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Abstract 

Background:  Several predictive factors for chronic kidney disease (CKD) following radical nephrectomy (RN) or 
partial nephrectomy (PN) have been identified. However, early postoperative laboratory values were infrequently 
considered as potential predictors. Therefore, this study aimed to develop predictive models for CKD 1 year after RN or 
PN using early postoperative laboratory values, including serum creatinine (SCr) levels, in addition to preoperative and 
intraoperative factors. Moreover, the optimal SCr sampling time point for the best prediction of CKD was determined.

Methods:  Data were retrospectively collected from patients with renal cell cancer who underwent laparoscopic 
or robotic RN (n = 557) or PN (n = 999). Preoperative, intraoperative, and postoperative factors, including laboratory 
values, were incorporated during model development. We developed 8 final models using information collected at 
different time points (preoperative, postoperative day [POD] 0 to 5, and postoperative 1 month). Lastly, we combined 
all possible subsets of the developed models to generate 120 meta-models. Furthermore, we built a web application 
to facilitate the implementation of the model.

Results:  The magnitude of postoperative elevation of SCr and history of CKD were the most important predictors for 
CKD at 1 year, followed by RN (compared to PN) and older age. Among the final models, the model using features of 
POD 4 showed the best performance for correctly predicting the stages of CKD at 1 year compared to other models 
(accuracy: 79% of POD 4 model versus 75% of POD 0 model, 76% of POD 1 model, 77% of POD 2 model, 78% of POD 
3 model, 76% of POD 5 model, and 73% in postoperative 1 month model). Therefore, POD 4 may be the optimal sam-
pling time point for postoperative SCr. A web application is hosted at https://​dongy.​shiny​apps.​io/​aki_​ckd.

Conclusions:  Our predictive model, which incorporated postoperative laboratory values, especially SCr levels, in 
addition to preoperative and intraoperative factors, effectively predicted the occurrence of CKD 1 year after RN or PN 
and may be helpful for comprehensive management planning.
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Background
Acute kidney injury (AKI) is a common complication 
after nephrectomy in renal cell cancer (RCC), with radi-
cal nephrectomy (RN) associated with a noticeably higher 
risk than partial nephrectomy (PN) [1, 2]. AKI is defined 
as an abrupt decrease in kidney function occurring over 
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7 days or less, whereas chronic kidney disease (CKD) is 
defined by the persistence of kidney disease for a period 
of > 90  days  [3]. The severity of AKI and recovery time 
have been implicated as important predictors of CKD 
progression [3–6]. Surgically induced CKD may be asso-
ciated with a lower risk of progression and mortality than 
CKD due to medical causes  [7]. However, despite this, 
an estimated glomerular filtration rate (eGFR) less than 
45  mL/min/1.73 m2 in patients with surgically induced 
CKD has been associated with an increased risk of 
mortality [8].

Numerous studies have investigated the predictive fac-
tors for CKD following RN or PN [9–16], some of which 
developed predictive models for CKD [13, 14]. However, 
these studies analyzed preoperative and intraopera-
tive factors (such as patient characteristics, preoperative 
laboratory values, and surgical type or technique) as pos-
sible predictors, without including postoperative labo-
ratory values  [9–14]. Although few studies included the 
occurrence of AKI or time to nadir eGFR as one of the 
predictors of CKD [15–17], serial changes of serum cre-
atinine (SCr) was not considered. When considering the 
variable trajectories following AKI  [18], postoperative 
laboratory values, especially SCr, should be considered 
for better prediction. Therefore, we hypothesized that 
SCr levels collected in the first 5 days after nephrectomy 
would provide important information to predict the SCr 
levels 1 year after surgery and ultimately, the occurrence 
of CKD. Thus, this study aimed to develop predictive 
models for CKD after RN or PN using early postopera-
tive laboratory values, including SCr levels, in addition to 
preoperative and intraoperative factors, and build a web 
application to facilitate their implementation. Moreover, 
we aimed to find optimal SCr sampling time points for 
accurate CKD prediction.

Methods
Patients
The analysis data set included 1,556 patients with 
RCC who received either laparoscopic or robotic RN 
(n = 557) or PN (n = 999) between December 2005 
and May 2019 and were at least followed up to 1 year 
after surgery. Patients lost to follow up or died before 
1  year were excluded. Data were retrospectively col-
lected from the electronic medical records of a single 
institution.

Features used for prediction
Our study aimed to predict the rise in SCr levels relative 
to preoperative value at 1  year after surgery (between 
11 and 13  months after surgery), hereafter denoted as 
�SCr1y , given the following features:

	(i)	 Patient characteristics: age, sex, weight, history of 
diabetes mellitus, history of hypertension, history 
of CKD, and tumor size.

	(ii)	 Preoperative and intraoperative factors: preop-
erative complete blood count (CBC; hematocrit, 
neutrophil, lymphocyte, monocyte, and plate-
let counts), preoperative routine chemistry (SCr, 
blood urea nitrogen [BUN], uric acid, total protein, 
albumin, aspartate aminotransferase, alanine ami-
notransferase [ALT], alkaline phosphatase, total 
bilirubin, and cholesterol), preoperative serum 
electrolytes (sodium, potassium, calcium, phos-
phate), preoperative vital signs (systolic and dias-
tolic blood pressure [BP], and heart rate), size of 
mass removed, duration of anesthesia, and bleed-
ing amount.

	(iii)	 Postoperative factors: baseline (preoperative) sub-
tracted SCr, CBC, routine chemistry, serum elec-
trolytes, and vital signs immediately after surgery, 
postoperative day (POD) 1–5, and postoperative 
1 month

Data were also collected on POD 7 and 14 and at 3 and 
6 months; however, they were not included in the model 
development. For brevity, a common notation involving 
� has been used throughout to represent the baseline-
subtracted level of different variables, with the associated 
subscript indicating the sampling time point. For exam-
ple, baseline subtracted SCr on POD 3 has been denoted 
as �SCr3d . The letters d, m, and y, used as subscripts, 
represent the day, month, and year, respectively.

Missing values were imputed using multiple imputation 
by chained equations (MICE), also known as fully con-
ditional specification or sequential regression multiple 
imputation. The method operates under the assumption 
that missing data are Missing at Random (MAR), i.e., the 
probability of a particular value being missing depends 
only on the observed values and not the unobserved val-
ues [19]. Since missing values in our data showed a clear 
time-dependency and were likely unrelated to the true 
value of SCr, we assumed that the condition of MAR 
was fulfilled, thus allowing the partial deduction of the 
missing values based on the measurements immediately 
before and after them. The highest proportions of miss-
ing values occurred on POD 4 and 5 in both RN and PN 
(Additional file  1: Fig.  S1). The proportions of patients 
without any missing value were 14.7% and 16.8% in RN 
and PN, respectively. The widely validated R package, 
mice, was used to carry out the imputation process [20].

Model development
First, the features were grouped into eight catego-
ries, namely Fpre , F0d , F1d , F2d , F3d , F4d , F5d , and F1m , 
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based on their time of acquisition. Fpre only included 
factors available prior to completion of the surgery, 
mentioned above as patient characteristics and preop-
erative and intraoperative factors. Other feature sets, 
denoted as Fi with i = 0, 1, 2, 3, 4, 5  days, included 
Fpre and information collected on the ith postopera-
tive day. The last feature set, F1m , included Fpre and 
features collected 1  month after surgery. Thereafter, 
Lasso regression models were built on each of the fea-
ture sets to predict �SCr1y , hereafter referred to indi-
vidually as ModelLasso,pre , ModelLasso,0d , ModelLasso,1d , 
ModelLasso,2d , ModelLasso,3d , ModelLasso,4d , ModelLasso,5d , 
and ModelLasso,1m , and collectively, as ModelLasso . 
The features with non-zero regression coefficients in 
ModelLasso were collectively referred to as FLasso and 
individually as FLasso,pre , FLasso,0d , FLasso,1d , FLasso,2d , 
FLasso,3d , FLasso,4d , FLasso,5d , and FLasso,1m ; each of these 
consisted of selected features from Fpre , F0d , F1d , F2d , 
F3d , F4d , F5d , and F1m , respectively.

Prior to model development, we split the dataset into 
training and test datasets in the ratio of 8:2. The fea-
tures were z-score normalized. A grid search algorithm 
and four-fold cross-validation were used on the train-
ing dataset to tune the shrinkage hyper-parameters.

Construction of the final model
To retain only the most parsimonious set of features, 
we calculated the Spearman’s partial correlation coef-
ficients  [21] of FLasso with �SCr1y and eliminated fea-
tures with absolute values less than 0.1. This yielded the 
final selected features, collectively referred to as Ffinal 
and individually as Ffinal,pre , Ffinal,0d , Ffinal,1d , Ffinal,2d , 
Ffinal,3d , Ffinal,4d , Ffinal,5d , and Ffinal,1m . We then con-
structed multivariate linear regression models using 
Ffinal . Unlike the Lasso models, the features were not 
z-score normalized, so the estimated regression coef-
ficients could be readily interpreted. The final mod-
els were referred to as Modelfinal,pre , Modelfinal,0d , 
Modelfinal,1d , Modelfinal,2d , Modelfinal,3d , Modelfinal,4d , 
Modelfinal,5d , and Modelfinal,1m.

The predictive performances of Modelfinal were 
then compared with those of ModelLasso . R2 and mean 
squared error (MSE) between the predicted and 
observed �SCr1y values calculated using the test data-
set were used as the performance metrics. The eGFR 
was calculated using the Chronic Kidney Disease Epi-
demiology Collaboration (CKD-EPI) equation [22]. 
CKD was categorized according to the eGFR: stage 1 
(≥ 90  mL/min/1.73 m2), stage 2 (60–89  mL/min/1.73 
m2), and stage 3 and higher (< 60 mL/min/1.73 m2) [23]. 
The overall analysis workflow is schematically shown in 
Fig. 1.

Model stacking
We performed model stacking by developing meta-
models using predictions generated from all possible 
subsets of Modelfinal,0d , Modelfinal,1d , Modelfinal,2d , 
Modelfinal,3d , Modelfinal,4d , Modelfinal,5d , and 
Modelfinal,1m as features. Ridge regressions with four-
fold cross-validation were used to acquire appropri-
ate weights to be assigned to each of the predictions 
generated by the component models. A total of 120 
(= 27 – 1–7) meta-models were thus developed. Meta-
models trained using predictions of k different final 
models (k = 2, …, 7) are hereafter be referred to as 
Meta_modelsk . For example, a meta-model developed 
using predictions of Modelfinal,0d , Modelfinal,3d , and 
Modelfinal,4d constituted one of Meta_models3 , and was 
used when supplied with SCr and laboratory values 
measured on POD 0, 3, and 4.

Web application development
To facilitate the automatic selection and implementa-
tion of the meta-model, we developed a web applica-
tion with a user-friendly interface, hosted at https://​
dongy.​shiny​apps.​io/​aki_​ckd. The shiny package in R 
(https://​shiny.​rstud​io.​com) was used for program-
ming the application. The application used 8 basic 
models ( Modelfinal,pre , Modelfinal,0d , Modelfinal,1d , 
Modelfinal,2d , Modelfinal,3d , Modelfinal,4d , Modelfinal,5d , 
and Modelfinal,1m ) and 120 meta-models built from 
their predictions. Given only preoperative and intra-
operative factors, Modelfinal,pre is activated to generate 
the predictions. Following the input of extra postopera-
tive factors, the optimal model is chosen based on the 
number of samples (= k) and the corresponding PODs 
of their acquisition. Outputs of the model are predicted 
values of �SCr1y , eGFR, and CKD stage at 1 year.

Results
Table  1 summarizes the baseline characteristics of 
patients that underwent RN and PN. The longitudi-
nal trajectories of postoperative SCr in RN and PN 
are shown in Additional file  2: Fig.  S2. SCr typically 
increased from POD 0 to POD 3, decreased from POD 
4 to 7, showed a secondary surge until POD 15, and 
gradually declined towards the final level. SCr levels 
on POD 4 and 5 showed the highest correlation with 
SCr level at 1 year (Additional file 3: Table S1). In RN 
and PN, 43.1% (240 of 557) and 7.2% (72 of 999) of 
the patients, respectively, developed CKD stage 3 and 
higher 1  year after surgery. All the above exploratory 
analyses were carried out using the raw data prior to 
imputation.

https://dongy.shinyapps.io/aki_ckd
https://dongy.shinyapps.io/aki_ckd
https://shiny.rstudio.com
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Model development
Lasso regression models—ModelLasso,pre , ModelLasso,0d , 
ModelLasso,1d , ModelLasso,2d , ModelLasso,3d , ModelLasso,4d , 
ModelLasso,5d , and ModelLasso,1m , were developed using 
8 different feature sets—Fpre , F0d , F1d , F2d , F3d , F4d , 
F5d , and F1m , respectively. We then identified subsets of 
the original feature sets that were associated with non-
zero regression coefficients (i.e., FLasso ). The features 
included in each subset of FLasso and their estimated 
regression coefficients are shown in Additional file  3: 
Table S2.

The R2 statistics of ModelLasso,pre , ModelLasso,0d , 
ModelLasso,1d , ModelLasso,2d , ModelLasso,3d , ModelLasso,4d , 
ModelLasso,5d , and ModelLasso,1m were 0.432, 0.481, 
0.507, 0.538, 0.562, 0.603, 0.589, and 0.630; their MSEs 
were 0.025, 0.023, 0.022, 0.021, 0.02, 0.018, 0.018, and 
0.017, respectively. The best performing model was, as 
expected, the model using factors collected at 1  month 
( ModelLasso,1m ). Among the models utilizing single time 
point information between POD 0 and 5, ModelLasso,4d 
showed the best predictive performance for �SCr1y . 
Overall, the models utilizing postoperative factors 

showed superior predictive performance than those 
using only preoperative and intraoperative factors (i.e., 
ModelLasso,pre).

For all features included in each FLasso subset, partial 
Spearman’s correlation coefficients with �SCr1y were cal-
culated; only features whose absolute values of the coef-
ficients were greater than 0.1 (i.e., Ffinal ) were retained. 
Final regression models (i.e., Modelfinal ) were developed 
on Ffinal and their estimation results are shown in Table 2.

The R2 statistics of Modelfinal,pre , Modelfinal,0d , 
Modelfinal,1d , Modelfinal,2d , Modelfinal,3d , Modelfinal,4d , 
Modelfinal,5d , and Modelfinal,1m were 0.444, 0.530, 0.505, 
0.550, 0.575, 0.608, 0.565, and 0.643 and their MSEs were 
0.025, 0.021, 0.022, 0.020, 0.019, 0.018, 0.019, and 0.016, 
respectively. Comparison of the predictive performances 
of Modelfinal with ModelLasso suggested that Modelfinal 
generally performed better than ModelLasso , despite a 
fewer number of predictive features being included. Sim-
ilar to ModelLasso , the best prediction was achieved using 
Ffinal,1m , followed by Ffinal,4d, The goodness-of-fit plots 
of observed vs. predicted values are shown in Fig. 2. The 
classification performances in terms of predicting the 

Fig. 1  Schematic diagram of the overall analysis workflow. Candidate features were first grouped into preoperative, intraoperative, and 
postoperative feature sets. Preoperative and intraoperative features were merged into a set of Fpre , which were used in all the tested models. 
Postoperative features were categorized based on the sampling time points (postoperative day [POD] 0, 1, 2, 3, 4, 5, and postoperative 1 month). 
Each of these feature sets was combined with Fpre to yield 7 different feature sets ( F0d , …, F5d , and F1m ). The 8 feature sets were used to fit 8 different 
Lasso regression models. Features of each set with non-zero coefficients, FLasso , were then passed onto a partial correlation filter that evaluated 
the correlation of each of the features with the target variable �SCr1y . The final features, Ffinal , were then used to train the final multivariate linear 
regression models. The final step used all possible combinations of the predictions generated by the 7 final models, Model0d−1m , to yield 120 
meta-models
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CKD stage are shown in Table 3. Modelfinal,4d was found 
to confer the best accuracy, weighted averaged precision, 
and weighted averaged recall. 

Model stacking
Ridge regressions with zero intercept were performed 
using predictions of all possible subsets of Modelfinal , 
yielding 120 meta-models. The average performances of 
Meta_model(s)k improved with increasing k. For k = 2, 
3, 4, 5, 6, and 7, the mean R2 statistics were 0.606, 0.624, 
0.637, 0.649, 0.659, and 0.669, respectively. Meta_model7 , 
which utilizes all 7 models (i.e.Modelfinal,0d , Modelfinal,1d , 
Modelfinal,2d , Modelfinal,3d , Modelfinal,4d , Modelfinal,5d , 
and Modelfinal,1m ) offered the best predictive perfor-
mance. In particular, it outperformed Modelfinal,1m ( R2

=0.630). Meta_model7 showed precisions of 90%, 74%, 
and 79% and recalls of 78%, 83%, and 76% for classifying 
CKD stages 1, 2, and 3, respectively (average accuracy, 
80%; weighted average precision, 81%; weighted average 
recall, 80%).

Web application development
Figure  3 shows the screenshot of the developed web 
application. The minimum information required to run 
the application are patient characteristics, such as age, 
sex, history of CKD, and preoperative and intraoperative 
factors, including the type of nephrectomy (RN or PN), 
size of mass removed, and preoperative SCr and BUN 
levels. The left panel is used for generating predictions. 
As postoperative measurements of SCr become available, 
they can be used to update the predictions.

Discussion
We developed predictive models for CKD 1 year after RN 
or PN that fully incorporated preoperative, intraopera-
tive, and postoperative factors. Our work can be summa-
rized as follows: 1) We clearly demonstrated the need to 
incorporate early postoperative information (specifically 
SCr levels) to accurately predict long-term renal func-
tion. 2) Within the first postoperative week we identified 
POD 4 as the optimal sampling point for SCr (and BUN). 
3) We identified the magnitude of early SCr elevation, 
history of CKD, surgery type (RN or PN), and patient age 
as the most robust predictors of CKD. 4) We provide a 
practical framework to predict CKD and offer an easy-to-
use web application to implement our models.

Although surgically induced CKD may have a bet-
ter prognosis than CKD due to medical causes  [7], the 
risk of mortality is known to increase if patients have a 
reduced eGFR (< 45  mL/min/1.73 m2) following RCC 
surgery [8]. Our results showed that 14% (78 out of 557) 
of RN patients and 2.2% (22 out of 999) of PN patients 
had an eGFR < 45  mL/min/1.73 m2 1  year after surgery. 

Table 1  Patient characteristics

Values represent the mean (SD) or number of patients (proportion). ASA 
American Society of Anesthesiologists, PN partial nephrectomy, R.E.N.A.L. radius, 
exophytic or endophytic, nearness to collecting system or sinus, anterior or 
posterior location, and location relative to polar lines
a Data were obtained from serum

Variable Radical 
nephrectomy  
(n = 557)

Partial 
nephrectomy 
(n = 999)

Age (years) 56 (12) 54 (12)

Male sex 364 (67%) 668 (67%)

ASA physical status

 I 116 (21%) 299 (30%)

 II 318 (57%) 588 (59%)

 III 123 (22%) 112 (11%)

Medical history

 Hypertension 256 (46%) 381 (38%)

 Diabetes mellitus 98 (18%) 156 (16%)

 Chronic renal disease 6 (< 1%) 8 (< 1%)

Tumor size (cm) 5.2 (2.3) 2.6 (1.4)

Size of mass removed (cm) 13.4 (3.3) 4.4 (2.2)

R.E.N.A.L. nephrectomy score – 6.0 (1.8)

Warm ischemia time (min) – 23.4 (12.6)

Duration of anesthesia (min) 207 (58) 224 (53)

Bleeding amount (mL) 171 (380) 232 (279)

Preoperative laboratory values

 Hematocrit (%) 41.4 (4.6) 42.5 (4.3)

 Neutrophil count (103/μL) 4.31 (1.74) 3.77 (1.51)

 Lymphocyte count (103/μL) 1.99 (0.63) 1.99 (0.61)

 Monocyte count (103/μL) 0.44 (0.17) 0.42 (0.15)

 Platelet count (103/μL) 264 (85) 252 (67)

 Creatinine (mg/dL)a 0.88 (0.25) 0.85 (0.21)

 Blood urea nitrogen (mg/dL)a 14.4 (4.4) 14.2 (3.9)

 Uric acid (mg/dL)a 5.1 (1.4) 5.2 (1.4)

 Total protein (g/dL)a 7.3 (0.5) 7.3 (0.5)

 Albumin (g/dL)a 4.5 (0.4) 4.6 (0.4)

 Aspartate aminotransferase (IU/L)a 22 (11) 23 (11)

 Alanine aminotransferase (IU/L)a 23 (16) 25 (16)

 Alkaline phosphatase (IU/L)a 68 (26) 65 (19)

 Total bilirubin (mg/dL)a 0.7 (0.3) 0.7 (0.3)

 Cholesterol (mg/dL)a 179 (42) 186 (36)

 Sodium (mEq/L)a 141 (2) 141 (2)

 Potassium (mEq/L)a 4.4 (0.4) 4.4 (0.4)

 Calcium (mEq/L)a 9.4 (0.5) 9.4 (0.4)

 Phosphate (mEq/L)a 3.6 (0.5) 3.5 (0.5)

Preoperative vital signs

 Systolic blood pressure (mmHg) 132 (14) 132 (16)

 Diastolic blood pressure (mmHg) 81 (10) 83 (11)

 Heart rate (beats/min) 74 (11) 74 (11)
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This percentage was enough to warrant attention. Stud-
ies investigating the risk factors for CKD after RN or PN 
have shown older age, male sex, history of CKD, diabetes 
mellitus, and RN as independent predictors [9–15]. How-
ever, most of these studies did not consider perioperative 
laboratory values. Another study showed that time to 
nadir eGFR was one of the predictors of CKD [18]. How-
ever, computing the exact time to nadir eGFR requires 
intensive sampling, and may limit easy clinical imple-
mentation. Moreover, the perioperative laboratory values 

tested was limited only to eGFR in that study. In contrast 
to the aforementioned studies, our study comprehen-
sively considered perioperative laboratory values, includ-
ing CBC, routine chemistry, and serum electrolytes as 
predictive factors. In all the final models, an increase in 
SCr levels from the preoperative value and history of 
CKD were the most important features (Table 2). Among 
other features, RN (compared to PN) was robustly asso-
ciated with a higher �SCr1y . Older age was additionally 
depicted as a significant risk factor in most final models 

Table 2  Regression coefficients of the final models sorted in the order of highest statistical significance

CKD chronic kidney disease, SCr serum creatinine, BUN blood urea nitrogen, d day, m month, MSE mean squared error

Model Predictive performance Feature Estimates t values p values

Modelfinal,pre R2=0.444
MSE = 0.025

History of CKD 0.67 13.051  < 0.001

Radical nephrectomy 0.188 8.684  < 0.001

Male 0.06 5.243  < 0.001

Size of mass removed (cm) 0.01 4.827  < 0.001

Age (years) 0.0021 4.808  < 0.001

Modelfinal,0d R2=0.530
MSE = 0.021

History of CKD 0.722 14.938  < 0.001

�SCr0d(mg/dL) 0.540 13.716  < 0.001

Radical nephrectomy 0.2 9.754  < 0.001

Age (years) 0.0033 7.771  < 0.001

Size of mass removed (cm) 0.0055 2.769 0.006

Modelfinal,1d R2=0.505
MSE = 0.022

�SCr1d(mg/dL) 0.391 15.443  < 0.001

History of CKD 0.632 13.193  < 0.001

Radical nephrectomy 0.168 8.343  < 0.001

Size of mass removed (cm) 0.0029 1.456 0.146

Modelfinal,2d R2=0.550
MSE = 0.02

�SCr2d(mg/dL) 0.414 20.76  < 0.001

Radical nephrectomy 0.141 11.832  < 0.001

History of CKD 0.471 10.157  < 0.001

Age (years) 0.0022 5.537  < 0.001

Modelfinal,3d R2=0.575
MSE = 0.019

�SCr3d(mg/dL) 0.482 22.056  < 0.001

History of CKD 0.44 9.716  < 0.001

Radical nephrectomy 0.120 6.421  < 0.001

Age (years) 0.0022 5.91  < 0.001

Size of mass removed (cm) 0.0007 0.361 0.718

Modelfinal,4d R2=0.608
MSE = 0.018

�SCr4d(mg/dL) 0.449 17.84  < 0.001

Radical nephrectomy 0.117 10.031  < 0.001

History of CKD 0.441 9.735  < 0.001

�BUN4d(mg/dL) 0.0083 7.062  < 0.001

Preoperative BUN (mg/dL) 0.0070 4.913  < 0.001

Age (years) 0.0015 3.732  < 0.001

Modelfinal,5d R2=0.565
MSE = 0.019

�SCr5d(mg/dL) 0.472 18.7  < 0.001

History of CKD 0.573 12.658  < 0.001

Radical nephrectomy 0.122 9.918  < 0.001

�BUN5d(mg/dL) 0.0059 5.954  < 0.001

Modelfinal,1m R2=0.643
MSE = 0.016

�SCr1m(mg/dL) 0.638 26.397  < 0.001

History of CKD 0.526 12.324  < 0.001

Radical nephrectomy 0.079 6.565  < 0.001
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( Modelfinal,pre , Modelfinal,0d , Modelfinal,2d , Modelfinal,3d , 
and Modelfinal,4d ). Male sex was only significant in 
Modelfinal,pre , which was built using just preoperative 
information; its effect was fully accounted for by other 
factors once postoperative information was available. 
The size of mass removed was a significant feature only 
immediately after surgery ( Modelfinal,0d) , and its contri-
bution disappeared after incorporating the SCr values on 
POD 1 and onwards. Overall, the important predictors 
for CKD occurrence were postoperative SCr levels, his-
tory of CKD, RN, and older age. Most other factors such 
as postoperative electrolytes, CBC, routine chemistry, 
and vital signs that were tested as candidate predictors 
were insignificant.

In addition to model development, we aimed to iden-
tify the optimal time point of postoperative SCr sam-
pling for predicting CKD. To this end, we compared 
the predictive performances of 6 final models that used 
the information obtained on POD 0 to 5 ( Modelfinal,0d
−Modelfinal,5d ) to that of a reference model that only 
used preoperative information ( Modelfinal,pre ), and then 
to that of a model that used information collected at 
1  month ( Modelfinal,1m ). The predictive performances 
of Modelfinal,0d −Modelfinal,5d were better than those 
of Modelfinal,pre but were almost similar to those of 
Modelfinal,1m . Hence, postoperative SCr levels measured 
in the first 5 days after surgery constituted crucial, nearly 
sufficient information to predict CKD at 1 year. Among 

Modelfinal,0d−Modelfinal,5d , Modelfinal,4d showed the best 
performance. In predicting the CKD stage, this model 
demonstrated classification accuracy of 79%, weighted 
averaged precision of 80%, and weighted averaged recall 
of 79% (Table 3). This suggested that POD 4 may be the 
optimal sampling point for predicting CKD.

To maximize the predictive performance, we adopted 
model stacking, a technique increasingly used in the 
medical field  [24–26], wherein predictions from each 
of the 7 models (excluding the Modelfinal,pre ) were com-
bined in all possible ways to generate 120 feature sets. 
Ridge regression models were then trained on these sets, 
yielding 120 meta-models. Our prediction strategy was 
to select from the meta-models, the one that makes best 
use of all available information. For example, if we had 
SCr measurements on POD 3, 4, and 5, we would choose 
a meta-model built on predictions of Modelfinal,3d , 
Modelfinal,4d , and Modelfinal,5d.

This study has a few limitations. First, the data used for 
model building were retrospectively collected at a single 
center primarily comprising Korean patients. Hence, for 
generalization to patients of different ethnic backgrounds 
or those treated under different hospital environments, 
external validation is required. Second, this study only 
included surgeries that used minimally invasive laparo-
scopic or robotic techniques, and not open techniques. 
One study reported a lower risk of CKD in minimally 
invasive approaches  [14], whereas others reported 

Fig. 2  Goodness-of-fit plots of the 8 final models. The ordinate and abscissa represent the observed and predicted �SCr1y , respectively. The red 
lines indicate the lines of unity
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a similar risk  [10, 13]. However, minimally invasive 
approaches are being used more frequently for RN and 
PN  [27]; thus, our model may be appropriate for future 
studies. Third, SCr was used as the surrogate of post-
operative renal function and the target to be predicted, 
although the definition of CKD is based on eGFR  [3]. 
However, as AKI is defined by changes in SCr, we wanted 
to examine the longitudinal changes of postoperative SCr 
with the concept of AKI, and CKD in continuum. Moreo-
ver, eGFR can easily be calculated using SCr. Therefore, 
we displayed eGFR in a web application by converting the 
predicted SCr to predicted eGFR and then finally classi-
fying the CKD stages of the patients. Fourth, the strong 
correlation between the early increase in SCr levels and 
CKD at 1 year after surgery, while being useful for predic-
tion, offers little to modify treatment for improving the 
clinical outcome. However, our results recommend that 
further investigations to prevent CKD progression be 
focused on preventing AKI in the first place, since early 
SCr elevation is strongly associated with long-term clini-
cal outcomes. Despite these limitations, our model was 
the first to show the serial trends of SCr during 1  year 
with the incorporation of preoperative, intraoperative, 
and postoperative information.

Conclusions
We developed a model for predicting CKD after RN or 
PN, effectively extending the applicability of our prior 
model for predicting AKI after RN or PN [2]. The main 
strengths of our study were the active utilization of 
postoperative SCr and other laboratory values for CKD 
prediction and a clear demonstration of the importance 
of SCr measured within the first 5 days after surgery as 

Table 3  Classification performances of chronic kidney disease 
stage based on the final models

Predicted

Normal or 
Stage 1

Stage 2 Stage 3

Modelfinal,pre

Observed Normal or Stage 1 77 32 0

Stage 2 16 101 19

Stage 3 0 17 49

Accuracy: 73%

Weighted average precision: 74%

Weighted average recall: 73%

Modelfinal,0d

Observed Normal or Stage 1 74 35 0

Stage 2 12 108 16

Stage 3 0 14 52

Accuracy: 75%

Weighted average precision: 76%

Weighted average recall: 75%

Modelfinal,1d

Observed Normal or Stage 1 81 28 0

Stage 2 15 108 13

Stage 3 0 18 48

Accuracy: 76%

Weighted average precision: 77%

Weighted average recall: 76%

Modelfinal,2d

Observed Normal or Stage 1 84 25 0

Stage 2 14 105 17

Stage 3 1 16 49

Accuracy: 77%

Weighted average precision: 77%

Weighted average recall: 77%

Modelfinal,3d

Observed Normal or Stage 1 83 26 0

Stage 2 13 109 14

Stage 3 1 13 52

Accuracy: 78%

Weighted average precision: 79%

Weighted average recall: 78%

Modelfinal,4d

Observed Normal or Stage 1 84 25 0

Stage 2 16 110 10

Stage 3 1 12 53

Accuracy: 79%

Weighted average precision: 80%

Weighted average recall: 79%

Modelfinal,5d

Observed Normal or Stage 1 81 28 0

Stage 2 18 105 13

Stage 3 1 16 49

Table 3  (continued)

Predicted

Normal or 
Stage 1

Stage 2 Stage 3

Accuracy: 76%

Weighted average precision: 76%

Weighted average recall: 76%

Modelfinal,1m

Observed Normal or Stage 1 84 24 0

Stage 2 14 107 15

Stage 3 1 14 51

Accuracy: 73%

Weighted average precision: 74%

Weighted average recall: 73%

Normal or stage 1, estimated glomerular filtration rate (eGFR) ≥ 90 mL/min/1.73 
m2; stage 2, eGFR 60–89 mL/min/1.73 m2; stage 3, eGFR < 60 mL/min/1.73 m2. d 
day, m month
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a predictor of the 1-year SCr level. Furthermore, our 
web application may be helpful for patient counseling 
and comprehensive management planning.

Abbreviations
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RCC​: Renal cell cancer; RN: Radical nephrectomy; SCr: Serum creatinine.
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