HRS (n) 33.0 (4.231%) 8.0 (2.286%) 25.0 (5.814%) 0.024

 SCr (μmol/L) 91.777 (70.334) 92.388 (68.852) 91.28 (71.593) 0.047

 BUN (mmol/L) 6.846 (5.823) 6.56 (5.218) 7.078 (6.268) 0.985

 eGFR (ml/(min*1.732)) 95.029 (32.145) 93.749 (29.966) 96.07 (33.813) 0.127

 SCr_Mean (μmol/L) 79.343 (71.641) 75.837 (65.256) 82.197 (76.402) 0.917

 Use of CRRT (n) 94.0 (12.051%) 24.0 (6.857%) 70.0 (16.279%)  < 0.001

 Frequency of CRRT (times) 2.567 (10.727) 1.351 (8.312) 3.556 (12.269)  < 0.001

Preoperative laboratory values

 HCT 0.299 (0.076) 0.312 (0.08) 0.288 (0.07)  < 0.001

 PLT(109/L) 96.026 (79.4) 116.597 (95.149) 79.281 (58.79)  < 0.001

 ALT (U/L) 126.282 (399.834) 90.349 (235.856) 155.53 (493.081) 0.004

 AST (U/L) 172.242 (538.996) 148.429 (369.227) 191.626 (644.817)  < 0.001

 TBIL (μmol/L) 250.278 (249.713) 172.311 (217.596) 313.739 (256.351)  < 0.001

 DBIL (μmol/L) 159.74 (168.516) 116.107 (152.227) 195.256 (172.907)  < 0.001

 IBIL (μmol/L) 90.537 (96.523) 56.204 (72.764) 118.483 (104.24)  < 0.001

 ALB (g/L) 35.668 (4.906) 36.212 (5.283) 35.225 (4.535) 0.023

 PT (s) 25.16 (13.483) 21.115 (9.851) 28.452 (15.064)  < 0.001

 APTT (s) 54.653 (20.923) 49.183 (16.041) 59.105 (23.267)  < 0.001

 FIB (g/L) 1.982 (1.422) 2.357 (1.372) 1.676 (1.39)  < 0.001

 INR 2.339 (1.574) 1.912 (1.397) 2.686 (1.625)  < 0.001

Etiology of liver

 Hepatitis B (n) 577.0 (73.974%) 257.0 (73.429%) 320.0 (74.419%) 0.817

 Hepatitis C (n) 17.0 (2.179%) 11.0 (3.143%) 6.0 (1.395%) 0.157

 Dual infection (n) 9.0 (1.154%) 5.0 (1.429%) 4.0 (0.93%) 0.756

 Hepatic Malignancy (n) 312.0 (40.0%) 190.0 (54.286%) 122.0 (28.372%)  < 0.001

 Cirrhosis (n) 623.0 (79.872%) 292.0 (83.429%) 331.0 (76.977%) 0.032

Preoperative complications

 MELD score 24 (22–35) 22(22–29) 30 (22–38)  < 0.001

 Portal hypertension (n) 407.0 (52.179%) 192.0 (54.857%) 215.0 (50.0%) 0.201

 Ascites (n) 321.0 (41.154%) 142.0 (40.571%) 179.0 (41.628%) 0.822

 HE (n) 180.0 (23.077%) 41.0 (11.714%) 139.0 (32.326%)  < 0.001

 Plasmapheresis (n) 7.0 (0.897%) 2.0 (0.571%) 5.0 (1.163%) 0.625

 HPS (n) 4.0 (0.513%) 1.0 (0.286%) 3.0 (0.698%) 0.766

 ARDS (n) 7.0 (0.897%) 3.0 (0.857%) 4.0 (0.93%) 0.784
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Table 1  (continued)

All (N = 780) Non-AKI (n = 350) AKI(n = 430) P value

 ALI (n) 0.0 (0.0%) 0.0 (0.0%) 0.0 (0.0%) 1

 MV (n) 49.0 (6.282%) 9.0 (2.571%) 40.0 (9.302%)  < 0.001

 ICU stay (n) 439.0 (56.282%) 164.0 (46.857%) 275.0 (63.953%)  < 0.001

 Hypernatremia (n) 44.0 (5.641%) 10.0 (2.857%) 34.0 (7.907%) 0.004

 Metabolic acidosis (n) 336.0 (43.077%) 144.0 (41.143%) 192.0 (44.651%) 0.362

Donor characteristics

 Donor age (y) 39.191 (13.966) 38.894 (14.392) 39.433 (13.621) 0.755

 Donor BMI 22.578 (3.199) 22.336 (3.185) 22.779 (3.201) 0.074

 ABO incompatibility (n) 120.0 (15.385%) 38.0 (10.857%) 82.0 (19.07%) 0.002

 Donor Type 0.248

  DBD (n) 448 (57.436%) 212 (60.571%) 236 (54.884%)

  DCD (n) 324 (41.538%) 134 (38.286%) 190 (44.186%)

  DBCD (n) 8 (1.026%) 4 (1.143%) 4 (0.93%)

 Steatosis of donor liver 0.002

  Steatosis grade 0 (n) 529 (67.821%) 260.0 (74.286%) 269 (62.558%)

  Steatosis grade 1 (n) 170 (21.795%) 62.0 (17.714%) 108 (25.116%)

  Steatosis grade 2 (n) 35 (4.487%) 9.0 (2.571%) 26 (6.047%)

  Steatosis grade 3 (n) 1 (0.128%) 0.0 (0.0%) 1 (0.233%)

Steatosis grade ≥ 1 206.0 (26.41%) 71.0 (20.286%) 135.0 (31.395%) 0.001

Steatosis grade ≥ 2 36.0 (4.615%) 9.0 (2.571%) 27.0 (6.279%) 0.022

 Lack of pathology assesment (n) 45 (5.769%) 19 (5.429%) 26 (6.046%) 0.721

Surgery characteristics

 Time of surgery (min) 442.713 (92.854) 425.297 (87.949) 456.888 (94.418)  < 0.001

 Time under anesthesia (min) 538.888 (97.864) 519.56 (92.679) 554.621 (99.251)  < 0.001

 Recipient warm ischemic time (min) 46.45 (12.035) 45.919 (12.183) 46.883 (11.909) 0.088

 Cold ischemic time (h) 6.255 (1.358) 6.226 (1.393) 6.278 (1.329) 0.476

 Surgical technique 0.304

  Piggyback (n) 713 (91.41%) 317 (90.571%) 396 (92.093%)

  Split liver (n) 36 (4.615%) 15 (4.286%) 21 (4.884%)

  Standard (n) 31 (3.974%) 18 (5.143%) 13 (3.023%)

Intraoperative fluid and transfusion

 Crystalloid (ml) 2618.423 (2240.489) 2775.575 (2366.817) 2490.944 (2126.798) 0.094

 Colloid (ml) 124.26 (427.879) 153.448 (424.742) 100.583 (429.443) 0.006

 Albumin (ml) 218.295 (116.74) 222.629 (111.083) 214.779 (121.15) 0.483

 Transfusion

  RBC (ml) 1500.39 (1318.45) 1279.989 (1333.507) 1679.177 (1280.024)  < 0.001

  Plasma (ml) 1862.806 (1613.71) 1725.862 (1376.393) 1973.893 (1777.029) 0.063

  Cryoprecipitate (U) 30.276 (15.83) 27.359 (14.9) 32.653 (16.182)  < 0.001

 EBL (ml) 2051.489 (2027.519) 1679.857 (1890.832) 2354.685 (2086.165)  < 0.001

 Urine output (ml·kg−1·h−1) 3.104 (2.146) 3.708 (2.219) 2.613 (1.954)  < 0.001

 Ascites removal (ml) 959.665 (1889.757) 947.011 (1997.938) 969.93 (1799.531) 0.196

Intraoperative medication

 rFVIIa (mg) 0.346 (1.127) 0.211 (1.03) 0.455 (1.19)  < 0.001

 Prothrombin complex concentrate (IU) 587.692 (433.693) 554.857 (434.497) 614.419 (431.7) 0.043

 Fibrinogen (g) 0.404 (1.293) 0.342 (0.735) 0.453 (1.609) 0.567

 Terlipressin (mg) 0.322 (0.551) 0.195 (0.447) 0.426 (0.604)  < 0.001

 Norepinephrine, bolus (mg) 0.008 (0.022) 0.006 (0.018) 0.009 (0.024) 0.353

 Epinephrine, bolus (mg) 0.028 (0.299) 0.011 (0.161) 0.042 (0.376) 0.785

 Dopamine, bolus (mg) 12.0 (1.538%) 4.0 (1.143%) 8.0 (1.86%) 0.874
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and ABO incompatibility were also significantly higher 
in AKI group.

During LT, AKI group tended to suffer from greater 
blood loss and required higher volume of blood transfu-
sion, higher dose of terlipressin, sodium bicarbonate and 
hemostatic medications. Consistently, the average intra-
operative urine output of AKI group was significantly 
lower (mean 2.61 vs. 3.70 ml·kg−1·h−1, p < 0.001).

A great majority of AKI cases (n = 288, 66.97%) were 
diagnosed within 24 h after LT (Table 1), that is, prior to 
the introduction of Tacrolimus. Although we collected 
data of post-operative medications prior to the appear-
ance of diagnostic SCr (for AKI group) or prior to the 
record of maximum SCr (for Non-AKI group) (Addi-
tional file 3: Appendix S3, Table S3), the heterogeneity in 
the timing of diagnosis made them unsuitable as predic-
tors in our model.

The 6-month, 1-year and 2-year survival of patients in 
AKI group were respectively 89.34%, 86.88% and 83.85%, 
which was significantly lower compared to Non-AKI 
group (95.50%, 91.25% and 86.82%) (Fig. 1) ( 5: ).

Internal validation performance
Finally 14 predictors were selected (Additional file  1: 
Appendix S1, Table  S4) and used in each classifier to 
predict AKI. In the internal validation  set, GBM model 
achieved the greatest AUC (0.76, CI 0.70 to 0.82), a high-
est F1-score (0.73, CI 0.66 to 0.78) that tied with ADA, 
and relatively balanced sensitivity (0.74, CI 0.66 to 0.8) 
and specificity (0.65, CI 0.55 to 0.73) (Fig. 2). Since GBM 
algorithm is more robust to outliers compared to ADA, 
we eventually chose GBM model for further analysis and 
application.

Since Kalisvaart’s AKI prediction score was built 
upon exclusion of patients requiring preoperative 
CRRT [5], we validated and compared the performance 
of this score and our GBM-based predictor in the com-
plete internal validation set first, then further com-
pared them in a subset excluding patients that received 
preoperative CRRT. It turned out that the AKI predic-
tion score presented in our internal validation set an 
absolutely high specificity (1.0, CI 1.0 to 1.0) with the 
lowest AUC (0.52, CI 0.45 to 0.6), F1-score (0.03, CI 
0.0 to 0.08) and sensitivity (0.02, CI 0.00 to 0.04). These 
metrics were not improved even in the subset exclud-
ing patients receiving preoperative CRRT. Meanwhile, 
GBM model also demonstrated higher AUC (0.74, CI 
0.67 to 0.8), acceptable specificity (0.68, CI 0.59 to 0.77) 

Table 1  (continued)

All (N = 780) Non-AKI (n = 350) AKI(n = 430) P value

 Bicarbonate (ml) 127.006 (234.266) 89.429 (221.225) 157.593 (240.316)  < 0.001

 Use of norepinephrine, continuous (n) 649.0 (83.205%) 301.0 (86.0%) 348.0 (80.93%) 0.074

 Use of epinephrine, continuous (n) 553.0 (70.897%) 250.0 (71.429%) 303.0 (70.465%) 0.829

 Use of dopamine, continuous (n) 245.0 (31.41%) 106.0 (30.286%) 139.0 (32.326%) 0.594

 Use of aramine (n) 34.0 (4.359%) 7.0 (2.0%) 27.0(6.279%) 0.006

Intraoperative incident

 Cardiac arrest (n) 21.0 (2.692%) 3.0 (0.857%) 18.0(4.186%) 0.008

 Acidosis (n) 322.0 (41.282%) 133.0 (38.0%) 189.0 (43.953%) 0.108

 Hypotension (n) 649.0 (83.205%) 298.0 (85.143%) 351.0 (81.628%) 0.226

BMI, body mass index; LOS, length of stay; MELD, model for end stage liver disease. CRRT, continuous renal replacement therapy; ARDS, acute respiratory distress 
syndrome;ICU, intensive care unit; HCT, hematocrit; PLT, platelets; WBC, white blood cell; ALT, alanine transaminase; AST, aspartate transaminase; TBIL, total 
bilirubin; DBIL, direct bilirubin; IBIL, indirect bilirubin; ALB, albumin; SCr, serum creatinine; BUN, blood urea nitrogen; PT, prothrombin time; APTT, activated partial 
thromboplastin time; FIB, fibrinogen; INR, international normalized ratio; eGFR, estimated glomerular filtration rate; DBD, donation after brain death; DCD, donation 
after circulatory death; DBCD, donation after brain death followed by circulatory death; GA, general anesthesia; RBC, red blood cell; EBL, estimated blood loss; rFVIIa, 
recombinant activated factor VII

Fig. 1  Postoperative survival associated with AKI. Patients with 
post-LT AKI demonstrated significantly lower survival, especially 
during the first 6 months after surgery
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and sensitivity (0.64, CI 0.56 to 0.73) after exclusion of 
patients requiring pre-LT dialysis.

Temporal external validation
The external validation set also consisted of a majority of 
male (87.69%) with a mean age of 47 years old (Table 2). 
The percentage of graft steatosis graded NASH CRN 1 or 
above was significantly higher in the external validation 
set (43.59% vs 26.92%, p = 0.001) compared to that of the 
development set. On the other hand, time under general 
anesthesia, estimated blood loss, use of colloid and cryo-
precipitate were significantly lower in the external valida-
tion set. In this temporal validation set, the incidence of 
AKI was 50.26%, and GBM model achieved a comparable 
AUC (0.75, CI 0.67 to 0.81) to that of the internal valida-
tion set (Fig. 3).

Feature importance evaluated by SHAP values
The baseline for the Shapley value in our study is the 
average of all predicted AKI incidence in the internal val-
idation set, which was 52.08%. In our internal validation 

set with 234 cases, 163 cases were correctly classified. 
The SHAP summary plot demonstrated that preopera-
tive IBIL, intraoperative urine output, time under general 
anesthesia, preoperative PLT and graft steatosis ranked 
the top 5 important features (Fig.  4A). Both kinds of 
SHAP plot revealed that higher IBIL, lower urine out-
put, lower PLT, longer anesthesia time and graft steatosis 
above NASH CRN 1 were associated with higher SHAP 
value output in GBM model, indicating higher probabil-
ity of post-LT AKI (Fig. 4). The SHAP summary plot of 
the rest of the four ML models also demonstrated that 
IBIl and urine output ranked among the top 3 important 
features respectively in each model (Additional file  2: 
Appendix S2, Figure S2).

Four examples of correctly classified cases (Patient No. 
104, No. 208, No. 224 and No. 229) were demonstrated 
as SHAP decision plot and force plot in Fig. 5. The SHAP 
decision plots simulated the path of decision along which 
each feature was given in a sequence according to their 
availability in EMRs. The force plot mainly presented the 
major factors that contribute to the final model output 

Fig. 2  Performance of machine learning models and AKI prediction score. A Performance of all predicting models in the internal validation set, 
which included patients requiring preoperative CRRT. B Performance of GBM model and AKI prediction score in a subset that excluded patients 
requiring preoperative CRRT, to conform to the exclusion criteria in Kalisvaart’s study when they designed this score
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Table 2  Comparison of development set and the temporal validation set

AKI, acute kidney injury’; IBIL, indirect bilirubin; UO, urine output; GA, general anesthesia; PLT, platelets; LOS, length of stay; EBL, estimated blood loss; ALB, albumin; 
HE, hepatic encephalopathy; ALT, alanine transaminase; HM, hepatic malignancy

Characteristics Development set (n = 546) Temporal validation set (n = 195) P values

Diagnosis of post-LT AKI 301 (55.13%) 98 (50.26%) 0.867

Demographics

 Gender (male, n) 472 (86.45%) 171 (87.69%) 1

 Age (y) 50.61 (10.76) 47.02 (10.07)  < 0.001

 Height (cm) 167.77 (9.55) 168.55 (6.42) 0.292

 Weight (kg) 64.25 (11.42) 65.13 (11.14) 0.35

 BMI 22.71 (3.33) 23.09 (3.06) 0.164

Predicting variables

 IBIL (μmol/L) 90.34 (97.04) 96.91 (109.27) 0.433

 UO (ml/(kg*h)) 3.09 (2.2) 3.03 (1.99) 0.73

 Time under GA(min) 543.0 (121.0) 498.86 (111.18)  < 0.001

 PLT(109/L) 94.45 (80.83) 93.89 (76.62) 0.932

 Steatosis grade ≥ 1 147 (26.92%) 85 (43.59%) 0.001

 Preoperative LOS (d) 18.23 (21.82) 15.78 (21.13) 0.175

 EBL (ml) 2066.38 (1906.18) 1559.1 (1918.04) 0.002

 ALB (g/L) 35.56 (4.89) 34.74 (6.96) 0.133

 Bicarbonate (ml) 124.04 (211.47) 169.92 (203.77) 0.009

 Colloid (ml) 111.24 (301.53) 32.31 (117.68)  < 0.001

 Pre-operative HE (n) 129 (23.63%) 37 (18.97%) 0.899

 Cryoprecipitate(U) 30.46 (16.03) 26.53 (15.13) 0.003

 ALT (U/L) 131.08 (433.19) 72.26 (211.4) 0.069

 Pre-operative HM (n) 209 (38.28%) 91 (46.67%) 0.249

Fig. 3  Performance of external validation. A Performance of GBM model on the internal validation set and on the external validation set. B 
Calibration plot of current external validation
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in a certain individual. These plots increased the trans-
parency of the prediction made by GBM algorithm. An 
online risk calculator to further facilitate external valida-
tion can be visited at http://​wb.​aidcl​oud.​cn/​zssy/​aki.​html 
(Fig. 6).

Discussion
Interpretation
The cause of post-LT AKI is multifaceted. Patients with 
end-stage liver disease tend to have preoperative intra-
vascular volume depletion and coagulation deficiency 
that predispose them to greater intraoperative blood loss 
and low renal perfusion [25]. Besides, the technique of 
LT involves partial or side cross-clamping of venous flow 
above the renal vein during anhepatic phase, which con-
tributes to renal congestion and impairs urine output. 
The 14 predictors incorporated in our model are mainly 
indicators of preoperative liver dysfunction, intraopera-
tive volume depletion, graft quality and difficulty of the 
surgery, which were carefully selected by univariate test 
and subsequent LASSO regression analysis from a series 
of variables that had been documented as potential risk 
factors associated with AKI. Moreover, their correlation 
with AKI were further demonstrated by SHAP summary 
plot and dependence plot, in which their distribution in 
relation to the AKI diagnosis were in line with the patho-
physiology mentioned above, adding clinical credibility 
to our model.

We can also tell from these correlations uncovered by 
ML algorithm that optimization of potentially modifiable 
variables exerting high importance in predicting AKI, 
such as intraoperative urine output, preoperative PLT 
and time under anesthesia, should be given higher prior-
ity pre- and intra-operatively. For instance, higher senti-
nel level of urine output might be considered in patients 
receiving LT. As has been shown in the SHAP depend-
ence plot, SHAP values distribution tend to be divided 
around an average urine output of 2.2  ml/(kg·h), which 
indicates that this might be a potential threshold for phy-
sicians to intervene. On the other hand, the criteria in 
KDIGO guideline requires merely an urine output below 
0.5 ml/(kg·h) for at least 6 h to diagnose AKI. Although 
we did not use this criteria in our research since serum 

SCr was a more sensitive biomarker to diagnose post-
LT AKI in the regimen we adopted, the correlation 
recognized by ML algorithms illuminate that a higher 
cut-off point of intraoperative urine output may serve to 
remind the physicians of renal-protective intervention in 
advance.

Similarly, our results also indicate that higher PLT 
transfusion threshold and early extubation shall be pre-
ferred in patients receiving LT. Moreover, while graft ste-
atosis of NASH CRN 1 (steatosis involving 5% to 33% of 
hepatocytes) is accepted in non-urgent LT due to world-
wide scarcity of organ donation, it has been identified 
as a risk predictor of moderate importance by ML algo-
rithms. More strict preliminary graft assessment or lower 
tolerance in steatosis threshold may be evaluated in the 
upcoming studies.

Attempts to predict AKI after LT have been made by 
implementing either novel ML algorithms or conven-
tional statistical technique [5, 6, 9], yet one commonly 
recognized state-of-the-art prediction system specifically 
for post-LT AKI setting is currently lacking. Lee, H et al. 
used a total of 72 pre- and intra-operative variables and 
also demonstrated that GBM-based model showed best 
statistical performance to predict post-LT AKI [9]. Nev-
ertheless, the disparities in techniques like use of veno-
venous bypass and femoral artery pressure make it hard 
to use our data set to externally validate this model. Yin 
Z. et al. identified that CIT (> 7 h), donor WIT (> 10 min), 
blood loss (> 2500  ml), SCr (> 354  μmol/L), treatment 
period with dopamine (> 6 days) and overexposure to cal-
cineurin inhibitor (CNI) may be potential risk factors of 
AKI in Chinese liver transplantation cohort [6]. Never-
theless, in our cohort we discovered that the majority of 
post-LT AKI cases were diagnosed during the first 24 h 
postoperatively even with delayed Tacrolimus introduc-
tion. Meanwhile, a growing proportion of DBD donors 
without donor WIT has altered the graft characteristics 
of the cohort. Therefore the power in risk stratification of 
these factors should be reconsidered and re-analyzed.

Finally we decided to use Kalisvaart’ s AKI prediction 
score as a benchmark because of our similarity in statisti-
cal performance and immunosuppression therapy [5]. As 
a result, our GBM-based predictor demonstrated higher 

(See figure on next page.)
Fig. 4  SHAP summary plot and dependence plot. A The SHAP summary plot demonstrated the general importance of each feature in GBM model. 
The color bar on the right indicates the relative value of a feature in each case. Red dots indicate high values and blue dots indicate low values. 
The violin graph lining up on the midline is the aggregation of dots representing each case in the internal validation set. The distance between 
the upper and lower margin of the violin graph represents the amount of the cases that end up with the same SHAP values offered by this feature. 
Categorical features including preoperative HE and HM and steatosis ≥ 1 were represented by 0 and 1, while “0” means “No” and “1” means “Yes”. B 
SHAP dependence plot demonstrated the distribution of SHAP output value of a single feature. In our GBM prediction model, higher IBIL, lower 
intraoperative urine output, longer time under anesthesia and lower preoperative PLT are correlated with higher SHAP values, representing higher 
probability of a prediction that favors the diagnosis of AKI

http://wb.aidcloud.cn/zssy/aki.html
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Fig. 4  (See legend on previous page.)
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AUC and F1-score compared to AKI prediction score, 
either in our original internal validation set or the sub-
set conforming to their criteria that excluded patients 
requiring preoperative CRRT. We agreed to include 
patients with preoperative renal injury because these 
patients have a high possibility of renal recovery after 
transplantation [20], and are likely to be elevated in the 
waiting list. Early identification of deterioration in renal 
function in these patients would be of greater value com-
pared to patients without preoperative renal injury. Con-
sidering the preciousness of liver graft and detrimental 
outcomes associated with AKI, we valued model sensitiv-
ity, that is, the ability to find out as much as possible the 
occurrence of AKI, over model specificity. Comparing 
to other ML models, boosting algorithms like GBM and 
ADA achieved generally highest precision and sensitivity, 
which is consistent with their performance of other stud-
ies [26, 27].

Limitations
One limitation of the current study is that it is a single 
center study. Liver transplantation is a highly special-
ized and complicated technique. Only by joint effort 
made by multiple centers can we build a larger data set. 
However, multi-center validation calls for unification in 
feature availability and standardized perioperative treat-
ment. Nevertheless, we utilized the data of a temporally 
independent cohort to validate our model. Temporal 
validation is a type of external validation in which data 
of new cases, though are from the same institution as 
in the development sample, come in a different (prefer-
ably later) time period. And it is considered to be a kind 
of arguable but acceptable external validation in the 
TRIPOD statement (Type2b), an intermediary between 
internal and external validation [19]. It was worth noting 
that our development set and the temporal validation set 
demonstrated a bit of heterogeneity in several predictors, 
such as steatosis grade of donor liver, time under general 
anesthesia, estimated blood loss, use of colloid, bicar-
bonate and cryoprecipitate. These changes mainly arose 
from the improvement of surgical techniques and aggra-
vated scarcity of non-steatotic donors. The incidence of 
AKI tended to be lower but the drop was not significant. 
We believe that these significant differences to some 
extent reflect the effectiveness of our temporal external 

validation result, as well as the robustness of our model. 
On the other hand, as for geographical external valida-
tion, the features utilized in our model are all regularly 
recorded or tested in OLT cases in most transplant cent-
ers, and multicenter cooperation can be achieved once 
authorization of data usage is approved.

Another possible limitation is that the statistical met-
rics of our model might not be as high as those presented 
in similar researches [9, 28]. However, many of these 
studies built their ML models upon high dimensional 
features, running the risk of over-fitting. After careful 
feature elimination, we built our predicting model with 
merely 14 features, aiming for practical external valida-
tion in the future. In this way it was worthy trading sta-
tistical accuracy for model applicability. Moreover, the 
path of decision made by our model in each individual 
can be illustrated as SHAP decision plot, offering richer 
information in feature importance or even in potential 
drawbacks of the model. With such visualized explana-
tion, physicians can interpret the model output easily and 
timely adjust their decisions.

Implications
Our research is a solid and generalizable work to build an 
applicable predictor of post-LT AKI with supervised ML, 
which covers the prediction of AKI in patients requiring 
preoperative renal replacement therapy. The GBM-based 
model we developed consists of variables with high clini-
cal credibility that are interoperable across institutions, 
and demonstrates satisfactory statistical validity and 
reasonable relational interpretability revealed by SHAP 
method.

As an emerging tool of explanatory AI, SHAP method 
can facilitate both local and global interpretations [12, 
29]. For local interpretation, each case has its own set 
of SHAP values. So it can explain how each feature con-
tributes to the prediction of a certain case, as has been 
illustrated in our SHAP decision plot and force plot, 
which increases transparency and helps clinicians ana-
lyze the credibility of the prediction model. For global 
interpretability, the aggregate value of SHAP shows the 
importance of each predicting variable. Compared with 
traditional methods to evaluate feature importance 
such as the weight of RF, the SHAP value holds better 

Fig. 5  SHAP decision plot and force plot. A SHAP force plots of 4 examples of patients, including patient No. 104, No 208, No. 224 and No.229. 
The features shown in red push the AKI probability towards the right, while the features shown in blue push the probability towards the left. This 
plot helps physicians to identify easily the major features with high decision power in the model on individual level. B SHAP decision plot of the 
4 patients in A. This plot is a better visualization of the feature importance of all predictors in each individual. The decision path tended to make 
drastic turns at feature with high importance and reached the estimated probability of AKI. Physicians can interpret the navigation made by the 
features and make a personal decision on the credibility of the output

(See figure on next page.)
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Fig. 5  (See legend on previous page.)
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consistency and can present the positive or negative 
relationship of each predictor.

The potential application of this model lies in its 
integration with the EMRs system to guide early diag-
nosis and interventions after LT. Since the features we 
selected are all easily accessible right at the end of the 
surgery, this GBM-based predictor of post-transplant 
AKI would be a convenient predicting tool that can 
maintain transparency of the decision-making process 

to clinical physicians, enabling them to adjust the final 
decision according to their own experience.

Abbreviations
HCT: Hematocrit; PLT: Platelets; WBC: White blood cells; ALT: Alanine transami-
nase; AST: Aspartate transaminase; TBIL: Total bilirubin; DBIL: Direct bilirubin; 
IBIL: Indirect bilirubin; ALB: Albumin; SCr: Serum creatinine; BUN: Blood urea 
nitrogen; PT: Prothrombin time; APTT: Activated partial thromboplastin time; 
FIB: Fibrinogen; INR: International normalized ratio; MELD: Model of end-stage 
liver disease; EBL: Estimated blood loss; CRRT​: Continuous renal replacement 
therapy; AUC​: Area under the receiver operating characteristic curve; ROC: 
Receiver operating characteristic curve; WIT: Warm ischemia time; CIT: Cold 

Fig. 6  A demo prediction of patient No.104 by online GBM-based predictor of post-LT AKI. A demo prediction of patient No. 104 made by the 
online GBM-based predictor of post-LT AKI is shown. To increase clinical applicability, intraoperative average urine output and time of anesthesia 
were substituted by direct input of weight, total urine output and the time of initiation and terminal of anesthesia. The prediction output for patient 
No. 104 was “0” with a probability of 97%, that is, the probability of this patient developing post-LT AKI was merely 3%
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