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The landscape of gene co-expression 
modules correlating with prognostic genetic 
abnormalities in AML
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Abstract 

Background: The heterogenous cytogenetic and molecular variations were harbored by AML patients, some of 
which are related with AML pathogenesis and clinical outcomes. We aimed to uncover the intrinsic expression profiles 
correlating with prognostic genetic abnormalities by WGCNA.

Methods: We downloaded the clinical and expression dataset from BeatAML, TCGA and GEO database. Using R (ver‑
sion 4.0.2) and ‘WGCNA’ package, the co‑expression modules correlating with the ELN2017 prognostic markers were 
identified  (R2 ≥ 0.4, p < 0.01). ORA detected the enriched pathways for the key co‑expression modules. The patients in 
TCGA cohort were randomly assigned into the training set (50%) and testing set (50%). The LASSO penalized regres‑
sion analysis was employed to build the prediction model, fitting OS to the expression level of hub genes by ‘glmnet’ 
package. Then the testing and 2 independent validation sets (GSE12417 and GSE37642) were used to validate the 
diagnostic utility and accuracy of the model.

Results: A total of 37 gene co‑expression modules and 973 hub genes were identified for the BeatAML cohort. We 
found that 3 modules were significantly correlated with genetic markers (the ‘lightyellow’ module for NPM1 muta‑
tion, the ‘saddlebrown’ module for RUNX1 mutation, the ‘lightgreen’ module for TP53 mutation). ORA revealed that the 
‘lightyellow’ module was mainly enriched in DNA‑binding transcription factor activity and activation of HOX genes. 
The ‘saddlebrown’ module was enriched in immune response process. And the ‘lightgreen’ module was predomi‑
nantly enriched in mitosis cell cycle process. The LASSO‑ regression analysis identified 6 genes (NFKB2, NEK9, HOXA7, 
APRC5L, FAM30A and LOC105371592) with non‑zero coefficients. The risk score generated from the 6‑gene model, 
was associated with ELN2017 risk stratification, relapsed disease, and prior MDS history. The 5‑year AUC for the model 
was 0.822 and 0.824 in the training and testing sets, respectively. Moreover, the diagnostic utility of the model was 
robust when it was employed in 2 validation sets (5‑year AUC 0.743–0.79).

Conclusions: We established the co‑expression network signature correlated with the ELN2017 recommended prog‑
nostic genetic abnormalities in AML. The 6‑gene prediction model for AML survival was developed and validated by 
multiple datasets.
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Background
The prognosis of AML is characterized by clonal cytoge-
netic and molecular variations harbored by leukemic 
cells, the prognostic significance of which is validated 
by previous studies and integrated into the ELN 2017 
risk-stratification system [1], which is recommended 
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by the NCCN AML guideline. The prognostic mark-
ers include: (1) fusion genes, like RUNX1-RUNX1T1/
MLLT3-KMT2A/CBFB-MYH11/DEK-NUP24/BCR-
ABL; (2) cytogenetic variants, like − 5 or del(5q), − 17 
or abn(17p), − 7; 3) molecular variations, like CEBPA 
mutation, FLT3-ITD, RUNX1, ASXL1, TP53 etc. The 
treatment option and prognosis are based on the risk 
stratification of individual patients. It is reported that 
specific expression signatures are strongly associating 
and interacting with some cytogenetic/molecular varia-
tion. For instance, the NPM1 mutation was reported to 
be correlated with over-expression of PBX3 and HOXA 
gene cluster, which is required for the maintenance of 
leukemia cells harboring NPM1 mutation [2]. To our 
knowledge, the association of expression signatures 
with other important mutations, such as FLT3-ITD/
TP53/etc., have not been fully elucidated. Moreover, 
risk stratification of AML patients is not determined 
only by signal gene variation, but the combination 
of multiple gene status. Different mutation status of 
NPM1 and FLT3-ITD, demonstrate low risk (mutated 
NPM1 without FLT3-ITD), intermediate risk (mutated 
NPM1 with FLT3-ITD, or wildtype NPM1 without 
FLT3-ITD), and adverse risk (wildtype NPM1 with 
FLT3-ITD). Therefore, this study also aims to uncover 
the difference of transcriptomic signatures between 
mutation combinations. The correlation analysis 
between molecular variant and transcription profiles, 
will promote the identification of potential valuable 
prognostic markers and therapeutic targets [3].

Over the recent years, the increasing genomic and 
expression data has emerged by next generation sequenc-
ing, which provided us the chance to identify genetic and 
transcriptomic markers relating to clinical outcomes. 
To improve the power of test for correlation analy-
sis, we utilized the BeatAML database, which was the 
largest RNAseq dataset for AML patients by now [4]. 
BeatAML database included the clinical/cytogenetic/
mutation/expression data originated from 672 patients. 
The WGCNA was used to identify the co-expression 
modules based on the scale-free network, and calculate 
the first principal component of gene modules as module 
eigengenes (MEs) [5, 6]. Then the target modules were 
identified, the ME of which was significantly correlated 
with prognostic markers of ELN2017. The sequential 
ORA was conducted to reveal the enriched cell signaling 
pathways for target modules. Furthermore, the LASSO 
regression analysis was used to reduce the dimension-
ality and fit survival data to the prediction model based 
on expression level of hub genes. Due to the batch effect 
between individual expression datasets, the accuracy 
of prediction model was limited. However, the success-
ful establishment of the model provided us key genetic 

variables associating with survival, which will uncover 
the potential crucial expression signatures.

In this study, we found significantly correlated gene 
modules to NPM1, RUNX1 and TP53 mutation, the 
enriched cell signaling pathways of which were identi-
fied. The integrated hub genes across modules were input 
into LASSO analysis and established prediction model of 
OS, which was validated by 2 external datasets. Our work 
offered the landscape of expression signatures relating to 
ELN2017 prognostic markers and revealed the key hub 
genes and pathways.

Methods
Datasets download
The clinical, genetic and transcription matrix was down-
loaded from BeatAML database [4] (http:// www. vizome. 
org/ aml/). 14 available markers were selected for further 
analysis, including ELN2017 risk stratification, complex 
karyotype, del(7), RUNX1-RUNX1T1, CBFB-MYH11, 
biallelic CEBPA mutation, MLL3-KMT2A, DEK-
NUP214, GATA2-MECOM, FLT3-ITD, NPM1 mutation, 
ASXL1 mutation, RUNX1 mutation and TP53 mutation. 
Then the expression dataset was download in the form 
of RPKM. After the data was integrated, 421 non-APL 
AML patients with prognostic markers and RNAseq 
data were selected for WGCNA. Since the patients in 
BeatAML accepted various experimental target therapy 
and non-standard treatment, which lead to unignorable 
bias for survival analysis. So, we included other expres-
sion datasets with survival data to establish and vali-
date the prediction model. We downloaded the OS and 
expression data from TCGA database (https:// portal. gdc. 
cancer. gov/) (IlluminaHiSeq_RNASeqV2 platform, 136 
non-APL AML cases). The microarray data and survival 
information was obtained from GEO database (https:// 
www. ncbi. nlm. nih. gov/ geo/), for GSE12417 [7] (Affyme-
trix Human Genome U133 Plus 2.0 Array, 79 cytogenetic 
normal non-APL AML cases) and GSE37642 [8] (Affym-
etrix Human Genome U133 Plus 2.0 Array, 140 non-APL 
AML cases). Because no detail allelic ration information 
was provided by BeatAML database, we followed the 
recommendation of ELN2017 in such situation, and con-
sidered the presence of FLT3-ITD as high risk, unless it 
co-occurred with NPM1 mutation which was considered 
as intermediate risk.

All datasets supporting our findings were available 
from public databases, the last visit was on June 22nd, 
2020.

WGCNA
The whole gene set of RNAseq data were used to con-
struct the co-expression network, by R software (ver-
sion 4.0.2) and ‘WGCNA’ package [5]. The hierarchical 
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clustering by average link, was implemented to detect 
outliers. To construct the scale-free network, the mini-
mal beta value setting the scale free  R2 > 0.85, was defined 
as soft threshold power. Then the matrix of gene adja-
cency was generated from the calculation of inter-gene 
correlation coefficients by Pearson’s method, which 
was subsequentially turned into the topological over-
lap matrix (TOM). After the minimal module size was 
set as 30 genes, the average linkage hierarchical clus-
tering was performed to divide the whole gene set into 
modules based on TOM-based dissimilarity. Then mod-
ule membership (the correlation coefficients between 
individual gene and eigengene in the same module) and 
gene significance (the correlation coefficients between 
gene and prognostic markers) were calculated by Pear-
son’s method. Modules eigengenes (MEs), the first prin-
cipal component of expression matrix, were correlated 
to the target prognostic markers. Correlation coeffi-
cient  R2 ≥ 0.4 and p value < 0.01 were set as the criteria 
for significant correlation between MEs and prognos-
tic markers. Then the hub genes were identified by gene 
significance ≥ 0.2, module membership ≥ 0.8 and q. 
Weighted < 0.01 (local FDR adjusted weighted p value of 
correlation between genes and prognostic markers).

Protein–protein interaction network of genes in selected 
modules
STRING (Search Tool for the Retrieval of Interact-
ing Genes/Proteins) database (https:// string- db. org/) 
was used to predict PPI (protein–protein interaction) 
network information based on the previous evidence 
and experiments. After mapping the gene symbols into 
STRING database, minimal criteria for extracting PPI 
pairs was 0.4. The nodes were calculated and ranked by 
connectivity degree method, 10 top nodes were screened 
by cytoscape software (version 3.7.2) and cytohubba 
plugin.

To demonstrate the biological function and implication 
on cell signaling of significantly correlated MEs, DAVID 
[9] (Database for Annotation, Visualization and Inte-
grated Discovery) online tool (https:// david. ncifc rf. gov/) 
was used for gene enrichment analysis based on the Gene 
ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) database. The package ‘ReactomePA’ 
was implemented for analysis based on Reactome data-
base (https:// react ome. org/) [10]. The enriched q value 
(local FDR adjusted p value) < 0.05 is set as cut-off value 
for ORA.

Prediction model for AML survival
The univariate Cox proportional hazard regression anal-
ysis was employed to investigate the association of hub 
genes and OS of AML patients in TCGA AML cohort. 

Then to minimize the overfitting, we performed the itera-
tive regression analysis (LASSO) to reduce dimension-
ality of inputted variables, and establish the prediction 
model of variables with non-zero coefficients. We con-
ducted a bootstrap aggregation approach, and the tenfold 
cross-validation by ‘glmnet’ package. The TCGA AML 
cohort was randomly assigned into training (50%) and 
testing (50%) sets. The risk scores of individual patients 
were calculated based on the expression level of gene 
variables with non-zero coefficients. The cutoff value 
was determined by function ‘surv_cutpoint’ of package 
‘survminer’. Kaplan–Meier analysis and time-dependent 
ROC were performed by ‘survival’ and ‘survivalROC’ 
packages. Furthermore, the testing set and independ-
ent validation cohorts, GSE12417 and GSE37642, were 
employed to validate the robustness of diagnostic accu-
racy on overall survival by the prediction model. Then the 
risk scores of AML patients were compared by unpaired 
t test, between ELN2017 risk groups, with or without 
MDS history, newly diagnosed or relapsed patients. Fur-
thermore, the risk scores and other possible prognostic 
factors, like age, blast percentage, FAB subtypes, type 
of induction treatment, race, sex, risk stratification of 
ELN2017 and transplantation, were inputted into mul-
tivariate Cox analysis to validate whether the risk score 
was an independent risk factor for AML survival.

Results
Results of WGCNA
The clinical and genetic features of included AML cases 
in BeatAML and TCGA database were shown in Table 1. 
The expression data of 421 non-APL AML patients were 
inputted into WGCNA. No outliers were detected after 
all samples were hierarchically clustered using aver-
age distance and Pearson’s method, the dendrogram for 
which was shown in Additional file  1: Figure S1. The 
lowest soft threshold power = 6, by which the scale free 
 R2 > 0.85 (Fig. 1A). The calculation based on TOM-based 
dissimilarity divided the whole gene set into 37 gene 
modules (Fig. 1B), after we merged the modules with dis-
similarity less than 20% by setting the mergeCutHeight 
as 0.20. 400 randomly selected genes were grouped into 
modules and generate the heatmap of topological over-
lap (Fig.  1C), indicating high topological overlap degree 
of co-expression network in individual modules. Moreo-
ver, the correlation of co-expressed modules was dem-
onstrated by module eigengenes adjacency heatmap 
(Fig.  1D). Finally, the relationship of modules and traits 
was shown in Fig. 1E. Whereas we noticed that the sta-
tus of gene mutation combinations will also be of prog-
nostic value rather than the single gene, such as NPM1 
and FLT3. Therefore, we performed correlation analy-
sis for modules with different combinations of NPM1/

https://string-db.org/
https://david.ncifcrf.gov/
https://reactome.org/
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FLT3-ITD mutation status (Fig.  1F). 3 pairs of module-
trait were identified to be significant correlation, and 
were studied sequentially, including ‘lightyellow’ module 
 (R2 = 0.41/p = 2e-18 for FLT3-ITD,  R2 = 0.66/p = 4e-53 
for NPM1 mutation), ‘saddlebrown’ module 
 (R2 = 0.6/p = 2e-43, for RUNX1 mutation) and ‘light-
green’ module  (R2 = 0.41/p = 2e-10, for TP53 mutation). 

The ‘violet’ module was initially identified as significantly 
correlated with NPM1 mutation  (R2 = 0.46/p = 3e-23), 
while the following detail analysis on NPM1/FLT3-ITD 
combinations indicated that this module was not signifi-
cantly related to any combination. So, the ‘violet’ module 
was excluded from further analysis. According to the cri-
teria of hub genes, 973 hub genes were identified for fur-
ther analysis (see Additional file 5: Table S1).

The ‘lightyellow” co‑expressed module
The ‘lightyellow’ module included 143 genes and was pos-
itively correlated with FLT3-ITD  (R2 = 0.41, p = 2e-18) 
and NPM1 mutation  (R2 = 0.66, p = 4e-53) respectively. 
The further analysis on combinations of NPM1 mutation 
and FLT-ITD, the ‘lightyellow’ module was only found to 
be related to NPM1 mutation, regardless of the presence 
of FLT3-ITD. Despite the correlation coefficients didn’t 
meet the criteria, the potential negative correlations were 
detected for the ‘lightyellow’ module with ELN2017 risk 
stratification, complex karyotype, RUNX1-RUNX1T1, 
CBFB-MYH11, CEBPA biallelic mutation, ASXL1, 
RUNX1 and TP53 by p value less than 0.01.

The results of ORA for genes in the ‘lightyellow’ mod-
ule were shown in Fig.  2A. According to GO analysis, 
the genes were significantly enriched in biological pro-
cesses like positive regulation of transcription, negative 
regulation of cell differentiation, etc. And the genes were 
enriched in molecular functions like RNA polymerase II 
regulatory region sequence-specific DNA binding, DNA 
binding, etc. Based on KEGG pathway analysis, the genes 
were enriched in transcriptional misregulation in cancer. 
The reactome analysis indicated the genes were enriched 
in activation of HOX genes, activation of HOX genes 
during differentiation, etc.

Moreover, the genes of ‘lightyellow’ module were 
inputted into STRING analysis, resulting in the PPI net-
work shown in Additional file 2: Figure S2. Top 10 genes 
with highest connectivity degrees among the PPI net-
work were MEIS1, HOXA5, HOXA3, HOXA7, HOXA6, 
HOXA10, HOXB3, HOXA9, PBX3 and HOXB4 (Fig. 2B).

Table 1 The clinical and genetic features of TCGA and BeatAML 
cohorts

BeatAML TCGA 

Patient number 421 136

Female/male 180/241 61/75

Median age (yr) 61 58

Relapsed disease 23(5.46%) NA

MDS history 41(9.74%) NA

ELN2017 risk stratification

 Favorable 101(24.0%) 17(12.5%)

 Intermediate 156(37.1%) 80(58.8%)

 Poor 163(38.7%) 36(26.5%)

 Unknown 1(0.2%) 3(2.7%)

ELN2017 prognostic markers

 Complex karyotype 69(16.4%) 18(13.2%)

 del(7) 6(1.4%) NA

 RUNX1‑RUNX1T1 11(2.6%) 6(4.4%)

 CBFB‑MYH11 10(2.4%) 8(5.9%)

 CEBPA_Biallelic 7(1.7%) 13(9.6%)

 MLLT3‑KMT2A 13(3.1%) 2(1.5%)

 DEK‑NUP214 3(0.7%) NA

 GATA2‑MECOM 8(1.9%) NA

 FLT3‑ITD 95(22.6%) 38(27.9%)

 NPM1 108(25.7%) 38(27.9%)

 ASXL1 31(7.4%) 2(1.5%)

 RUNX1 32(7.6%) 14(10.3%)

 TP53 27(6.4%) 11(8.1%)

 5‑ or del(5q) NA 3(2.2%)

 NPM1 (+) FLT3‑ITD (−) 59 NA

 NPM1 (+) FLT3‑ITD ( +) 49 NA

 NPM1 (−) FLT3‑ITD (−) 100 NA

 NPM1 (−) FLT3‑ITD ( +) 46 NA

(See figure on next page.)
Fig. 1 A The scale independence (the left plot) and mean connectivity (the right plot) corresponding to different soft‑thresholding values. B The 
cluster dendrogram (the upper part) and the co‑expression modules (the lower part) generated by average linkage hierarchical clustering method. 
the branches of the dendrogram represent individual genes. The height indicates the Euclidean distance. Each module that contains weighted 
co‑expressed genes, is displayed with a distinct color. C The heatmap of topological overlap using 400 randomly selected genes. The genes are 
divided into different colors (modules), shown under the cluster dendrogram. D The heatmap of module eigengene adjacency, which stands for the 
relationship between distinct co‑expression modules. E The module‑trait relationship plotter. All modules (colors) are displayed on the longitudinal 
axis, while all prognostic markers are displayed on the transverse axis. Each cell contains  R2 and p value of correlations between the modules 
and prognostic markers by Spearman’s method. The gradient color of each cell corresponds to the  R2 (red = 1, blue =  − 1). F The module‑trait 
relationships for the combos of NPM1 and FLT3‑ITD status
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The ‘saddlebrown’ co‑expressed module
This module included 60 genes and was significantly cor-
related with RUNX1 mutation  (R2 = 0.6/ p = 2e-43). The 
results of ORA for genes in the ‘saddlebrown’ module 
were shown in Fig.  3A, meanwhile the relationship of 
enriched Reactome pathways were shown in Fig. 3B. GO 
analysis revealed that genes were significantly enriched 
in the following molecular functions: cytokine-medi-
ated signaling pathway, positive regulation of immune 
response, etc. The biological processes analysis indicated 
the genes were enriched in MHC protein complex bind-
ing, MHC class II protein complex binding, etc. Based 
on cell component analysis, the genes were enriched in 
endocytic vesicle, lysosomal membrane, etc. KEGG path-
way demonstrated the genes were significantly enriched 
in hematopoietic cell lineage, antigen processing and 
presentation, phagosome, etc. According to Reactome 
analysis, the genes were enriched in interferon signaling, 
PD-1 signaling, etc.

Furthermore, the genes of ‘saddlebrown’ module were 
inputted into STRING analysis, resulting in the PPI net-
work shown in Additional file 3: Figure S3. Top 10 genes 
with highest connectivity degrees among the PPI network 
(Fig. 3C) included HLA-DRB5, HLA-DMA, HLA-DRB1, 
CD74, HLA-DQA1, HLA-DPB1, CIITA, HLM-DMB, 
HLA-DRA and HLA-DQB1.

The ‘lightgreen’ co‑expressed module
This module included 352 genes and was significantly 
correlated with TP53 mutation  (R2 = 0.41/ p = 2e-10). 
The results of ORA for genes in the ‘lightgreen’ mod-
ule were shown in Fig.  4A, meanwhile the relationship 
of enriched Reactome pathways were shown in  Fig. 4B. 
By GO analysis on biological processes, the genes were 

identified to be enriched in cell cycle phase transition, 
mitotic nuclear division, etc. Molecular function analy-
sis based on GO database, indicated the genes were 
enriched in RNA binding, protein binding, etc. And cell 
component analysis according to GO database, revealed 
the genes were enriched in chromosome, ribosome, etc. 
KEGG pathway analysis demonstrated the genes were 
enriched in DNA replication, p53 signaling pathway, etc. 
In Reactome analysis, the genes were enriched in Mitotic 
G2-G2/M phases, transcriptional Regulation by TP53, 
etc.

Furthermore, the genes of ‘lightgreen’ module were 
inputted into STRING analysis, resulting in the PPI net-
work shown in Additional file 3: Figure S3. Top 10 genes 
with highest connectivity degrees among the PPI net-
work (Fig. 4C) included CCNA2, CDK1, BUB1, NCAPG, 
KIF11, BUB1B, CCNB1, TOP2A, CDC20 and AURKA.

Results of LASSO penalized regression analysis
The hub genes were reported to have cleaner functional 
annotations, associate with vital traits (survival time, 
etc.), and result in better validation [11]. Therefore, hub 
genes were inputted into LASSO penalized regression 
analysis, to fit OS of AML patients to the prediction 
model. After 1000 times of iteration between training and 
testing set in TCGA AML cohort, an optimized model of 
6 gene with non-zero coefficient were identified, includ-
ing NFKB2, NEK9, HOXA7, APRC5L, FAM30A and 
LOC105371592. The prediction model for AML OS were 
established by the 6-gene expression signature, the coef-
ficients of which were listed in Table 2. The risk score for 
an individual patient was summation of selected gene 
expression value weighted by coefficients according to 
Table 2. In detail, risk score = NFKB2* 0.04296 + NEK9* 
0.070743 + … + LOC105371592* 0.031033382.
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The association of 6‑gene expression signature 
with traditional risk factors of AML
The risk scores were calculated for 6-gene expres-
sion signature for the individual patients in TCGA 
AML cohort. The risk scores of patients in the adverse 
ELN2017 risk group, were significantly higher than 
that of favorable group (t = 2.799, df = 175, p = 0.0057, 
Fig. 5A). Meanwhile, AML patients with MDS history, 
had insignificantly higher risk scores than that without 
MDS history (t = 1.473, df = 318, p = 0.1418, Fig.  5B). 
The relapsed AML patients had higher risk scores than 
de novo AML patients (t = 2.556, df = 318, p = 0.0110, 
Fig. 5C).

The validation of 6‑gene signature model
The diagnostic utility was evaluated in the training set, 
testing set and 2 external independent validation sets. 
After the cut-off values for risk scores were calculated 
in each cohort and divided patients into low and high 
risk groups, the Kaplan–Meier plots were used to com-
pare the OS between groups by log-rank test. The OS 
in low risk group was significantly longer than that in 
high risk group in all 4 sets (Fig. 6A–D). In the TCGA 
training set, median OS was not reached in low risk 
group, and 8.08 months in high risk group (HR = 4.203, 
95%CI 2.251–7.847, p < 0.0001). The median OS was 
also not reached in low risk group, and 9.30  months 
for high risk group (HR = 3.342, 95%CI 1.817–6.145, 
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p = 1e-4). Similar results were uncovered in GSE12417 
(HR = 3.188, 95%CI 1.720–5.910, p < 0.0001) and 
GSE37642 (HR = 2.489, 95%CI 1.658–3.737, p < 0.0001). 
The distribution of risk scores, survival time and gene-
survival heatmap were shown for the training set 
(Fig.  7) and the testing set (Fig.  8) of TCGA cohort. 
As AUC is a very crucial indicator for utility of a prog-
nostic model, the time dependent ROC analysis was 
performed for the 4 set (Fig.  9A–D). The 5-year AUC 
for the training and testing set were 0.822 and 0.824 
respectively, whereas it is 0.79 and 0.743 in GSE12417 
and GSE37642, respectively, which demonstrated the 
superiority and robustness in expression datasets gen-
erated from different platforms. The results of multi-
variate COX regression analysis were shown in Table 3, 
indicating the risk factor was an independent risk fac-
tor for OS of AML patients.

Discussion
The heterogeneity of expression profiles has been studied 
for AML patients harboring different mutations or chro-
mosomal abnormality [12–15], but the co-expressed gene 
modules have not been rarely linked to the genetic mark-
ers using WGCNA. Ravasz et al. demonstrated hierarchi-
cal network modularity for metabolic network, based on 
which they proposed the utility of Topological Overlap 
Matrix to measure how strongly the nodes are connected 
[16]. Then the concept was transplanted to gene expres-
sion network to investigate the scale-free properties by 
developing a clustering method (WGCNA), by which the 
gene modules were identified, with high co-expression 
and strong network connectivity [6].

In the present study, the results of WGCNA indicated 
that the ‘lightyellow’, ‘saddlebrown’ and ‘lightgreen’ were 
significantly correlated with NPM1, RUNX1 and TP53 

Table 2 The prediction model for AML OS. The risk score of individual patients equals to the summation of products of included gene 
expression level and the corresponding coefficient

ENSEMBL ID Gene symbol Gene name Coefficent

ENSG00000077150 NFKB2 Nuclear factor kappa B subunit 2 0.04296

ENSG00000119638 NEK9 NIMA related kinase 9 0.070743

ENSG00000122592 HOXA7 Homeobox A7 0.055637

ENSG00000136950 ARPC5L Actin related protein 2/3 complex subunit 5 like 0.748162

ENSG00000226777 FAM30A Family with sequence similarity 30 member A 0.294823

ENSG00000262050 LOC105371592 Uncharacterized LOC105371592 0.031033
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Fig. 5 The comparison of risk scores in different ELN2017 risk groups (A), with or without MDS history (B), de novo or relapsed AML (C). **p 
value < 0.01; *p value < 0.05
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mutation, respectively. In Fig. 1E, the ‘lightyellow’ mod-
ule was insignificantly or negatively correlated with all 
genetic variations, except NPM1 and FLT3-ITD. Then 
the correlation analysis with NPM1/FLT3 combinations 
indicated that ‘lightyellow’ module was the NPM1-spe-
cific co-expression module. ORA indicated that genes in 
this module were mainly enriched in regulation of tran-
scription and cell differentiation, the molecular function 
of which involved in RNA polymerase II-specific DNA 
binding transcription factor activity. In the ‘lightyellow’ 
module, the HOXA family genes (HOXA1-7/HOXA9-11/
HOXA13) and HOXB family genes (HOXB2-9), and the 
cofactors of HOXA (PBX3/MEIS1) were involved in the 
abovementioned pathways [17, 18]. The HOX9-11, PBX3 

and MEIS1 were also involved in the ‘Transcriptional 
misregulation in cancer’ pathway (KEGG database), and 
‘Activation of HOX genes during differentiation’ pathway 
(Reactome database). The sequential PPI network analy-
sis also supported the central position of HOXA/B family 
genes and their cofactors, which demonstrated they have 
the highest connectivity degrees among the ‘lightyellow’ 
module. The deregulation of HOX genes and their cofac-
tors was initially reported in AML patients harboring 
MLL fusion genes [19–21], and played a role in leukemo-
genesis in this type of AML [22]. The similar expression 
signature was revealed in NPM1 mutated AML, in which 
upregulation of PBX3 and HOX9 was required to main-
tain the survival of leukemic cells [2, 23], and was related 
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Fig. 9 The time‑dependent ROC curves showing diagnostic utility of 6‑gene signature by AUC, for the training set (A), the testing set (B), GSE12417 
(C) and GSE37642 (D)

Table 3 The results of univariate and multivariate Cox analysis of traditional prognostic factors and risk scores generated by the 
prediction model

Univariate Cox analysis Multivariate Cox analysis

Characteristics Hazard Ratio 95% CI p value Hazard Ratio 95% CI p value

Age 1.03 1.02–1.05 0 1.01 0.99–1.03 0.298

Blast_percentage 1 0.99–1.02 0.443 NA NA NA

FAB 1.06 0.94–1.2 0.351 NA NA NA

Induction 3.51 2.19–5.61 0 1.84 0.98–3.46 0.057

Race 0.86 0.66–1.13 0.287 NA NA NA

Risk_cytogenetic 1.73 1.23–2.41 0.001 0.64 0.22–1.92 0.43

Risk_molecular 1.83 1.31–2.56 0 3.36 1.2–9.44 0.021

Riskscore 1.01 1–1.02 0.012 1.01 1–1.02 0.023

Sex 1.05 0.69–1.57 0.831 NA NA NA

Transplantation 0.41 0.27–0.62 0 0.42 0.25–0.72 0.002



Page 14 of 18Guo et al. J Transl Med          (2021) 19:228 

to unfavorable clinical outcomes [12, 24]. Additionally, 
similar WGCNA was performed using TCGA AML data, 
the results of correlation analysis between co-expression 
modules and genetic variants were shown in Additional 
file  4: Figure S4. The BeatAML dataset (including 421 
non-APL AML cases) have more samples than that of 
TCGA dataset (including 136 non-APL AML cases). The 
statistic power was improved when more samples were 
inputted into analysis, which decreased the probability 
of committing type II errors (false negative). Therefore, 
the analysis based on BeatAML dataset have higher prob-
ability of detecting the significant correlation between 
gene modules and genetic variations, than that based 
on TCGA dataset. Notably, we noticed there was also 
a strongly significantly correlated module with NPM1 
mutation  (R2 = 0.71/ p = 4e-28), 45 out 109 genes (Addi-
tional file  6: Table  S2) in which were overlapped with 
the ‘lightyellow’ module, including HOXA/B gene clus-
ters and PBX3/MEIS1. These results from clinical and 
experimental studies confirmed the accuracy of our mod-
ule analysis and identification of key genes. Considering 
NPM1 mutation is the most common genetic variant in 
AML, the specific expression signature characterized by 
HOXA/B-PBX3-MEIS1, will provided insights to further 
studies.

For RUNX1 mutation, the ‘saddlebrown’ module was 
the most correlated co-expression module (Fig.  1E). 
Corresponding to the mutant exclusivity of NPM1 and 
RUNX1 mutations reported previously [25], the ‘saddle-
brown’ module seems to be underexpressed in patients 
harboring NPM1 mutation  (R2 =  − 0.34/ p = 6e-13). 
The results of ORA indicated the genes of ‘saddlebrown’ 
were mainly enriched in pathways involving in immune 
response, cytokine signaling and antigen presentation. 
These genes are also implicated in the enriched KEGG 
pathways, including antigen processing and presentation, 
hematopoietic cell linage, phagosome, and cell adhesion 
(Fig.  3A). Figure  3B showed the interaction network of 
‘saddlebrown’ module enriched pathways by Reactome 
database, which predominantly composed of immune 
signaling. The core part with highest connectivity degrees 
in the ‘saddlebrown’ module, included HLA gene cluster, 
CD74 and CIITA (Fig. 3C). CD74 is known as the chap-
erone for MHC class II molecules implicating in antigen 
presentation [26], the role of which in AML remained 
unclear. While a recent single cell transcriptomic analysis 
demonstrated CD74 was expressed at high level in AML 
cells instead of normal myeloid cells [27]. The prognos-
tic value of CD74 and association with RUNX1 mutation 
still need further study to validate. CIITA is a vital regula-
tor of MHC class II gene expression including HLA-DR, 
HLA-DP and HLA-DQ, deregulation of which promoted 
abolishment of recognition from donor T cell, and lead 

to AML relapse after allo-HCT [28]. The dysregulation of 
immune signaling pathways and MHC class II regulator 
(CD74 and CIITA) may contribute to the inferior clinical 
outcomes in AML patients harboring RUNX1 mutation.

Since TP53 encodes a DNA-binding transcription fac-
tor inducing cell growth arrest and apoptosis upon vari-
ous cellular stress [29]. Missense or null mutations of 
TP53 is one of the most powerful independent markers 
for adverse prognosis in AML [30, 31]. As the results of 
ORA, the upregulation of mitotic process related path-
ways in AML patients harboring TP53 mutation, proba-
bly resulted from abolishment of TP53 induced cell cycle 
arrest and apoptosis, which may promote the leukemic 
cell proliferation and disease progression. Therefore, the 
regulation of mitotic exit, which refers to the transition 
from mitosis to interphase, is crucial for TP53 mutated 
AML. Liu et al. divided the regulator of mitosis exit into 
4 groups: (1) APC/C; (2) cyclin B; (3) mitosis kinase and 
phosphatase; (4) kinesin and microtube-binding proteins 
[32], all of which were partly overlapped with genes in the 
‘lightgreen’ model. Among the top genes in the module, 
CDC20, encoding cell division cycle protein 20 homolog, 
is required for anaphase promoting complex/cyclostome 
(APC/C) to confer full ubiquitin ligase activity and sub-
state specificity. The aberrant expression of CDC20 was 
reported in AML and positively correlated with EZH2 
and TET2 in AML [33], suggesting epigenetic factors 
participated in the regulation of CDC20. BI-D1870, the 
inhibitor of RSK, potentiated anti-leukemia activity of 
vincristine, which prevent the association of activa-
tor CDC20 with APC/C and impeded mitosis exit [34]. 
Other preclinical studies were performed to explore the 
anti-tumor mechanism of APC/C inhibitors, in cervical 
cancer, osteosarcoma, colorectal and lung cancer [35, 36]. 
The association of CDC20 upregulation with TP53 null 
mutation or functional silencing was uncovered in ane-
uploid AML [37], which suggested CDC20 as a potential 
target and biomarker in TP53 mutant AML. The regula-
tory subunit of cyclin B (encoded by CCNB1) and CDK1 
(encoded by CDK1) constitutes the mitosis promoting 
factor (MPF), which controls the entry or exit of mito-
sis [38]. Overexpression of CCNB1 was associated with 
various cancer types [39–42], and predicted inferior 
response to mTOR inhibitor [43]. The direct association 
of CCNB1/CDK1 with TP53 has not been validated in 
AML. 3 main mitotic kinases included Aurora kinases, 
PLK1 and PP2A. AURKA was one of core genes in PPI 
network regarding TP53 mutation (Fig.  4C). Aurora 
Kinase A, encoded by AURKA, is implicated in cell 
mitosis process, including centrosome maturation and 
spindle formation [44, 45]. The anti-leukemic effect 
of Aurora kinase inhibitors was reported via induc-
ing mitochondrial impairment [46], cell cycle arrest[47] 
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etc. Preliminary clinical studies have been conducted to 
validate the efficacy and safety of Aurora kinase inhibi-
tors in AML [48–50]. Although the association of TP53 
mutation and AURKA expression has been rarely stud-
ied previously for AML, it was explored in solid tumors 
with high frequency of TP53 variants, including adreno-
cortical carcinoma [51], pancreatic cancer [52], head 
and neck cancer [53], hepatocellular carcinoma [54] and 
ovarian cancer [55]. Moreover, in cancer cell lines lack-
ing p53, resulting from genetic engineering to express 
HPV16-E6 oncoprotein or siRNA targeting TP53, the 
inhibitor of Aurora kinases (VX680) induced apoptosis 
was enhanced in comparison with cell lines with wide-
type p53 [56]. PLK1 was also in the ‘lightgreen’ module, 
which encoded Polo-like kinase 1. PLK1 is a crucial regu-
lator of multiple processes [57], including mitotic spin-
dle assembly, chromatid separation, activation of Cyclin 
B/CDK1 complex [58], etc. PLK1 was found to be over-
expressed in various AML cell lines and the majority of 
AML patients [59]. PLK1 inhibitor or siRNA targeting 
PLK1 blocked the proliferation of AML cell lines, while 
the normal hematopoietic progenitors were less sensi-
tive to abolishment of PLK1 [60]. This result provided the 
rationale for targeting PLK1 in the treatment of AML, 
the clinical trials had been conducted [61, 62]. The asso-
ciation of PLK1 over-expression and silencing of TP53 
was reported in aneuploid AML [37]. Kinesin superfam-
ily proteins (KIFs) function mainly as molecular motors 
binding to and moving across the microtube network [63, 
64]. Seven members of KIF family (KIF11, KIF14, KIF15, 
KIF18A, KIF18B, KIF20A and KIF23) were included in 
the ‘lightgreen’ module. KIF 11 and KIF23 are the well-
studies KIF family members and considered as an onco-
gene, inhibition of which can cause arrest at mitosis exit 
in hepatocellular cell carcinoma, lung cancer, pleural 
mesothelioma, and glioma cancer, breast cancer, men-
ingiomas [65–70]. A phase I clinical trial on the highly 
selective kinesin spindle protein inhibitor, ARRY-520, has 
been conducted on advanced AML patients [71]. As the 
expression level of mitosis exit regulators was positively 
correlating with TP53 mutation, targeting at these regu-
lators (APC/C, Aurora kinases, PLK1, KIFs) seems to be a 
reasonable strategy for TP53 mutant AML patients.

No significant correlating modules were detected 
for other genetic markers in ELN2017, including com-
plex karyotype, del(7), RUNX1-RUNX1T1, CBFB-
MYH11, CEBPA biallelic mutation, MLLT3-KMT2A, 
DEK-NUP214, GATA2-MECOM and ASXL1 mutation. 
This may partly be attributed to insufficient samples. A 
quantity of gene variations for one specific abnormality 
(complex karyotype, del(7), ASXL1) may also abolish the 
accuracy of our analysis.

The 6-gene signature with non-zero coefficients was 
identified by LASSO penalized regression analysis. 
AML patients with traditional risk factors (ELN2017 
adverse risk stratification, with MDS history, relapsed 
disease) have higher risk scores of 6-gene signature 
(Fig. 5A–C). The Kaplan–Meier analysis demonstrated 
much better survival profiles of low risk group than 
that of high risk group for the training set, the test-
ing set and 2 validation sets. Moreover, the multiple 
Cox proportional hazards regression analysis indicated 
that 6-gene risk scores were an independent risk factor 
for AML survival (Table  3). The time dependent ROC 
was employed to illustrate the diagnostic utility of the 
6-gene model, which demonstrated the superior 5-year 
AUC in the training and testing sets (0.822 and 0.824, 
respectively). To evaluate the robustness of this model 
across different datasets, GSE12417 and GSE37642 
were used to fit the OS data into 6-gene model. Owing 
to the different methods of measuring expression level 
in training/testing sets (RNAseq) and validation sets 
(microarray), a slight lower 5-year AUCs were esti-
mated for the 2 validation sets (0.79 and 0.743), suggest-
ing that this model was robust across different datasets. 
NFKB2, encoding nuclear factor NF-kappa-B p100 sub-
unit, was in the ‘brown’ module, which was correlated 
with FLT3-ITD with a significant p value (6e-4, Fig. 1E). 
Through a non-canonical pathway, the phosphoryla-
tion of NFKB2/p100 leads to its proteolytic process 
and formation of NF-kappa-B RelB-p52 complex [72]. 
The study using MV-4–11 cell line, demonstrated 
FLT3-ITD promoted activation of NF-kappa-B RelB-
p52 complex and repressed the expression of DAKP1 
in association with HDACs [73]. Since the DAKP1 was 
acknowledged as tumor suppressor via inducing apop-
tosis and autophagy, and the abolishment of DAKP1 
expression occurred in various cancers, including 
AML [74]. Therefore, the relationship between NFKB2 
expression and FLT3-ITD was intriguing and provided 
potential biomarkers for HDAC inhibitors in FLT3-ITD 
AML. NEK9 encodes serine/threonine-protein kinase 
Nek9, which played a crucial role in G1/S phase transi-
tion and S phase progression [75]. Few studies focused 
on the association of NEK9 and AML, while Matthew 
et al. identified NEK9 with increased activity or abun-
dance in the imatinib resistant cell model of CML [76]. 
HOXA7 is a member of HOXA family, which is one 
of the most studied gene clusters in AML. HOXA7 is 
identified as potential prognostic markers in AML pre-
viously [77]. The association of ARPC5L, FAM30A and 
LOC105371592 with AML survival or pathogenesis, 
has not been described previously. Our LASSO analysis 
provided a robust prediction model for AML survival, 
and several potential biomarkers or therapeutic targets.
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Conclusion
We identified the significantly correlated gene co-
expression modules with prognostic cytogenetic or 
molecular markers of ELN2017. The sequential ORA 
illustrated the involved pathways for the key modules. 
Additionally, the novel prediction model was estab-
lished with robust and superior diagnostic utility based 
on hub genes obtained from WGCNA.
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