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Abstract 

Background:  The main limitation of current immune checkpoint inhibitors (ICIs) in the treatment of cervical cancer 
comes from the fact that it benefits only a minority of patients. The study aims to develop a classification system to 
identify immune subtypes of cervical squamous cell carcinoma (SCC), thereby helping to screen candidates who may 
respond to ICIs.

Methods:  A real-world cervical SCC cohort of 36 samples were analyzed. We used a nonnegative matrix factorization 
(NMF) algorithm to separate different expression patterns of immune-related genes (IRGs). The immune characteris-
tics, potential immune biomarkers, and somatic mutations were compared. Two independent data sets containing 
555 samples were used for validation.

Results:  Two subtypes with different immunophenotypes were identified. Patients in sub1 showed favorable 
progression-free survival (PFS) and overall survival (OS) in the training and validation cohorts. The sub1 was remark-
ably related to increased immune cell abundance, more enriched immune activation pathways, and higher somatic 
mutation burden. Also, the sub1 group was more sensitive to ICIs, while patients in the sub2 group were more likely 
to fail to respond to ICIs but exhibited GPCR pathway activity. Finally, an 83-gene classifier was constructed for cervical 
SCC classification.

Conclusion:  This study establishes a new classification to further understand the immunological diversity of cervical 
SCC, to assist in the selection of candidates for immunotherapy.

Keywords:  Cervical squamous cell cancer, Nonnegative matrix factorization, Immune checkpoint inhibitors, Subtype, 
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Background
Cervical cancer ranks as the fourth most common 
female malignancy and the fourth leading cause of can-
cer mortality in women worldwide [1, 2], while low- and 

middle-income countries account for 90% of the deaths 
[3, 4]. Although the application of screening and human 
papillomavirus (HPV) vaccination provide effective pre-
vention for cervical cancer, the imbalance of regional 
development leads to cervical cancer which will still be 
a serious health problem in the coming decades [5]. For 
patients with stage I–III, 15–61% of women will still 
experience metastatic disease within the first 2 years after 
completing treatment [6]. Once the disease progresses, 
second-line and later treatment options are limited, and 
patients often have a poor prognosis [7].
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In recent years, the promising responses of immu-
notherapy based on inhibitors targeting cytotoxic T 
lymphocyte antigen 4 (CTLA-4), programmed death 
receptor 1 (PD-1), or its ligand (PD-L1) have brought rev-
olutionary changes to the treatment of a variety of can-
cers. It has now become an important issue for cervical 
cancer. In June 2018, the Food and Drug Administration 
has approved pembrolizumab for the treatment of recur-
rent or metastatic cervical cancer based on the prelimi-
nary results of the Phase II study of KEYNOTE-158 [8]. 
To date, the objective response rate (ORR) of immune 
checkpoint inhibitors (ICIs) for cervical cancer varies 
from 4% to 26.3% [7, 9–11], with over 80% of responding 
patients obtaining long-lasting response (> 6 months) [7]. 
The major limitation of immunotherapy comes from the 
fact that it benefits only a minority of patients. In con-
sideration of the economic burden and toxicity of ICIs, 
it is important to identify suitable patients who benefit 
from ICIs and combination therapy. Still, little is known 
about how to use the immune-related features of cervical 
cancer to tailor appropriate immunotherapy for different 
patients.

On the one hand, almost all cervical cancers are driven 
by the infection of HPV [12] and are therefore considered 
to be naturally immunogenic. Meanwhile, HPV mediates 
a variety of mechanisms to evade innate and adaptive 
immune responses, making the complex tumor microen-
vironment (TME) [13]. Based on limited evidence, some 
scholars believe that the immune status of local TME 
may play an important role in the relatively low response 
rate of HPV-related tumors [14, 15]. Squamous cell car-
cinoma (SCC) is the most common histological subtype 
accounting for 75% of all cervical cancers [16]. We specu-
late that the cervical SCC can be further divided into sub-
types with distinct immune states according to molecular 
patterns, which may provide evidence for individualized 
patient immunotherapy. As one of the source separation 
techniques, non-negative matrix factorization (NMF) 
can help separate the molecular characteristics of tissue 
partitions from the measurement data of tumor samples. 
It is particularly suitable for biological data because it 
restricts all sources to be positive in nature, thereby iden-
tifying the paradigm of positive gene expression, rather 
than pairwise differences between tissue types [17]. In 
this study, a real-world cervical SCC cohort was classi-
fied by the NMF based on expression profiles of immune-
related genes (IRGs). Subsequently, two subtypes with 
different prognoses and immunophenotypes were identi-
fied and then validated in two public cohorts. The vari-
ous biological characteristics and the sensitivity to ICIs 
of each subtype were also described. Finally, an 83-gene-
based classifier was constructed to determine the cervical 
SCC classification.

Methods and materials
Real‑world patients and samples sequencing
A total of 36 cervical SCC patients who underwent con-
current radiochemotherapy in Sichuan Cancer Hospi-
tal (SCCH) between 2013 and 2018 were included in 
the training cohort according to the enrollment crite-
ria described in our previous study [18]. The protocol 
was approved by the ethics committee of Sichuan Can-
cer Hospital and carried out according to the principles 
of the Declaration of Helsinki. Informed consent was 
obtained from all patients in the training cohort for the 
acquisition and use of tissue samples and clinical data.

The 36 formalin-fixed and paraffin-embedded (FFPE) 
samples were obtained from patients in the training set. 
The RNA sequencing (RNA-seq) process was conducted 
as described previously [18]. In this study, we further 
performed whole-exome sequencing (WES) on the same 
batch of samples. For each tumor FFPE sample, genomic 
DNA (gDNA) was extracted with the GeneRead DNA 
FFPE Kit (QIAgen, Germany) according to the manufac-
turer’s protocol. The purity and concentration of gDNA 
were measured using a NanoDrop 2000 Spectrophotom-
eter (Thermo Scientific, USA). High-quality gDNA was 
sheared with an M220 ultrasonicator (Covaris, USA). 
Library preparations were performed with KAPA Hyper 
Prep Kit (KAPA Biosystems, USA). Enriched exome 
libraries were sequenced on the Illumina NovaSeq 6000 
platform. The paired-end reads from the raw FASTQ 
file were aligned to the hg19 reference genome using 
BWA-MEM (default parameters, v0.7.15) [19] to gener-
ate a binary sequence alignment map (BAM) file, and the 
duplicate reads were marked and removed using Picard 
tools (https://​broad​insti​tute.​github.​io/​picard/). Single 
nucleotide variations (SNVs) and insertions and dele-
tions (INDELs) were called using VarDict [20]. ANNO-
VAR [21] was used to annotate the variants for further 
analysis.

Collection of public data and processing
This study included two independent validation cohorts 
with clinical information, one of which is the RNA-seq 
dataset (raw counts) of 255 patients with cervical SCC in 
the Cancer Genome Atlas (TCGA) Cervical Squamous 
Cell Carcinoma and Endocervical Adenocarcinoma 
(CESC) project, retrieved from the Genomic Data Com-
mons (GDC) Legacy Archive (https://​portal.​gdc.​can-
cer.​gov/​legacy-​archi​ve). The data selection criteria and 
processing procedures have been described in a previ-
ous study [18]. In this study, we further downloaded the 
somatic mutation data (MAF file) of the aforementioned 
patient cohort.

As another validation set of this study, the dataset 
GSE44001 [22] was collected from Gene Expression 
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Omnibus (GEO, http://​www.​ncbi.​nlm.​nih.​gov/​geo/). 
This mRNA microarray dataset was based on the Plat-
form GPL14951 (Illumina HumanHT-12 WG-DASL 
V4.0 R2 expression beadchip) and included 300 patients 
with early cervical cancer (FIGO stage I–II). The raw data 
(CEL files) from GSE44001 were normalized using the 
quantile normalization method in the “limma” package, 
annotated with the “illuminaHumanv4” package before 
further analysis.

Selection of immune‑related genes associated 
with prognosis
A comprehensive list of IRGs was obtained from the 
Immunology Database and Analysis Portal (ImmPort) 
database (https://​www.​immpo​rt.​org), which contained 
genes closely related to the immune process [23]. Also, 
we added immune cell-specific signatures according to 
previous studies [24–28]. Then the univariate Cox pro-
portional hazards model was used to screen out IRGs 
that are statistically significantly related to the overall 
survival (OS) of patients in the training set, and finally, 
genes with p-value < 0.05 were selected as candidates for 
the NMF analysis.

Identification and validation of cervical SCC subtypes 
by NMF
Before performing NMF, candidate IRGs with lower 
absolute median difference (MAD) values (≤ 0.5) in the 
corresponding patient cohort were excluded. Mathemati-
cally, the gene expression matrix A is considered to be 
essentially high-dimensional data with the expression 
levels of N genes in M samples. By applying the NMF 
algorithm, the matrix was factorized into 2 nonnegative 
matrices W and H (i.e., A ≈ W × H), where the sizes of 
matrix W and matrix H are N × k and k × M, respectively 
[29]. Matrix A was continuously iteratively decomposed, 
and its outputs were finally integrated into a consensus 
clustering of samples with k classifications. In this study, 
the “NMF” package [30] was used to cluster the SCCH 
cohort for ranks 2 to 6 and the ‘brunet’ algorithm was 
employed with 200 iterations. The cophenetic correlation 
coefficients and silhouette scores were directly obtained 
to determine the optimal rank. After determining num-
ber 2 as the best rank, the NMF was run again with rank 
2 and performed 200 iterations. To verify the reliability of 
NMF classification, the same algorithm was also applied 
to TCGA and GEO cohort by using the same candidate 
IRGs.

Comparison of immune‑related characteristics 
between different subtypes
The stromal and immune scores, which respectively rep-
resent the proportion of stromal cells and immune cells 

in tumor samples, were calculated using the ESTIMATE 
R package. ESTIMATE score is the sum of stromal and 
immune scores, which is used to infer tumor purity in 
tumor tissue [31]. Besides, another method used in this 
study to predict immune infiltration was single-sample 
Gene Set Enrichment Analysis (ssGSEA), which com-
puted a normalized enrichment score (NES) to quantify 
the relative abundance of each immune cell type in the 
tumor microenvironment [32, 33]. A total of 28 immune 
cell types and corresponding gene signatures were 
obtained from an online database, The Cancer Immu-
nome Atlas (TCIA, https://​tcia.​at/) [24]. Besides, we 
compared the performance of the following biomarkers 
between different subtypes: immune infiltration score 
(IIS), T cell infiltration score (TIS), cytolytic activity 
(CYT), antigen processing and presenting machinery 
(APM) score, tumor mutational burden (TMB), immune-
checkpoint signatures, interferon gamma (INFG) sig-
nature and CD8. The IIS for a sample was defined as 
the mean of the NES of the adaptive immune cells and 
innate immune cells, while the TIS was a mean score of 
the following T cell types: activated CD8 + T, T helper, 
effector memory T cell, central memory T cell, Th1, Th2, 
Th17, and Treg cells [26]. The CYT was measured as 
the geometric mean of expression values of granzyme A 
(GZMA) and perforin (PRF1), which are significantly up-
regulated with CD8 + T cell activation [34]. It has been 
demonstrated that antigen presentation plays a role in 
the response to ICIs [35]. Using gene set variation analy-
sis (GSVA) function from the “GSVA” package, the APM 
score was calculated based on a list of antigen presenta-
tion related gene signatures (HLA-A, HLA-B, HLA-C, 
TAP1, TAP2, TAPBP, ERAP1, ERAP2, CANX, CALR, 
B2M, PDIA3, PSMB5, PSMB6, PSMB7, PSMB8, PSMB9, 
and PSMB10) [36]. Then, the efficiency of antigen pro-
cessing and presenting was assessed using normalized 
APM scores from 0 to 1. The TMB was calculated accord-
ing to the number of non-synonymous alterations (single 
nucleotide variants and indel mutations) per megabase 
(Mb). The immune-checkpoint signatures used genes 
CD274 (also known as PD-L1), CTLA4, HAVCR, LA3, 
PDCD1 (also known as PD-1), and PDCD1LG2 (also 
known as PD-L2) [37]. The INFG signature including 
CXCL10, CXCL9, HLA-DRA, IDO1, IFNG, and STAT1 
[38]. The CD8 signature used CD8A and CD8B.

Functional analysis by gene set enrichment analysis (GSEA)
Differential expression genes (DEGs) among different 
cervical SCC subtypes in the SCCH cohort were identi-
fied using the “edgeR” package [39, 40]. The genes with 
p-value < 0.01, false discovery rate (FDR, also known as 
Benjamini–Hochberg adjusted p-values) < 0.05, and abso-
lute log2 fold change (logFC) > 1.0 were defined as DEGs. 

http://www.ncbi.nlm.nih.gov/geo/
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Next, genes were ranked by logFC in descending order 
and then were computed in the “clusterProfiler” pack-
age by the GSEA function [41]. The custom gene sets 
were downloaded from the Molecular Signature Data-
base (MsigDB) v7.2 [42, 43]. Significantly enriched Gene 
Ontology (GO) biological pathways and Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) pathways were fil-
tered based on a cutoff of FDR < 0.05. NES was used to 
rank the significantly enriched gene sets.

Comparison of somatic variations between different 
subtypes
To maintain consistency with the TCGA database, the 
somatic mutation information of the SCCH cohort 
was converted from ANNOVAR annotated file into 
the MAF file. This process was implemented using the 
“annovarToMaf” function in the “maftools” package [44]. 
The MAF file of the TCGA cohort was obtained from the 
database, as mentioned earlier. In total, mutational data 
from WES was available for 32 samples in the SCCH 
cohort and 237 samples in the TCGA cohort. We then 
compared whether differences exist in mutation frequen-
cies between different subtypes.

Construction of classifier and performance validation
The DEGs identified above were used as candidate genes 
to construct our classifier. According to the results of the 
univariate Cox proportional hazards model, those DEGs 
that were statistically significantly related to the OS of 
the SCCH cohort were selected to construct the classi-
fier. Next, we used the genes selected above as variables 
to determine the optimal “mtry” and “ntree” parameters, 
and perform tenfold cross-validation. Finally, a random 
forest classifier based on 500 trees was constructed using 
the R package “randomForest” [45]. The performance of 
our classifier to distinguish cervical SCC subtypes was 
verified in two validation cohorts, and the specificity and 
sensitivity of the classifier were calculated via the receiver 
operator characteristic (ROC) curve by using the “pROC” 
package [46].

Prediction of the response of each subtype 
from immunotherapy
To predict the efficacy of immunotherapy in different 
subtypes, an unsupervised subclass mapping method 
SubMap (GenePattern, v.3) [47] was used to evaluate cor-
respondence or commonality by measuring the similarity 
of gene expression profiles between our subtypes and a 
group of immunotherapy-treated patients. These avail-
able patients were from the metastatic melanoma cohort 
and treated with anti-CTLA-4 or anti-PD-1 antibodies 
at the University of Texas (UT) MD Anderson Cancer 
Center [48]. The Bonferroni adjusted p-value was used to 

assess the extent of the similarity, the smaller the p-value, 
the greater the similarity. The results of the SubMap anal-
ysis were visualized with the “complexHeatmap” package 
[49].

Identification of genetic characteristics of subtypes
To evaluate the distribution characteristics of genes in 
each subtype of cervical SCC and screen the character-
istic genes highly correlated with the subtype, a weighted 
gene co-expression network analysis (WGCNA) was 
performed on the expression matrix of DEGs by using 
the “WGCNA” package [50, 51]. First, eliminate outli-
ers to ensure the reliability of the co-expression network 
results, and then determine the optimal soft threshold 
based on the standard scale-free model fitting index R2. 
Based on this, the matrix is converted into a topological 
overlap matrix, the corresponding dissimilarity was cal-
culated. The module eigengenes were calculated to evalu-
ate the correlation between the module and the subtype, 
and finally, the hub genes from the module most closely 
related to the subtype were extracted.

Statistical analysis
All statistical analyses and graphics were performed 
by using R software (R version 4.0.3). The associations 
of clinical characteristics between the training set and 
validation sets were examined by the chi-square test or 
Fisher’s exact test. The distributions of immune-related 
characteristics between groups were estimated and tested 
by the Wilcoxon rank-sum test. Principal component 
analysis (PCA) was performed using the “FactoMineR” 
[52] and “factoextra” [53] packages. The “pheatmap” 
[54] and “complexHeatmap” [49] packages were used 
for heat maps. Kaplan–Meier curves and log-rank tests 
were employed to analyze progression-free survival (PFS) 
and OS rates in the “survival” package. The Cox propor-
tional hazards regression model has also performed in 
the package “survival” [55]. The package “forestplot” was 
used for the presentation of the results of the univariable 
and multivariable analysis [56]. The correlative relation-
ships between immune-related scores were evaluated 
using Pearson correlation via the package “ggstatsplot” 
[57]. These scores with a p-value < 0.05 and Pearson cor-
relation coefficient > 0.5 were considered to be strongly 
correlated. All statistical tests were two-sided.

Results
Cohort characteristics
The study design and workflow are indicated in Fig.  1. 
Totally 591 patients in three independent cohorts were 
included in this study. The SCCH and TCGA cohort 
included both RNA-seq data (n = 36 and 255, respec-
tively) and somatic mutation data (n = 32 and 237, 
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respectively) with full clinical follow-up data, while the 
GEO cohort contained microarray transcriptomics data 
from 300 patients with PFS status available only. The 
baseline characteristics of these patients were summa-
rized in Additional file 2: Table S1. In the SCCH cohort, 
there was no FIGO stage I patient, and all patients 
received concurrent chemoradiotherapy, while 49% of 
the patients in the TCGA cohort were FIGO stage I and 
the main treatment was a hysterectomy. All patients in 
the GEO cohort were FIGO I-II stage, and 58.3% of the 
patients underwent surgery alone.

Immune‑related subtypes in SCCH, TCGA, and GEO cohorts
Combining ImmPort and immune cell-specific signa-
tures, a total of 2885 IRGs were obtained (Additional 
file  2: Table  S2), of which 257 genes were significantly 
correlated with OS in the SCCH cohort (p < 0.05). Using 
the expression profiles of these 257 IRGs, we performed 
NMF to cluster the training set. The optimal number of 
clusters was two, which was decided by cophenetic cor-
relation coefficients, dispersion coefficients, and mean 
value of silhouette width, as shown in Fig. 2A and Addi-
tional file  1: Figure S1 (two subtypes were designated 
as sub1 and sub2). PCA confirmed that there were 
robust differences between the gene expression profile 
of two subtypes (Fig.  2B), and Kaplan–Meier analysis 
revealed that patients in sub1 had significantly longer 
OS (p < 0.0001; Fig. 2C) and PFS (p = 0.042; Fig. 2D). To 

verify the reproducibility of the findings in the SCCH 
cohort, the above 257 IRGs were used to perform NMF 
clustering in two independent validation cohorts. As 
well, the TCGA and GEO cohorts were divided into 
two subtypes (Additional file  1: Figures  S2, S3). The 
PCA analysis also confirmed the difference in gene 
expression profile among the two subtypes (Fig. 2E, H). 
Consistently, survival analysis showed that the prog-
nostic difference between the two subtypes was statis-
tically significant (p < 0.05; Fig.  2F, G, I). Additionally, 
univariate Cox proportional hazards analysis demon-
strated that the acquired new classification was signifi-
cantly related to prognosis in all three cohorts (sub2 vs. 
sub1; SCCH cohort for OS: hazard ratio [HR] = 25.64, 
95% CI 4.18–53.17, p = 0.001; TCGA cohort for OS: 
[HR] = 1.84, 95% CI 1.11–3.07, p = 0.019; GEO cohort 
for PFS: [HR] = 2.92, 95% CI 1.54–5.53, p = 0.001). 
Multivariate analysis was then used to adjust for poten-
tial confounding factors in the baseline characteristics 
of all three cohorts (e.g., tumor diameter, FIGO stage, 
and TNM stage), and found that the new classification 
remained an independent prognostic predictor (Addi-
tional file  1: Figure S4). Accordingly, all three cohorts 
were consistently classified into two subtypes with sig-
nificantly different prognostic risks. The distribution 
of clinicopathological characteristics and the different 
expression patterns of 257 metagenes in the two sub-
types are shown in Additional file 1: Figures S5, S6, and 
S7.

Fig. 1  Flowchart of the study design
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Differences of immune‑related characteristics 
between cervical SCC subtypes
To explore the heterogeneity of immune characteristics 
between the two subtypes, a series of immune-related 
algorithms were applied for analysis. Using ESTIMATE, 

we found that the stromal, immune, and ESTIMATE 
scores of sub1 in the SCCH cohort were significantly 
higher than sub2 (p < 0.05; Fig. 3A, upper panel). Next, 
the verification results in the TCGA and GEO cohorts 
were also consistent, that is, the stromal, immune, and 

A B

C D

E F G

H I

Fig. 2  Identification of cervical SCC subtypes with distinct outcomes using NMF consensus clustering. A Estimation of the factorization rank (2 to 
6; x-axis) using cophenetic, dispersion, and silhouette coefficients (y-axis). There is a large decrease in the stability between rank 2 and 3, indicating 
that rank 2 has the optimal robustness. B PCA analysis of two subtypes from the SCCH cohort. Kaplan–Meier curves for C overall survival (OS) and 
D progression-free survival (PFS) show the distinct outcome between subtype 1 and subtype 2 in the validation set. E PCA plots of two subtypes in 
the TCGA cohort. Kaplan–Meier curves for F OS and G PFS show the distinct outcome between subtype 1 and subtype 2 in the TCGA cohort. H PCA 
plots of two subtypes in the GEO cohort. I Survival analysis of the different subtypes in the GEO cohort. The statistical significance of prognosis was 
determined by a log-rank test



Page 7 of 17Li et al. J Transl Med          (2021) 19:222 	

ESTIMATE scores for sub1 were considerably higher 
than those for sub2 (p < 0.0001; Fig.  3A, middle and 
lower panels). These results suggesting that the TME 
in sub1 contained a higher number of immune compo-
nents in both the training and validation set. To further 

clarify the inherent microenvironment differences of 
different subtypes, the ssGSEA was applied to measure 
the abundance of 28 immune cell types, TIS, IIS, APM 
score, CYT, and TMB were also calculated accordingly. 
The heatmap was generated to visualize the relative 
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infiltration of immune cell populations across three 
cohorts (Fig.  3B and Additional file  1: Figure S8A). 
The abundance of activated CD4 + T cells and effector 
memory CD8 + T cells in sub1 was significantly higher 
than that of sub2 in all three cohorts. In the SCCH and 
TCGA cohort, activated CD8 + T cell, activated B cell, 
and immature B cell also showed a consistent distribu-
tion, that is, the distribution in sub1 was significantly 
higher than that in sub2. The remaining cells were still 
showing a higher tendency in sub1, except for mast cell 
and γδ T cell. This finding was then confirmed in the 
TCGA cohort (Fig.  3C and Figure S8B). IIS and TIS 
represent the overall infiltration degree of immune 
cells and T cells respectively. Although the distribution 
pattern of infiltrating cells in the GEO cohort between 
the two subtypes was not exactly similar to that in the 
SCCH and TCGA cohorts, the sub1 in all three cohorts 
exhibited higher IIS and TIs, suggesting that the over-
all level of immune infiltrating cells was consistent 
among the training and validation cohorts (Fig. 3D, left 
panel). We also observed a higher level of CYT and an 
increased TMB in the sub1, while the APM score did 
not show a similar trend in the three cohorts (Fig. 3D, 
middle and right panels). The significantly different 
immune scores were selected for the next correlation 
analysis. As shown in Fig.  3E, F, Pearson’s correla-
tion analysis was used to investigate the relationships 
between these significantly different immunity scores 
in the training and validation set. In all three cohorts, 
CYT has a strong positive correlation with IIS and 
TIS (p < 0.001, r = 0.55–0.79; Fig.  3E). In the SCCH 
cohort, TMB and CYT were moderately positively cor-
related (p = 0.008, r = 0.46; Fig.  3F, upper left panel), 
but there was no correlation with IIS or TIS (p > 0.05; 
Fig.  3F, upper middle and right panel). In the TCGA 
cohort, TMB was weakly positively correlated with 
CYT (p = 0.003, r = 0.24; Fig.  3F, lower left panel), but 
there was still no correlation with TIS and IIS (p > 0.05; 
Fig. 3F, lower middle and right panel).

The gene-expression-profiling-based biomarkers 
among different subtypes were also evaluated. In the 
sub1 group of all the three cohorts, the expression levels 
of CTLA4, CXCL9, IDO1, and CD8A were significantly 
higher. The expression level of all biomarker genes in 
sub1 of the TCGA cohort was significantly higher than 
that of sub2. In the SCCH and GEO groups, a rising trend 
of the remaining genes including CD274 and PDCD1 in 
sub1 were observed, although the difference was not sta-
tistically significant (Fig.  4A). Therefore, we defined the 
sub1 with a high degree of cytotoxic T cell infiltration 
and increased cytolytic activity as immune-enriched sub-
type, and sub2 with low immune infiltrates as immune-
desert subtype.

Differences of biological functions between cervical SCC 
subtypes
We next sought to investigate the biological changes 
associated with each subtype using the GSEA. A total 
of 21 KEGG pathways and 138 GO biological pathways 
met our strict threshold (FDR < 0.05). We listed all the 
significantly enriched KEGG pathways between sub1 
and sub2 in ascending order of FDR from top to bottom 
(Fig.  4B). Additional file  2: Table  S3 listed the detailed 
information of the KEGG pathways. It can be seen that 
the pathways enriched in sub1 include innate immunity, 
antigen processing and presentation, cellular immu-
nity, humoral immunity, and autoimmune diseases. The 
enrichment pathways of sub2 were mainly related to 
signal transmembrane conduction. Similarly, among 
the 92 GO pathways enriched in the sub1, most of them 
were immune regulatory pathways related to cellular or 
humoral immunity (Additional file 2: Table S4). As shown 
in Fig. 4C, the top 10 pathways included positive regula-
tion of B cell activation, phagocytosis recognition, immu-
noglobulin production, Fc receptor-mediated stimulatory 
signaling pathway, complement activation, etc. The 46 
GO pathways enriched in the sub2 were mainly related to 
the G protein-coupled receptor (GPCR) signaling path-
way, GPCR coupled second messenger signaling pathway, 
and the transmembrane signal transduction mediated by 
GPCR (Additional file 2: Table S4). As shown in Fig. 4D, 
the top 10 pathways in sub2 were closely related to the 
GPCR pathway, including the visual system, olfactory 
system, stimulus perception of the sensory system, and 
neuroendocrine system.

Collectively, these findings indicate that the sub1 was 
characterized by significantly enriched immune-related 
signaling pathways, involving immune cell signals, 
immune response signals, and interferon-gamma-related 
signals, etc. The sub2 was characterized by a significantly 
enriched GPCR signaling pathway and transmembrane 
signal transduction mediated by GPCR.

Mutation patterns in different subtypes
The somatic mutation distribution of each cohort was 
investigated and the difference of mutation patterns 
among cervical SCC subtypes was compared. In the 
SCCH cohort, the top 20 mutation genes in sub1 were 
shown in the upper left panel of Fig. 5A, while mutation 
proportions of the same genes were re-ranked in sub2 
and illustrated in the upper right panel of Fig. 5A. Mis-
sense mutation accounted for the most fractions in both 
subtypes. The most frequent genes were MUC4 (65%), 
ABHD17A (58%), RP1L1 (54%) and NDUFS7 (50%) in 
sub1, while the corresponding proportion in sub2 was 17, 
67, 67, and 33%, respectively. SNVs analysis showed that 
transition mutations, specifically C to T, were prominent 
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in both subtypes; C to G ranks second in sub1 and third 
in sub2 (Fig. 5A, lower left and right panel). Similarly, the 
most frequent mutation categories in the TCGA cohort 
were also a missense mutation, and C to T was the most 
common transition mutation among subtypes (Fig.  5B). 
Also, by evaluating the mutation frequency distribution 
of 45 cervical SCC driver genes in different subtypes 
[58], we found that the immune-enriched subtype was 
associated with a high mutation frequency of multi-
ple driver genes (e.g., KMT2D, PIK3CA, PTEN, HLA-
B), while TP53, ARID1A, FAT1, and ERBB2 showed 
a higher mutation frequency in the immune-desert 

subtype (Chi-square test; Additional file 2: Table S5). Fig-
ure 5C showed the distribution of driver genes in cervical 
SCC subtypes among the SCCH cohort and the TCGA 
cohort. The enriched P53 signaling pathway in the sub1 
group and the higher mutation frequency of TP53 in the 
sub2 group also corresponded to the different prognosis 
between the two groups.

Classifier construction and validation
Between the two subtypes in the training cohort, 
a total of 1014 DEGs were identified (FDR < 0.05, 
|log2 FC|> 1.0; Fig.  6A). Using the univariate Cox 
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proportional hazards model, 83 mRNAs significantly 
related to OS were selected (Additional file 2: Table S6). 
Based on these genes, the optimal “mtry” parameter 
(n = 2) and the number of decision trees (n = 500) 
were first determined. Next, tenfold cross-validation 
was performed to avoid overfitting and determine the 
number of variables for the optimal classifier. After 

repeating the cross-validation 10 times, the classifier 
with the minimum error was obtained (Fig.  6B). Sub-
sequently, the ROC curve analysis was performed and 
the area under the ROC curve (AUC) was 100% in the 
SCCH cohort. The AUC of the TCGA and GEO cohort 
reached 71.8% and 83%, respectively (Fig.  6C). So far, 
we have successfully constructed the 83-gene classifier, 
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and have good performance in two independent valida-
tion cohorts (Fig. 6D).

Distinct sensitivity to immunotherapy for cervical SCC 
subtypes
The heterogeneous immune infiltration patterns and 
different TMB levels among cervical SCC subtypes sug-
gested that the potential immunotherapy benefits needed 
to be further explored. A SubMap analysis was then con-
ducted to compare the expression profiles of two cervi-
cal SCC subtypes with a published metastatic melanoma 
cohort containing 56 patients that received anti-PD-1 or 
anti-CTLA-4 treatment. The result showed that sub1 in 
the SCCH cohort was highly correlated with the PD-1 
response group (Bonferroni correction p-value = 0.009; 
Fig. 6E, upper right panel), indicating that patients within 
the sub1 group were more promising to respond to anti-
PD-1 therapy. On the contrary, sub2 was significantly 
correlated with both CTLA-4 and PD-1 no-response 
groups (Bonferroni correction p-value = 0.027 and 0.001; 
Fig.  6E, upper panel), suggesting that the sub2 group 
might be resistant to ICIs. In the TCGA cohort, when 
comparing cervical SCC subtypes with the immuno-
therapy groups, a significant relationship was observed 
between sub1 and PD-1 response groups, and the same 
between sub2 and PD-1 no-response group (Fig. 6E, mid-
dle panel). It showed that patients in the sub1 group were 
more sensitive to anti-PD-1 therapy, while patients in the 
sub2 group were more likely to fail to respond to anti-
PD-1 therapy. Likewise, the expression profile of sub1 
in the GEO cohort had high similarity with both anti-
CTLA-4 and anti-PD-1 sensitive groups (Fig.  6E, lower 
panel).

Cervical SCC subtypes related genes
To further identify the gene signature of the cervical SCC 
subtype, a total of 1014 DEGs among different subtypes 
were evaluated by WGCNA. After removing one sample 
as an outlier through hierarchical clustering analysis, the 
rest were used for the construction of the co-expression 
network (Additional file  1: Figure S9A). By the selected 
power of β = 4 as the soft-thresholding (Additional file 1: 
Figure S9B), a total of 8 modules were identified (Addi-
tional file  1: Figure S9C). The turquoise module was 
found to have the highest positive correlation with sub1 
(correlation coefficient = 0.74, p < 0.001), and the high-
est negative correlation with sub 2 (correlation coef-
ficient = −  0.74, p < 0.001). Next, gene significance was 
calculated to quantify the correlation between individual 
genes and the subtype, and module membership was cal-
culated to quantify the correlation between the turquoise 
module and the DEGs expression profile. As shown in 
Additional file  1: Figure S9D, the module membership 

was significantly positively correlated with gene signifi-
cance in subtypes (correlation coefficient = 0.7, p < 0.001). 
Using the same algorithm to identify the gene modules 
with the highest subtype correlation in the TCGA and 
GEO cohorts, 78 and 40 genes were obtained, respec-
tively. A total of 23 overlapping DEGs in the three cohorts 
were found (Additional file 1: Figure S10A and 10B). Fur-
ther comparisons showed that the distribution patterns 
of all 23 genes between the sub1 and sub2 were the same. 
Among them, CA9, TCHHL1, MGAT5B, and BIRC5 are 
significantly overexpressed in sub2, while the remaining 
genes were highly expressed in sub1 (Additional file  1: 
Figure S11, Additional file 2: Table S7).

Discussion
Although the current results of ICIs treatment for cer-
vical cancer are encouraging, there are improvements 
to be made. Identifying suitable patients is expected to 
further increase the proportion of patients who benefit 
from ICIs. In this study, we constructed a classification 
of cervical SCC patients based on 2885 IRGs obtained 
from relevant publications and public databases. Two 
subtypes (sub1 and sub2) with distinct prognoses were 
identified using the NMF method. The sub1 patients 
showed significantly enriched features about immune 
cells (CD8/CD4 T cells, B cells) and enhanced cytolytic 
activity. We observed higher levels of the immune check-
point, INFG, and CD8 signatures. Similarly, GSEA has 
identified a series of immune-related signaling pathways 
up-regulated in the immune-enriched subtype. Also, the 
immune-enriched subtype exhibited increased TMB and 
was more sensitive to ICIs, which is consistent with its 
good prognostic phenotype. Conversely, the immune-
desert subtype with a worse prognosis exhibited lower 
levels of TMB and resistance to anti-PD-1. The repeat-
ability of this classification was further verified through 
two independent verification sets.

Mounting evidence has identified that the TME plays 
a key role in the occurrence and development of tumors, 
as well as profoundly affects the therapeutic efficacy and 
patient prognosis. Based on the characteristics of TME, 
immune-activated and immune-suppressed subtypes 
have been identified in pancreatic cancer [17], hepatocel-
lular carcinoma [59], and head and neck squamous cell 
carcinoma (HNSCC) [60]. For cervical SCC, immune-
enriched subtype and immune-desert subtype were 
found in this study. Within these subtypes, a favorable 
prognosis was associated with increased infiltration of 
activated CD8 + T cells, effector memory CD8 + T cells, 
activated CD4 + T cells, and plasma cells, and vice versa. 
The association of these cell infiltrations with DFS and/
or OS has been widely confirmed in multiple cancers 
[61, 62]. Among them, CD8 + T cell infiltration was 
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considered to be the most promising signature related to 
beneficial clinical outcomes in cervical cancer [63].

As expected, CYT, as a measure of CD8 + T cell activa-
tion, was significantly up-regulated when ICIs produced 
clinical responses [64, 65], which was also proved by 
the results in our study. APM score is calculated based 
on genes involved in the APM process [66], which could 
reflect the formation of major histocompatibility com-
plex (MHC) class I molecules and the efficiency of their 
recognition and killing by CD8 + T cells and NK cells 
[36]. Defects in the expression of APM components 
affect the recognition of tumor antigens [35]. Here, no 
difference in APM score was observed between the 
two subtypes, implying the ubiquity of HPV-mediated 
immune escape mechanisms. The significantly enriched 
RIG-I-like receptors signaling pathway in the sub1, which 
is responsible for detecting viral pathogens and activat-
ing antiviral immunity, was consistent with the baseline 
characteristics of more HPV + patients included in the 
sub1. Besides, a series of immune-related pathways were 
significantly enriched in the sub1, and perform multi-
ple functions including inducing autoimmune response, 
cytotoxic activation, various immune cell activation, 
antigen processing and presentation, host defense, and 
immune monitoring. There was no immune-related path-
way observed in sub2. The enrichment of the GPCR sign-
aling pathway explains the poor prognosis of the sub2, 
which promotes the angiogenesis, invasion, migration, 
and metastasis of a variety of malignancies [67]. From 
these results, we found that the TME of cervical SCC not 
only shares the commonality as other solid tumors, but 
also possesses its own features due to the particularity of 
its etiology [13].

Mutation burden as a biomarker of response to ICIs has 
received widespread attention in recent years. The pro-
spective clinical evidence involves various solid tumors, 
such as non-small cell lung cancer [68], small cell lung 
cancer [69], melanoma [70], bladder cancer [71], glioblas-
toma [72], colorectal cancer [73]. Our results suggested 
that the prognosis and the prediction of response to ICIs 
of patients with high TMB were better than those of 
patients with low TMB, which is also consistent with the 
existing clinical results of cervical cancer [74, 75]. This 
could be due to the more mutations accumulated in the 
tumor, the more neoantigens are produced [76]. These 
neoantigens are presented to cytotoxic T cells through 
the MHC molecules on the surface of tumor cells, result-
ing in T cell activation and anti-tumor immune response 
[77]. This explains to a certain extent the weak posi-
tive correlation between TMB and CYT. Interestingly, 
although increased TMB was accompanied by immune-
enriched subtype, further analysis showed that there was 
no correlation between somatic mutations and immune 

infiltration. Similarly, we have also observed that a higher 
TMB does not necessarily mean a higher immune infil-
tration in several tumors, including hepatocellular car-
cinoma, pancreatic cancer, and HNSCC [59, 60, 78]. It 
implies the independent predictive value of mutation or 
neoantigen load.

The newly defined cervical SCC subtypes with dis-
tinct immunophenotypes were assessed by the mel-
anoma cohort. We found that patients with the 
immune-enriched subtype could benefit more from 
ICIs and may be ideal candidates. For patients with the 
immune-desert subtype, considering the activity of 
GPCR and GPCR coupled second messenger signal-
ing pathways in sub2, treatments targeting GPCRs and 
their coupled downstream signaling molecules may be 
beneficial to them. Indeed, as more GPCRs with tumors 
are revealed, treatment targeting GPCRs has become 
increasingly attractive. Currently, GPCR-targeted agents 
have been approved for the treatment of advanced pros-
tate cancer and basal cell carcinoma [79]. Our findings 
suggest that the GPCRs pathway is a potential therapeu-
tic target in cervical SCC. In particular, the possibility 
of benefiting patients with the immune-desert subtype 
emphasizes the value of in-depth research on this issue.

Finally, 23 genes closely related to subtypes were 
identified through WGCNA. Finally, 23 genes closely 
related to subtypes were identified through WGCNA. 
Among the overexpressed genes in sub1, 13 genes are 
known to be closely related to the proliferation and 
activation of T/B cells and the activation of immune 
responses (including ICOS, TRAT1, ZAP70, SPN, 
MS4A1, ITK, CCR7, CD3E), CD28, IL2RB, CCL19, 
FCRL5, IRF4). UBASH3A is overexpressed in CD8 T 
cells, and the transcription product negatively regulates 
T cell signaling [80]. AKR1C1 has been confirmed as a 
biomarker of cancer-associated fibroblasts in TME [81, 
82]. The overexpression of ITM2A, ATP2A3, and tumor 
suppressor gene SFRP1 is also closely related to a bet-
ter prognosis of cervical cancer [83–85]. The protein 
encoded by SPOCK2 is a component of the extracellu-
lar matrix, and down-regulation of SPOCK2 indicates 
a poorer prognosis for prostate cancer [85]. Interest-
ingly, SPOCK2 has not been reported to be associated 
with cervical cancer, suggesting that SPOCK2 is a valu-
able research direction. CA9, MGAT5B, TCHHL1, and 
BIRC5 were found to be significantly overexpressed 
in sub2. CA9 is considered to be a new specific bio-
marker for cervical cancer hypoxic cells [86]. Cervi-
cal cancer with a high expression of CA9 has a higher 
rate of local recurrence and distant metastasis [87] and 
is closely related to the poor prognosis of early cervi-
cal cancer [88]. Similarly, MGAT5B is highly correlated 
with tumor progression and metastasis [89, 90], and 
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microenvironment hypoxia can further stimulate the 
expression of MGAT5B [91]. Although the relationship 
between TCHHL1 and cervical cancer remains unclear, 
the high expression of TCHHL1 plays an important 
role in promoting the proliferation of squamous cells 
[92]. Moreover, TCHHL1 was reported to be a target 
gene of Kruppel-like transcription factor family mem-
ber KLF4, which is important for activating HPV viral 
transcription [93], suggesting that TCHHL1 is also 
a promising potential therapeutic target for cervical 
SCC. BIRC5 (also known as survivin) has been proven 
to regulate migration and invasion of a variety of cancer 
cells, including cervical cancer, and is a well-known tar-
get for cancer therapy [94]. More and more studies sug-
gest that the development of BIRC5 specific anti-cancer 
drugs is making progress [95]. In general, the signifi-
cantly higher expression of molecules in sub2 in our 
results explained the worse prognosis of sub2. More 
importantly, these molecules are promising therapeutic 
targets for cervical SCC, especially for patients with the 
immune-desert subtype.

In conclusion, we identified two molecular subtypes of 
cervical SCC, immune-enriched subtype and immune-
desert subtype. This newly constructed 83-gene classifi-
cation system might aid in predicting the prognosis and 
immune status of patients, identifying ideal candidates 
for immunotherapy, and individually specifying treat-
ment strategies. We also provided valuable research 
directions for those patients who are unlikely to benefit 
from immunotherapy. The findings of this study warrant 
further investigation in a larger cohort of cervical SCC 
undergoing immunotherapy.
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