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Abstract 

Heart failure (HF) with preserved ejection fraction (HFpEF) is a leading cause of hospitalizations and mortality when 
diagnosed at the age of ≥ 65 years. HFpEF represents multifactorial and multisystemic syndrome and has different 
pathophysiology and phenotypes. Its diagnosis is difficult to be established based on left ventricular ejection fraction 
and may benefit from individually tailored approaches, underlying age-related changes and frequent comorbidities. 
Compared with the rapid development in the treatment of heart failure with reduced ejection fraction, HFpEF pre-
sents a great challenge and needs to be addressed considering the failure of HF drugs to improve its outcomes. Fur-
ther extensive studies on the relationships between HFpEF, aging, and comorbidities in carefully phenotyped HFpEF 
subgroups may help understand the biology, diagnosis, and treatment of HFpEF. The current review summarized the 
diagnostic and therapeutic development of HFpEF based on the complex relationships between aging, comorbidi-
ties, and HFpEF.
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Introduction
Heart failure (HF) is divided into three forms based 
on left ventricular (LV) ejection fraction (LVEF): 
heart failure with preserved ejection fraction (HFpEF, 
LVEF ≥ 50%), heart failure with reduced ejection fraction 
(HFrEF, LVEF < 40%), and heart failure with mid-range 
ejection fraction (HFmEF, LVEF ≥ 40 and < 50%) [1]. 
HFpEF has a global prevalence of 2% and will increase 
by 50% by 2035 in aging populations [2]. Patients suffer-
ing from HFpEF are older, mostly female and obese, and 
exhibit a lower prevalence of coronary artery disease 
(CAD) than patients with HFrEF [3, 4]. Nearly all patients 

with HF have preserved EF in the elderly ≥ 90 years [5, 6]. 
Atrial fibrillation (AF) increases subsequent HF risk five-
fold during the following ten years [7]. Patients with AF 
and underlying HFpEF have reduced exercise tolerance 
and worsened ventricular function than those with AF 
alone [8–11]. HFpEF is a leading cause of hospitalizations 
and mortality when diagnosed at the age of ≥ 65  years. 
Patients with HFpEF have higher morbidity, mortality, 
and rehospitalization as those with HFrEF, and life qual-
ity in patients with HFpEF is worse than in those with 
HFrEF [12]. The complex interaction between aging and 
comorbidities makes HFpEF a significant burden to pub-
lic health. The current review summarized the diagnos-
tic and therapeutic development of HFpEF based on the 
complex relationships between aging, comorbidities, and 
HFpEF.

Pathophysiology
HFpEF is a systemic syndrome involving multiple organs 
[13]. Diastolic factors affecting HFpEF are the pulmonary 
vein (preload), vascular resistance (afterload), and con-
tractility relaxation (cardiac). Contractility is disturbed by 
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atrial function, ventricular dyssynchrony, and atrioven-
tricular maladjustment [14]. Relaxation of myocardial tis-
sue is achieved through energy-dependence myofilament 
dissociation and passive relaxation of noncardiomyocyte 
matrix in the cardiac chambers and pericardium [15–17].

HFpEF is triggered by the cumulative expression of 
various risk factors and comorbidities, including age, sex 
(female), physical inactivity, obesity, AF, CAD, diabetes, 
dyslipidemia, hypertension, metabolic syndrome, chronic 
kidney disease, anemia, chronic obstructive pulmonary 
disease and sleep-disordered breathing [18]. However, 
there are no specific diseases demonstrated to be etio-
logic of HFpEF. HFpEF is a systemic inflammatory or 
metabolic disorder [19]. First, HFpEF is associated with 
endothelial inflammation, leading to coronary microvas-
cular dysfunction [20, 21]. Endothelial dysfunction is a 
significant factor linking cardiac and extracardiac effec-
tors [22]. Second, the changed composition and struc-
ture of both cardiomyocytes and noncardiomyocytes can 
increase diastolic stiffness and promote HFpEF devel-
opment [23–25]. Third, both obesity and diabetes are 
accompanied by increased epicardial adipose tissue vol-
ume, which transduces the effects of these diseases on 
cardiac function and structure [26]. HFpEF is a microcir-
culation defect following the obesity and diabetes. Both 
obesity and diabetes lead to an inflammatory and fibrotic 
atrial and ventricular myopathy, the two major elements 
of HFpEF [27]. Obesity and diabetes increase the risk of 
exercise intolerance and promote rapid progression of 
HFpEF due to multimorbidity, impaired chronotropic 
reserve, left ventricular hypertrophy, and activation of 
inflammatory, pro-oxidative, vasoconstrictor, and profi-
brotic pathways [28].

Although LVEF is not reduced, increased LV-filling 
pressure results in exertional dyspnea and exercise intol-
erance. If dysfunctional epicardial adipose tissue is adja-
cent to LV, it impairs LV distensibility and promotes 
HFpEF development. However, if it is adjacent to left 
atrium (LA), atrial myopathy is caused by electro-ana-
tomical fragmentation and structural remodeling of LA 
[29]. AF may be the first indicator of an inflammatory or 
metabolic LA myopathy causing HFpEF [30]. Patients 
with HFpEF and AF, especially patients at increased 
risk of adverse outcomes, have increased epicardial adi-
pose tissue volume [31]. AF reflects the development of 
myocardial inflammation, fibrosis, and hypertrophy in 
parallel with atrial and ventricular myopathy that results 
in HFpEF. Myocardial inflammation, fibrosis, and hyper-
trophy are identified in LA and LV of both patients with 
AF and those with HFpEF. Atrium and ventricle may 
be adversely affected by inflammation, and myocar-
dial fibrosis and hypertrophy may contribute to exercise 
intolerance [32]. Cardiometabolic abnormalities, such as 

abnormal mitochondrial function, changed substrate uti-
lization, and intracellular calcium overload, are also con-
sidered pathophysiological mechanisms in HFpEF [33].

Aging affects pathophysiological process of HFpEF. 
Structural and functional changes related to aging are 
generally believed to be significant risk factors of HFpEF 
[34]. Aging results in changed body composition, missed 
muscle mass, and increased sarcopenic adiposity [35]. 
Both aging and HFpEF are associated with changed epi-
cardial adipose and its secretory adipocytokines. The 
elderly with HFpEF have 5.5 noncardiac comorbidities 
on average [36]. Aging, frailty, and comorbidities have 
cumulative and synergistic effects on cardiac function 
and outcomes [37]. Aging promotes coronary microvas-
cular endothelial abnormalities and myocardial remod-
eling and dysfunction in HFpEF [38–40].

A key obstacle for exploring new pathophysiological 
mechanisms and testing new pharmaceutical substances 
is the availability of suitable animal models for HFpEF, 
which realistically reflect the research and clinical pic-
ture. A variety of animal models are developed with the 
signs of HFpEF ranging from murine models to a pig 
model.  Most of these animal models develop HFpEF 
triggered by a single factor like hypertension (Dahl salt‐
sensitive rat, aldosterone‐infused uninephrectomized 
mouse,  and transverse aortic constriction‐induced 
pressure overload in mouse), obesity/diabetes (db/
db  mouse), and aging (senescence‐accelerated mouse). 
Schiattarella and colleagues recently formulated a ‘two‐
hit’ hypothesis, inducing HFpEF in mice by metabolic 
stress (feeding of a high fat diet) and mechanical stress 
(hypertension induced by blocking eNOS activity) as 
second stressor.  However, another animal model, devel-
oping HFpEF owing to diabetes and hypertension, is the 
ZSF1 (Zucker fatty and spontaneously hypertensive) rat. 
This model was developed by crossing rat strains with 
two separate leptin receptor mutations (fa and facp), the 
lean female ZDF rat (+ /fa) and the lean male SHHF rat 
(+ /facp). Offspring being homozygous for both muta-
tions (fa:facp) are obese and develop insulin resistance, 
hyperglycaemia, and mild hypertension (ZSF1‐obese). 
The ZSF1‐obese animals developed HFpEF signs, exer-
cise intolerance, reduced skeletal muscle contractility and 
endothelial dyfunction. ZSF1 rat may serve as a suitable 
animal model to study pathophysiological mechanisms 
and pharmaceutical strategies for HFpEF.

Diagnosis
HFpEF presents a significant challenge in the diagnos-
tic process, lacking a useful and objective one-method-
fit-all approach [41]. Diagnosing HF in the elderly poses 
specific challenges to specialized physicians as false-
positive and false-negative diagnosis are common in 
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clinical practice [42]. First, exercise intolerance often 
happens in the elderly or obese population and repre-
sents pathophysiologic changes associated with aging 
or noncardiac etiologies [43, 44]. Second, HFpEF may 
be difficult to be diagnosed in the elderly because of 
existing comorbidities, which mimic HFpEF clini-
cal manifestation and further complicate its diagnosis 
[45]. Third, the elderly with HFpEF have no classic HF 
manifestations. Circulating B-type natriuretic pep-
tide (BNP) levels may not represent LV-filling pres-
sure in patients with HFpEF. Patients with increased 
LV-filling pressures related to HFpEF commonly have 
no elevated BNP levels, possibly because distensibility 
is impaired by myocardial fibrosis or due to coexist-
ent obesity [46]. Patients with HFpEF often have BNP 
levels below typical diagnostic thresholds. Most stud-
ies have suggested that around 30% of HFpEF patients 
have a BNP < 100 pg/ml, challenging the common prac-
tice of using BNP levels to determine HF diagnosis [47]. 
Fourth, HFpEF cannot be diagnosed based on diastolic 
dysfunction by itself due to the lack of a universally 
agreed definition. Finally, the limited ability of echocar-
diographic variables in identifying diastolic dysfunction 
further challenges its diagnosis in clinical practice [48].

Cardiac magnetic resonance imaging provides struc-
tural evidence of HFpEF, such as increased epicardial 
adipose tissue volume and myocardial fibrosis. Cardiac 
catheterization is the best method to confirm increased 
LV-filling pressure, but being an invasive method, its 
application in the elderly is limited. Electrocardiog-
raphy showing AF may be an available and sensitive 
marker of HFpEF in the elderly. Diastolic stress test-
ing is of essential significance for diagnosing HFpEF 
[49–53]. HFpEF with diastolic dysfunction results in 
increased LV end-diastolic pressure (LVEDP) to gener-
ate sufficient cardiac output for the peripheral tissue’s 
needs. Elevated LVEDP or reduced end-organ perfu-
sion is the most significant indicator for HFpEF diag-
nosis [54, 55]. Genetic analysis, imaging, and biopsy 
have been recommended to determine the etiologies of 
HFpEF.

HFpEF may be represented by different patho-
physiological phenotypes, which require differential 

identification and management [56]. Diagnostic algo-
rithms with a series of measures include clinical, labo-
ratory, and instrumental characteristics; sophisticated 
imaging modalities; and invasive hemodynamic meas-
urements. As shown in Fig. 1, Heart Failure Association 
Pretest assessment, Echocardiography, and natriuretic 
peptide, Functional testing, Final etiology (HFA-PEFF) 
has been suggested as a diagnostic procedure for HFpEF 
[57]. Additionally, a weighted score based on obesity, 
AF, age > 60  years, treatment with ≥ 2 antihypertensives, 
echocardiographic E/e’ ratio > 9, and echocardiographic 
pulmonary artery systolic pressure > 35 mmHg was used 
to create a composite score (H2FPEF score) ranging from 
0 to 9. The odds of HFpEF doubled for each 1-unit score 
increase. H2FPEF score relies on simple clinical charac-
teristics, whereas cardiac catheterization is necessary 
in HFA-PEFF. H2FPEF score enables the discrimina-
tion of HFpEF from noncardiac causes of dyspnea and 
determine further diagnostic testing in the evaluation of 
patients with unexplained dyspnea.

Prevention
The prevention of HF is hard and controlling risk factors 
may be feasible. Lifestyle modifications, such as dietary 
control, nutrient management, physical activity, weight 
loss, and cardiorespiratory fitness, have beneficial effects 
on the prevention of HFpEF [58]. Treating obesity or 
diabetes can affect the volume or function of epicardial 
adipose tissue. Both caloric restriction and physical activ-
ity are effective methods to improve cardiac outcomes in 
patients with HFpEF. Caloric restriction and weight loss 
significantly improve exercise tolerance and life quality 
in the elderly with HFpEF and obesity [59–61]. Weight 
loss reduces the risk of HFpEF, lowers elevated diastolic 
filling pressure, and alleviates epicardial adipose inflam-
mation [62–64]. Exercise protocols mainly include aero-
bic exercise, such as walking or cycling, in the elderly. 
Exercise training at home can be achieved by remote 
monitoring, individualization programme, and fall pre-
vention. Exercise training improves physical function, 
shows clear security, and reduces HFpEF rehospitaliza-
tion in the elderly [65]. Moderate and regular physical 
activity is recommended in patients with HFpEF by the 

(See figure on next page.)
Fig. 1  Heart Failure Association Pretest assessment, Echocardiography, and natriuretic peptide, Functional testing, Final etiology (HFA-PEFF): a 
diagnostic procedure for heart failure with preserved ejection fraction HFpEF. HF heart failure, AF atrial fibrillation, CAD coronary artery disease, MetS 
metabolic syndrome, CKD chronic kidney disease, COPD chronic obstructive pulmonary disease, SDB sleep-disordered breathing, NPs natriuretic 
peptides, Hb hemoglobin, HbA1C hemoglobin A1C, Scr serum creatinine, eGFR estimated glomerular filtration rate, ALT alanine aminotransferase, 
TSH thyroid stimulating hormone, LVEF left ventricular ejection fraction, LVH left ventricular hypertrophy, LAE left atrial enlargement, 6MWT 6 min 
walk test, CPET cardiopulmonary exercise testing, TR tricuspid regurgitation, PASP pulmonary artery systolic pressure, GLS global longitudinal strain, 
LAVI left atrial volume index, LVMI left ventricular mass index, RWT​ relative wall thickness, LV left ventricular, SR sinus rhythm, NT-proBNP N-terminal 
pro-B-type natriuretic peptide, BNP B-type natriuretic peptide, LVEDP left ventricular end-diastolic pressure, PCWP pulmonary capillary wedge 
pressure, CT computed tomography, PET positron emission tomography, HCM hypertrophic cardiomyopathy, RCM restrictive cardiomyopathy, CHD 
congenital heart disease, VHD valvular heart disease



Page 4 of 13Lin et al. J Transl Med          (2021) 19:291 

Fig. 1  (See legend on previous page.)
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American College of Cardiology/American Heart Asso-
ciation (ACC/AHA).

Addressing the risk factors and comorbidities is a sig-
nificant way of preventing the development of HFpEF 
[66, 67]. First, hypertension can obviously increase preva-
lence, rehospitalization and mortality of patients with 
HFpEF; thus, treating hypertension may be the most 
effective prevention method for HFpEF [68, 69]. Second, 
CAD deteriorates ventricular function and outcomes and 
increases the occurrence of HFpEF, and patients with 
CAD patients should receive systemic treatment, such 
as coronary revascularization [70, 71]. Third, because of 
increased longevity, AF has increasing prevalence and 
coexists with HFpEF [72]. AF is closely related to abnor-
mal atrial and ventricle function, neurohumoral activa-
tion, and exercise intolerance [73]. Tachycardia is also 
deleterious by shortening diastole time and impairing 
diastolic filling. Rate or rhythm control of AF may pre-
vent the development of an underlying HFpEF. Rate con-
trol and permanent anticoagulation are recommended in 
patients with AF [74, 75]. Finally, anemia is related to ele-
vated prevalence, hospitalization and mortality of HFpEF 
[76, 77]. Enhancing mitochondrial energy by iron supple-
mentation prevents the development of HFpEF, and iron 
supplementation rather than erythropoietin is recom-
mended by the ACC/AHA [78].

Treatment
HFpEF, being one of the most challenging diseases to 
treat, does not respond to a one-method-fit-all approach; 
hence, several therapeutic methods are shown in Table 1 
[79–82]. Angiotensin-converting enzyme inhibitors and 
angiotensin receptor blockers (ARBs) can alleviate the 
inflammation of adipose and attenuate myocardial fibro-
sis and remodeling [83]. They improve clinical symptoms 
and exercise tolerance rather than morbidity or mortality 
in patients with HFpEF [84]. Moreover, they do not cause 
further improved exercise tolerance or cardiac function 
after optimal diuretic treatment [85, 86]. Aldosterone 
mediates myocardial fibrosis, contributing to myocardial 
stiffness [87]. Mineralocorticoid receptor antagonists fail 
to improve clinical symptoms, exercise tolerance, and 
cardiac outcomes in patients with HFpEF [88].

Tachycardia predicts poor outcomes in patients 
with HFpEF [89]. Beta-blockers have no prognostic 
effect in patients with HFpEF but may have beneficial 
roles in some subgroup analyses [90]. Conventional 
beta-blockers mainly target beta1- and beta2-adren-
oreceptors, which can mediate catecholamine effects. 
Beta3-adrenoreceptor prevents neurohormonal stimu-
lation and myocardial hypertrophy [91]. Stimulating 
Beta3-adrenoreceptor with selective agonist mirabe-
gron may be studied as a treatment method in HFpEF. 

Although ivabradine reduces exercise-induced tachy-
cardia and improves chronotropic incompetence, it 
cannot prolong diastole time to restore diastolic func-
tion in HFpEF [92]. HFpEF has overfilled LV but not 
impaired LV filling, thus invalidating traditional ration-
ale for slowing heart rate [93, 94]. Cardiac glycosides, 
such as digoxin, cannot improve cardiac mortality but 
treat the tachyarrhythmia in HFpEF [95]. However, 
atrioventricular node blocking drugs, such as digoxin, 
can exert lethal proarrhythmic effects independent of 
slowing heart rate [96, 97]. A pacemaker is indispen-
sable to treat conduction system disease in patients 
with HFpEF, particularly in those with AF [98, 99]. 
Rhythm control, such as cardioversion or catheter abla-
tion, is considered when AF is associated with clinical 
symptoms of patients with HFpEF. Intensive applica-
tion of membrane-active anti-arrhythmic drugs poses 
a  risk  to  the development of arrhythmia and HFpEF 
[100, 101]. Catheter ablation restores sinus rhythm and 
improves LV function but is not effective in patients 
with myocardial fibrosis [102–106].

Statins can decrease epicardial adipose tissue volume 
and thereby prevent systemic inflammation and myo-
cardium fibrosis [107, 108]. Statins reduce new-onset 
and recurrent AF and further prevent AF-related throm-
boembolic events [109]. Meanwhile, the application of 
statins is followed by improved diastolic dysfunction and 
reduced HFpEF risk [110].

Natriuretic peptides activate guanylyl cyclase, resulting 
in cyclic guanosine monophosphate (cGMP) formation 
and preventing myocardial fibrosis due to vasodilation 
and diuresis [111]. Endogenous natriuretic peptides by 
neprilysin inhibition may produce an antiadipogenic 
effect on the epicardium [112]. The addition of neprily-
sin inhibition to ARBs [sacubitril/valsartan; angiotensin 
receptor-neprilysin inhibitor (ARNI)] ameliorates atrial 
and ventricular myopathy in patients with HFpEF [113]. 
Although sacubitril/valsartan increases plasma natriu-
retic peptides levels by inhibiting neprilysin, it failed to 
reduce cardiac mortality in the PARADIGM-HF trial 
[114]. However, subgroup analyses have demonstrated its 
efficacy in female patients and those with HFmEF [115]. 
There is evidence from a meta-analysis that sacubitril/
valsartan in HFpEF probably reduces HFpEF hospitaliza-
tion but probably has little or no effect on cardiovascular 
mortality and life quality.  There is a need for improved 
approaches to patient stratification to identify the sub-
group of patients with HFpEF who are most likely to ben-
efit from sacubitril/valsartan, as well as for an improved 
understanding of biology, and for new therapeutic 
approaches of HFpEF.

Abnormal nitrogen monoxide-cGMP-protein 
kinase G (NO-cGMP-PKG) pathway may constitute a 
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Table 1  Trials of exercise, medications and devices in patients with HFpEF

Types Interventions Inclusion Trials Endpoints Results

Exercise Exercise training NYHA II-III, EF ≥ 50%, tissue 
Doppler-derived E/e’ ratio

Ex-DHF Exercise capacity, QOL Positive

ACEI/ARB Candesartan Aged ≥ 18 years, NYHA II-IV, 
EF > 40%

CHARM-Preserved CV death, HF hospitalization Neutral

Perindopril Aged ≥ 70 years, clinical 
diagnosis of chronic HF, 
EF ≥ 40%, hospitalised for 
a cardiac problem, able 
to walk without the aid of 
another person

PEP-CHF CV death, HF hospitalization Neutral

ARNI Sacubitril/valsartan Aged ≥ 40 years, EF ≥ 45%, 
HF signs or symptoms, 
NT-proBNP ≥ 400 pg/mL, 
eGFR ≥ 30 mL/min/1.73m2, 
potassium ≤ 5.2 mmol/L

PARAMOUNT NT-proBNP Positive

Aged ≥ 45 years, EF > 40%, 
LAE or LVH on echocar-
diography, NYHA II–IV, 
NT-proBNP > 220 pg/mL 
for patients with no AF 
or > 600 pg/mL for those 
with AF

PARALLAX NT-proBNP Positive

sGC stimulator and activator Vericiguat Aged ≥ 45 years, EF ≥ 45%, 
NYHA II–III, HF decompensa-
tion, NT-proBNP ≥ 300 or 
BNP ≥ 100 pg/mL in sinus 
rhythm, or NT-proBNP ≥ 600 
or BNP ≥ 200 pg/mL in 
AF, LVH (intraventricular 
septal or posterior wall 
thickness ≥ 1.1 cm, and/
or LVMI ≥ 115 g/m2 in male 
and ≥ 95 g/m2 in female), 
or LAE (LAV index ≥ 29 mL/
m2, or LAV > 58 mL in male 
and > 52 mL in female 
patients, or LA area > 20 cm2, 
or LA diameter > 40 mm in 
male and > 38 mm in female 
patients)

VITALITY QOL Positive

NYHA II-IV, EF ≥ 45%, 
BNP ≥ 100 pg/mL or 
NT-proBNP ≥ 300 pg/
mL(or BNP ≥ 200 pg/mL 
or NTproBNP ≥ 600 pg/mL 
in AF), LAE determined by 
echocardiography

SOCRATES-PRESERVED QOL Neutral

Riociguat EF ≤ 35%, NYHA Class III-IV DYNAMIC CO Positive

SGLT-2 inhibitor Empaglifozin NYHA II-IV, EF > 40%, NT-
proBNP > 300 pg/mL 
in patients without AF 
and > 900 pg/mL in AF, 
structural changes in the 
heart (left atrial size or LVM) 
on echocardiography, HF 
hospitalization

EMPEROR-PRESERVED CV death, HF hospitalization Positive

EF > 40%, NYHA II-IV, 6MWD 
of ≥ 100 m and ≤ 350 m

EMPERIAL-PRESERVED 6MWD Positive

Sotaglifozin Type 2 diabetes mellitus, HF 
hospitalization

SOLOIST-WHF CV death, HF hospitalization Positive
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pathophysiological mechanism promoting myocardial 
fibrosis and diastolic dysfunction in HFpEF [116, 117]. 
Direct nitric oxide (NO) donators, including organic 
nitrates (isosorbide-nitrate), are not recommended in 
patients with HFpEF, considering their disadvantages of 
vasodilatation and hypotension [118]. They also fail to 
increase exercise tolerance and improve diastolic func-
tion [119]. Enhancing endothelial nitric oxide synthase 
activity by the transcription amplifier AVE3085 increases 

NO production and improves diastolic function [120]. 
However, this method is still pending clinical evaluation. 
Nitrosative stress is a major driver in HFpEF rather than 
the limited bioavailability of NO, with new strategies tar-
geting nitrosative stress in the future [121].

Phosphodiesterase-5 inhibitors are applied to treat pre-
capillary pulmonary arterial hypertension (PAH) and may 
be considered in combined precapillary and postcapillary 
PAH. Sildenafil fails to significantly lower pulmonary 

HFpEF heart failure with preserved ejection fraction, NYHA New York Heart Assocation, AF atrial fibrillation, QOL quality of life, 6MWD 6-min walk distance, 
ACEI angiotensin-converting enzyme inhibitor, ARB angiotensin receptor blocker, ARNI angiotensin receptor-neprilysin inhibitor, eGFR estimated glomerular 
filtration rate, CV cardiovascular, BNP B-type natriuretic peptide, NT-proBNP N-terminal pro-B-type natriuretic peptide, sGC soluble guanylyl cyclase, LAE left atrial 
enlargement, CO cardiac output, PCWP pulmonary capillary wedge pressure, SGLT-2 sodium glucose cotransporter-2, HF heart failure, PAP pulmonary artery pressure, 
LVH left ventricular hypertrophy, PDE-5 phosphodiesterase-5, MRA mineralocorticoid receptor antagonist, ECV extracellular volume fraction, MRI magnetic resonance 
imaging, E/e′ mitral early diastolic velocity/mitral annular velocity, LVMI left ventricular mass index, IASD interatrial shunt device, ASV adaptive servo-ventilation, HFrEF 
heart failure with reduced ejection fraction, AHI apnea–hypopnea index

Table 1  (continued)

Types Interventions Inclusion Trials Endpoints Results

Nitrate Oral nitrate Mean PAP ≥ 35 mmHg and 
baseline PCWP ≥ 20 mmHg, 
NYHA II-III, EF ≥ 40%

PH-HFPEF PAP at exercise Positive

MRA Spironolactone Aged ≥ 50 years, EF ≥ 45%, 
potassium < 5.0 mmol/L, 
HF hospitalization, 
BNP ≥ 100 pg/ml, NT-
proBNP ≥ 360 pg/ml

TOPCAT​ HF hospitalization Neutral

Aged ≥ 50 years, NYHA II-III, EF 
50%, diastolic dysfunction

Aldo-DHF Neurohumoral activation, LVH Positive

PDE-5 inhibitor Sildenafl Outpatients with HFpEF RELAX PAP, CO Positive

Pirfenidone Pirfenidone Aged ≥ 40 years, EF ≥ 45%, 
symptoms and signs of 
HF, BNP ≥ 100 pg/ml or 
NT-proBNP ≥ 300 pg/
ml(patients in AF 
are required to have 
BNP ≥ 300 pg/ml or NT-
proBNP ≥ 900 pg/ml)

PIROUETTE ECV Positive

Cardiolipin peroxidase inhibi-
tor

Elamipretide Aged 40–80 years, EF ≤ 40%, 
no hospitalization related to 
HF, at least 3 dysfunctional 
but viable segments (hyper-
enhancement ≤ 25%) by 
cardiac MRI examination

PROGRESS-HF NT-pro-BNP Positive

Beta3-adrenoreceptor selec-
tive agonist

Mirabegron LVH (increased LVMI or 
LVWT ≥ 13 mm in at least 
one wall segment), in the 
absence of genetic hyper-
trophic cardiomyopathy and 
significant valvular disease

BETA3-LVH LVMI, E/e′ Positive

Device therapy CardioMEMS NYHA II-IV regardless of EF 
with and elevated natriuretic 
peptides

GUIDE-HF All-cause death, HF hospitali-
zation

Positive

HF ≥ 3 months, NYHA class III CHAMPION HF hospitalization Positive

IASD EF ≥ 40% and NYHA III-IV 
HF, PCWP ≥ 15 mmHg at 
rest or ≥ 25 mmHg during 
supine bike exercise

REDUCE LAP-HF CV death, HF hospitalization Positive

ASV HFpEF or HFrEF, AHI ≥ 15 
events per hour

CAT HF CV death, HF hospitalization, 
6MWD

Positive
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artery pressure (PAP) in HFpEF patients without precap-
illary PAH and those with postcapillary PAH [122, 123]. 
However, sildenafil has positive effects in HFpEF patients 
with precapillary PAH or severe combined precapillary 
and postcapillary PAH [124]. Soluble guanylyl cyclase 
activators, such as vericiguat and riociguat, are adminis-
tered in patients with PAH. Vericiguat has recently been 
demonstrated to reduce cardiac mortality in patients 
with HFrEF [125]. Further studies will assess its effects on 
cardiac function and outcomes in patients with HFpEF.

Insulin has hypoglycemic, antinatriuretic, and adipo-
genic effects and causes adverse outcomes in patients 
with HFpEF [126, 127]. Metformin reduces proinflam-
matory adipokines and has anti-inflammatory roles 
[128, 129]. It reduces the risk of AF and improves dias-
tolic dysfunction in HFpEF [130]. Metabolic abnormali-
ties and systemic inflammation impair the expression of 
peroxisome proliferator-activated receptor (PPAR), but 
co-stimulation of PPAR and adiponectin reverses epicar-
dial adipose tissue dysfunction [131, 132]. Pioglitazone 
and rosiglitazone suppress atrial and ventricular inflam-
mation and fibrosis and reduce the risk of AF and HFpEF 
[133, 134]. Thiazolidinediones have been associated with 
an improved diastolic filling abnormality in patients with 
diabetes [135]. However, they promote sodium reten-
tion, thereby increasing cardiac volume [136]. Sodium 
retention may aggravate cardiac fibrosis and hypertrophy 
and increases the risk of HFpEF [137]. Sodium-glucose 
cotransporter-2 (SGLT2) inhibitors, such as dapagliflo-
zin and empagliflozin, achieve significantly decreased 
primary composite endpoint of worsened HF or cardiac 
mortality in patients with HFrEF, which is independent 
of diabetes [138, 139]. SGLT2 inhibitors reduce the vol-
ume of epicardial adipose and cardiac events caused by 
HFpEF [140]. A number of randomized trials are under-
way to explore the efficacy of SGLT-2 in patients with 
HFpEF [141, 142]. However, because the patients in these 
studies did not demonstrate any HF-related manifesta-
tions or the degree of HF was low at baseline, any rec-
ommendation of SGLT2is for the treatment of HFpEF 
should be cautious.

Regulation of incretin system includes mimicking 
glucagon-like peptide 1 (GLP-1) roles and inhibiting 
GLP-1-degrading enzyme dipeptidyl peptidase-4 (DPP-
IV) [143]. GLP-1 analogues, such as semaglutide and 
liraglutide, improve cardiac outcomes in patients with 
diabetes [144]. LIVE trial determined that although 
liraglutide did not affect LV function compared with 
placebo in stable HF patients with and without dia-
betes, treatment with liraglutide was associated with 
more serious cardiac adverse events [142]. FIGHT 
trial revealed that the use of liraglutide did not lead 
to greater post-hospitalization clinical stability [143]. 

The results of existing evidence do not support the 
use of liraglutide or semaglutide in HF with diabetes, 
and LIVE points out the potential harmful effect of 
liraglutide in this population. The safety of these pow-
erful GLP-1 analogues in patients with diabetes and 
HF remains uncertain, and further studies are needed 
to assess their risks and benefits especially in patients 
with HFpEF.

As an anti-fibrotic drug, pirfenidone suppresses the 
development of ventricular fibrosis and diastolic dys-
function through targeting transforming growth factor β 
(TGF-β) signaling pathway in pressure-overload induced 
HF [145, 146]. Future studies would assess whether these 
effects account for patients with HFpEF [147, 148]. Lysyl 
oxidase-like 2 (Loxl2) promotes collagen’s cross-linking 
and causes interstitial fibrosis [149]. Diastolic function 
may be improved by antibody-mediated inhibition of 
Loxl2 [150]. Inhibition of Loxl2 and new cross-linking 
strategies will be assessed in the future. Systemic inflam-
mation is the main mediator in HFpEF, and cytokine 
inhibitors have been considered therapeutic options 
[151]. Although interleukin-1 (IL-1) blockade with anak-
inra cannot improve exercise tolerance, canakinumab, a 
monoclonal antibody targeting IL-1ß, decreases HF hos-
pitalization and mortality [152].

Cardiolipin is a significant phospholipid in the inner 
mitochondrial membrane, and Szeto-Schiller (SS) pep-
tide is an antioxidant peptide binding to cardiolipin 
[153]. Elamipretide (MTP-131, SS31) reduces LVEDP in 
patients with HFpEF and needs to be further assessed 
through clinical studies [154, 155]. Neladenoson biala-
nate, a partial adenosine A1 receptor agonist, may benefit 
both cardiac and skeletal muscles. It enhances SERCA2a 
activity and reverses ventricular remodeling through 
improving mitochondrial function but fails to signifi-
cantly affect exercise tolerance in patients with HFpEF 
[156]. Levosimendan has positive inotropic and vasodila-
tive effects through a combined effect on calcium sensi-
tization and phosphodiesterase-3 inhibition. It improves 
inflammatory process and diastolic function in patients 
with HFrEF [157]. Meanwhile, inhaled iloprost causes 
an acute reduction of PAP in patients with HFpEF [158]. 
Further studies will assess levosimendan and prostacy-
clin analogs in patients with HFpEF. Fluid overload can 
aggravate clinical symptoms and exercise intolerance and 
increase cardiac decompensation and overall mortality in 
patients with HFpEF. Diuretics are established drugs to 
treat fluid overload and considered a cornerstone in the 
symptomatic therapy of HFpEF.

As small non-coding ribonucleic acid (RNA) molecules, 
micro-RNAs (miRNAs), such as miR-23, miR-24, miR-
125, miR-195, miR-199, and miR-214, are observed to be 
increased in the heart tissue of patients with HF [159]. 
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Hypertrophic growth was caused by overexpression of 
these miRNAs in cultured myocytes. There are different 
profiles of miRNAs between patients with HFpEF and 
HFrEF, and targeting miRNAs may initiate new treatment 
methods of HFpEF in the future [160]. However, mecha-
nisms and application of treatment methods targeting 
miRNAs need to be better understood through further 
studies. Cell therapy targets myocardial inflammation 
and fibrosis in HFpEF and may be a promising treatment 
for HFpEF. It is still unclear which is the optimal cell type, 
dose, and delivery route in HFpEF [161].

CardioMEMS device, a radio frequency-based wireless 
pressure sensor, improves cardiac outcome through con-
tinuously monitoring PAP in patients with HF [162, 163]. 
LV mechanical dyssynchrony causes impaired LV func-
tion, higher LV-filling pressure, and worsened clinical 
symptoms in patients with HFpEF [164–166]. However, it 
may not be associated with cardiac outcomes of patients 
with HFpEF [167]. Further studies will assess the effects 
of both cardiac resynchronization therapy and cardiac 
contractility modulation on exercise tolerance in patients 
with HFpEF [168]. Renal sympathetic denervation cannot 
affect exercise tolerance in patients with HFpEF, although 
it lowers blood pressure, reduces LV mass, and improves 
diastolic function [169–172].

Conclusion
With its increasing prevalence and worsening prognosis, 
HFpEF is nearly unique to the elderly and considered a 
true geriatric syndrome. Compared with the tremendous 
progress in the diagnosis and treatment of HFrEF, HFpEF 
continues to be a great enigma and needs to be further 
studied considering the failure of HF drugs to improve 
its outcome [173]. There is a lack of precise indicators for 
diagnosing HFpEF and a high prevalence of comorbidities 
that may interfere with HFpEF diagnosis [174]. Clinical 
trials generally enroll all participants with HF symptoms 
and preserved LVEF [175]. However, HFpEF is a hetero-
geneous syndrome with multiple phenotypes, affected 
by aging, and involving many organs [176]. HFpEF rep-
resents multifactorial and multisystemic syndrome with 
different pathophysiologies and phenotypes. Treatment 
with a single target fails to significantly affect HFpEF 
outcomes; however, lifestyle modifications prove to be 
an effective way to approach HFpEF as a clinical syn-
drome. Drugs and interventions applied to treat HFpEF 
have been principally based on central hemodynamic 
and neurohormonal abnormalities, which appear to be 
less complete in HFpEF than in HFrEF [177]. Individually 
tailored approaches may promote effective identification 
of HFpEF through underlying age-related changes and 
various comorbidities. Further extensive studies aimed to 
investigate HFpEF, aging, and comorbidities in carefully 

phenotyped HFpEF subgroups may elucidate the biology, 
diagnosis, and treatment of HFpEF.
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