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PRICKLE1, a Wnt/PCP signaling component, 
is overexpressed and associated with inferior 
prognosis in acute myeloid leukemia
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Abstract 

Background:  Prickle planar cell polarity protein 1 (PRICKLE1), a core component of the non-canonical Wnt/planar 
cell polarity (PCP) pathway, was recently reported to be upregulated and correlated with poor prognosis in solid can-
cers. However, the effect of PRICKLE1 on acute myeloid leukemia (AML) remains unknown. This study aims to charac-
terize the prognostic significance of PRICKLE1 expression in patients with AML.

Methods:  RNA-seq was performed to compare mRNA expression profiles of AML patients and healthy controls. qRT-
PCR and western blotting were used to analyze the expression of PRICKLE1 in AML patients and cell lines, and two 
independent datasets (TCGA-LAML and TARGET-AML) online were used to validate the expression results. The correla-
tions between the expression of PRICKLE1 and clinical features were further analyzed.

Results:  Our data showed that PRICKLE1 expression levels were markedly high in AML patients at the time of diag-
nosis, decreased after complete remission and increased again at relapse. Of note, PRICKLE1 was highly expressed in 
drug resistant AML cells and monocytic-AML patients. High PRICKLE1 expression was found in FLT3/DNMT3A/IDH1/
IDH2-mutant AML and associated with poor prognosis. Furthermore, high expression of PRICKLE1 may be correlated 
with migration and invasion components upregulation in AML patients.

Conclusions:  These results indicated that high PRICKLE1 expression may be a poor prognostic biomarker and thera-
peutic target of AML.
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Background
Acute myeloid leukaemia (AML) is a malignant disor-
der of haemopoietic stem cells characterized by clonal 
expansion of abnormally differentiated blasts of myeloid 
lineage [1]. In the past few years, benefited from transla-
tional research into genomic landscape, the therapeutic 

armamentarium of AML has expanded rapidly [2]. 
However, for most patients, primary and secondary 
drug resistance is still an urgent problem. In addition to 
improving our treatment strategies, our understanding 
of the biology and genomic structure of AML is deep-
ening, which makes the risk assessment of AML more 
accurate and helps to choose appropriate treatment. 
For example,  the favorable-risk mutation NPM1 and 
the adverse-risk mutation FLT3-ITD status interact to 
affect prognosis, and knowledge of both of these genes 
are required to fully assess relapse risk in an individual 
patient [1]. This emphasizes the necessity to identify 
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molecular for providing new prognostic biomarkers and/
or therapeutic targets.

Prickle planar cell polarity protein 1 (PRICKLE1) is a 
member of the non-canonical Wnt/planar cell polar-
ity (PCP) pathway [2–4]. The Wnt/β-catenin pathway 
is required for the development of leukemia stem cells 
in AML [5–7], and its deregulation is involved in leuke-
mia development [8]. Wnt/PCP signaling controls tis-
sue polarity and cell movement and mediates collective 
migratory events [4, 9]. Components of Wnt/PCP signal-
ing are often aberrantly expressed in solid cancers, and 
leads to abnormal activation of cancer cell migration 
pathways [3, 10, 11]. PRICKLE1 was recently described 
to be a poor-prognosis biomarker in breast cancer and 
be involved in metastatic dissemination [3, 12]. However, 
the role of PRICKLE1 remains largely unknown in AML.

In this study, the expression levels of PRICKLE1 were 
assessed in AML patients and cell lines by RNA-sequenc-
ing (RNA-seq), qRT-PCR and western blotting. Clini-
cal prognostic significances were further investigated 
in AML patients with differential PRICKLE1 expres-
sion. To validate our findings, we performed the mRNA 
expression of PRICKLE1 using Gene Expression Profil-
ing Interactive Analysis (GEPIA) online database, an 
AML cohort of 173 patients from the Cancer Genome 
Atlas-acute myeloid leukemia (TCGA-LAML) data and a 
non-M3 AML cohort of 145 patients from the the thera-
peutically applicable research to generate effective treat-
ments (TARGET)-AML data. To understand the role of 
PRICKLE1 in AML, we explored the potential biologi-
cal function of PRICKLE1 using a PRICKLE1-centered 
gene network and a protein–protein interaction network, 
which were analyzed by Search Tool for the Retrieval 
of Interacting Genes (STRING) and GeneMANIA 
databases.

Methods
Patients and clinical characteristics
Bone marrow (BM) samples and clinical data were 
obtained from patients who were diagnosed with AML 
between February 2017 and December 2019. The diagno-
sis and classifications of the patients were based on the 
French-American-British (FAB) classification [13] and 
2016 WHO criteria [14]. Samples were collected from 
patients at different stages of AML, including patients 
with newly diagnosed AML (n = 129), relapsed AML 
(n = 13) and complete remission (CR) (n = 35). Relapsed 
and CR were defined according to the European Leuke-
miaNet (ELN) recommendations [15]. Control samples 
(n = 12) were obtained from donors without any malig-
nant BM disorder, containing 3 haploidentical healthy 
donors. BM mononuclear cells were isolated using Ficoll-
Hypaque (Sigma-Aldrich, St Louis, MO) density gradient 

separation. Informed consent was obtained according to 
the Declaration of Helsinki. The use of BM samples was 
approved by the Medical Ethics Committee of the Third 
Xiangya Hospital of Central South University.

Cell lines and cell culture
The human myeloid leukemia cell lines K562, K562/ADR, 
THP1, HL60, HL60/ADR and human normal hemat-
opoietic cell line GM12878 were obtained from the Can-
cer Research Institute of Central South University. The 
human lymphocytic leukemia cell line Jurkat was pur-
chased from Cell Bank of Chinese Academy of Sciences 
(Shanghai, China). The MOLM13 and MV4-11 cell lines, 
were provided by Professor Hui Zeng working in the 
First Affiliated Hospital of Jinan University (Guangzhou, 
China). All cells were grown in RPMI 1640 (Gibco, USA) 
medium, supplemented with 10% fetal bovine serum 
(Gibco, USA) at 37 ºC in a 5% CO2 incubator. HL60/ADR 
and K562/ADR cells were cultured in the presence of 
adriamycin (1 μmol/L).

Separation and enrichment of CD34+ cells
Samples used for RNA-seq need CD34+ sorting. BM 
mononuclear cells from healthy donors and AML 
patients were isolated by Ficoll-Hypaque (Sigma-Aldrich) 
density gradient separation. And then CD34+ cells were 
enriched using a Miltenyi microbead separation system 
(Miltenyi BioTech, Auburn, CA) according to the manu-
facturer’s instructions. The purity of the isolated CD34+ 
cells was determined by flow cytometry (Becton Dickin-
son, USA).

Western blotting analysis
Total proteins were extracted using RIPA buffer (NCM 
Biotech) with freshly added proteinase inhibitor. Pro-
teins were then separated by 10–12% SDS/PAGE and 
transferred to 0.22  μm PVDF membranes (Millipore). 
The membranes were blocked with 5% skim milk and 
then incubated with primary antibodies overnight at 
4 ºC. The primary antibodies used in this study were 
anti-PRICKLE1 (Proteintech, USA, 22589–1-AP) used 
at 1:1000, anti-DVL2 (Affinity, USA, DF4454) used at 
1:1000, anti-LEF1 (Affinity, USA, DF7570) used at 1:1000, 
anti-Active β-catenin (Sigma-Aldrich, USA, 05-665) 
used at 1:1000, or anti-β-actin (Affinity, USA, DF7018) 
used at 1:1500. Appropriate HRP-conjugated secondary 
antibodies, and protein signals were developed with the 
enhanced chemiluminescence (ECL) reagents (Affinity 
Biosciences). ChemiDox XRS Chemiluminescence imag-
ing system (Bio-Rad, USA) was used to capture and ana-
lyze the developed images.



Page 3 of 17Jiang et al. J Transl Med          (2021) 19:211 	

Quantitative reverse transcription‑polymerase chain 
reaction (qRT‑PCR)
Total RNA was isolated using Trizol reagent (Invitro-
gen, USA) and converted to cDNA using HiScript III RT 
SuperMix for qPCR (Vazyme, Nanjing, China). Gene-
specific primers were synthesized by the Beijing Genom-
ics Institute. Gene expression (mRNA) was analysed 
using the ChamQ Universal SYBR qPCR Master Mix 
(Vazyme, #Q711) and LightCycler 480 real-time PCR 
instrument (Roche, Switzerland) in a two-step qRT-PCR 
(95 ºC for 30 s, followed by 40 cycles of 95 ºC for 10 s and 
60 ºC for 30  s). The mRNA relative levels of the target 
genes were calculated using the 2−ΔΔCt method, clinical 
samples using ABL1 and cell lines using β-actin as the 
endogenous control. The data were obtained by normal-
izing PRICKLE1 gene Ct values with reference gene Ct 
values, and then analyzed with 2−ΔΔCt method. Primers 
used in this study were as follows: PRICKLE1, forward 
5′-TGC​TGC​CTT​GAG​TGT​GAA​AC-3′, reverse 5′-CAC​
AAG​AAA​AGC​AGG​CTT​CC-3′; ABL1, forward 5′-GAT​
ACG​AAG​GGA​GGG​TGT​ACCA-3′, reverse 5′-CTC​GGC​
CAG​GGT​GTT​GAA​-3′; β-actin, forward 5′-GGA​CTT​
CGA​GCA​AGA​GAT​GG -3′, reverse 5′-AGC​ACT​GTG​
TTG​GCG​TAC​AG-3′.

RNA‑seq
Control samples (n = 3) for RNA-seq were obtained 
from haploidentical healthy donors before mobiliza-
tion of hemopoietic stem cells. RNA sample quality was 
analysed, and the cDNA libraries were synthesized and 
sequenced using BGI technology [16]. Briefly, the qual-
ity of the RNA samples was assessed by an Agilent Bio-
analyzer (Agilent). cDNA libraries were generated using 
TruSeq RNA Sample Preparation (Illumina). Each library 
was sequenced using single-reads on a HiSeq2000/1000 
(Illumina). Gene expression levels were measured in 
RPKM using Cufflinks [17]. Differentially expressed 
genes (DEGs) were  identified using the DESeq2 R pack-
age. The criteria for DEGs was set up as fold change (FC, 
log2) > 2 or <  − 2, Q-value < 0.05, and FDR < 0.05. RNA 
sequencing data were analysed by Partek Inc. (St. Louis, 
MO).

Online source
GEPIA Dataset, the expression differences of PRICKLE1 
between AML patients and normal controls were con-
ducted by GEPIA dataset (http://​gepia.​cancer-​pku.​cn/​
detail.​php) [18, 19]. Two independent datasets (Cohort 1: 
TCGA-LAML; Cohort 2: TARGET-AML) were obtained 
from The Cancer Genome Atlas (TCGA) (https://​cance​
rgeno​me.​nih.​gov/ and http://​www.​cbiop​ortal.​org/) [20]. 
Cohort 1 consisted of samples from 173 adult AML 

patients (including 157 non-M3 AML) and Cohort 
2 comprised of 145 primary non-M3 AML patients. 
The RNA-seq data and survival data were extracted for 
further analysis. The online website of GeneMANIA 
(http://​genem​ania.​org/) [21] was used to construct the 
PRICKLE1 centered gene–gene functional interaction 
network. Functional and signaling pathway enrichment 
was conducted using online site of STRING (http://​
string-​db.​org) [19].

Statistical analyses
The differences between continuous variables were using 
unpaired t test or the Mann–Whitney U test. Compari-
sons in proportions of variables between two groups 
were analyzed using the χ2 test. Paired Wilcoxon was 
used to analyze the difference between before- and after- 
treatment. In the TARGET-AML database, event-free 
survival (EFS) was measured from diagnosis until the 
patient experienced induction failure, relapse or death. 
In the TCGA-AML database and our cohort, EFS was 
defined as the day from diagnosis to relapse or death. In 
all cohort, overall survival (OS) was defined as the day 
from diagnosis to last follow-up or death [22]. EFS and 
OS was analyzed though Kaplan–Meier analysis using 
Log-rank test. Univariate and multivariate analyses were 
performed using the Cox proportional hazard model. For 
all tests, a P-value < 0.05 indicated statistical significance. 
Statistical analysis was performed using SPSS 19.0, R 
software 3.5.0. and GraphPad Prism 7.0.

Results
Transcriptional levels of PRICKLE1 in normal controls, AML 
patients and cell lines
We first screened the differentially expressed genes 
(DEGs) of Wnt pathway between four AML patients 
and three healthy donors using RNA-seq analysis. The 
results indicated the expression of PRICKLE1 was mark-
edly elevated in AML patients compared with normal 
controls (Fig.  1 and Additional file  1: Table  S1). These 
findings are supported by the results of analysis with the 
GEPIA computer tool and the data from the TCGA data-
base (Fig. 2a–d). Subsequently, PRICKLE1 mRNA levels 
were examined in bone marrow (BM) samples from AML 
patients (n = 129) and samples from normal controls 
(n = 12). Clinical characteristics were summarized in 
Tables 1 and 2. Compared to normal controls, the mRNA 
of PRICKLE1 was significantly upregulated in AML 
(P < 0.001, Fig. 3a). In addition, higher PRICKLE1 expres-
sion was observed in patients with newly diagnosed AML 
(n = 129, P < 0.001) and relapsed AML (n = 13, P < 0.001) 
than in patients with complete remission (n = 35, Fig. 3b). 
Furthermore, PRICKLE1 protein was generally expressed 
in AML patients (Additional file  1: Table  S2) compared 

http://gepia.cancer-pku.cn/detail.php
http://gepia.cancer-pku.cn/detail.php
https://cancergenome.nih.gov/
https://cancergenome.nih.gov/
http://www.cbioportal.org/
http://genemania.org/
http://string-db.org
http://string-db.org
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to normal controls, especially was highly expressed in 
the patients with extramedullary metastasis (Fig.  3d 
and Additional file  1: Fig. S1). It is worth noting that, 
PRICKLE1 mRNA levels were determined in 5 patients 
at the time of being newly diagnosed, complete remission 
and relapse. A common feature was that the expression 
of PRICKLE1 was high at new diagnosis, decreased after 
complete remission (P = 0.039, Fig.  3c), and increased 
again at relapse (P = 0.041, Fig. 3c).

Next, we explored the expression of PRICKLE1 in leu-
kemia cell lines using qRT-PCR and western blotting. 
Compared with the control cell line GM12878 (Fig. 3e), 
the expression of PRICKLE1 was significantly upregu-
lated in 7 AML cell lines (P < 0.05), but not in human 
T cell acute lymphoblastic leukemia cell line, Jurkat 
cells (P > 0.05). Among AML cell lines, K562 and HL60 
showed lower mRNA (Fig. 3e) and protein (Fig. 3f ) lev-
els of PRICKLE1 than their corresponding adriamycin-
resistant cell lines, K562/ADR and HL60/ADR (K562 vs 
K562/ADR, P = 0.004; HL60 vs HL60/ADR, P = 0.003). 
Therefore, PRICKLE1 may play an important role in 
AML drug resistance.

High PRICKLE1 expression is correlated with BM blasts, FAB 
classifications and poorer risk classification in AML patients
To explore the correlation of PRICKLE1 expression with 
clinical features in AML patients, we divided the patients 
into a high PRICKLE1 expression group (PRICKLE1high, 
the first half, n = 65) and a low PRICKLE1 expression 
group (PRICKLE1low, the second half, n = 64) according 

to the cut-off value of 4.25 (median PRICKLE1 expres-
sion level). The comparisons of clinical features and labo-
ratory parameters between the two groups were shown in 
Table 1. The high expression of PRICKLE1 was found to 
be associated with higher BM blasts (P = 0.036). Remark-
able differences were also observed in the distributions of 
FAB classifications (P < 0.001) and karyotypes (P = 0.023). 
Moreover, the expression level of PRICKLE1 in mono-
cytic-AML was higher than that in granulocytic-AML 
(Additional file 1: Fig. S2a). However, we did not observe 
significant differences in sex, age, white blood cells 
(WBCs), hemoglobin (HB), platelets (PLT), and cytoge-
netic risk between PRICKLE1high and PRICKLE1low 
patients (Table 1).

Interestingly,  we found that patients with poor Euro-
pean LeukemiaNet (ELN) risk [1, 15] had much higher 
PRICKLE1 expression compared with patients with good 
risk (P = 0.037, Fig. 4a). Furthermore, high expression of 
PRICKLE1 was found to be associated with unfavora-
ble gene mutations FLT3 (P < 0.001, Fig.  4b), DNMT3A 
(P = 0.022, Fig.  4d) and IDH2 (P = 0.002, Fig.  4e), and 
tended to be associated with IDH1 (P = 0.068, Fig.  4f ). 
Consistently, low expression of PRICKLE1 was related 
to favorable gene mutation CEBPA double muta-
tion (P < 0.001, Fig.  4c), but not to CEBPA single muta-
tion (P = 0.882, Fig.  4c). It is noteworthy that, patients 
with NPM1 mutation also showed high expression of 
PRICKLE1 (P < 0.001, Additional file  1:Fig. S2b), which 
is often concomitant with FLT3, IDH1/2, and DNMT3A 
mutations [1].

High PRICKLE1 expression is an independent prognostic 
indicator of adverse outcomes in patients with AML
In this study, 129 patients who can be evaluated were 
received median follow-up period of 10  months 
(1–26  months). Kaplan–Meier survival analysis showed 
that patients with high PRICKLE1 expression (n = 65) 
had significantly shorter overall survival (OS) (P = 0.044, 
Fig.  5a) than those of patients with low PRICKLE1 
expression (n = 64) in the whole-cohort AML patients. 
Among the 112 non-M3 AML patients, PRICKLE1high 
cases (n = 53) also showed significantly shorter OS 
and event-free survival (EFS) than PRICKLE1low cases 
(n = 59) (OS: P = 0.004, Fig.  5c; EFS: P = 0.022, Fig.  5d). 
Although there were no significant difference in EFS 
between PRICKLE1high and PRICKLE1low patients 
with whole-cohort AML (P = 0.161, Fig.  5b), and in OS 
between PRICKLE1high and PRICKLE1low patients with 
cytogenetically normal AML (CN-AML) (P = 0.300, 
Additional file  1: Fig. S3a), a trend of separation will 
emerge with the extension of follow-up time.

Further, we analyzed an AML cohort of 173 
patients including 157 non-M3 AML patients from 

AMLNormal control

Fig. 1  Gene expression detected by RNA-Seq and expression of 
PRICKLE1 in AML patients. Hierarchical cluster analysis of DEGs in AML 
patients (n = 4) and normal controls (n = 3), wnt signaling pathway 
related genes were shown. Upregulated genes are shown in red and 
downregulated genes are shown in blue
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Fig. 2  Expression differences of PRICKLE1 (a), PRICKLE2 (b), PRICKLE3 (c), and PRICKLE4 (d) between 173 de novo AML patients and 70 normal 
controls. Analysis with the GEPIA computer tool and the data from the TCGA database. *P < 0.01
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Table 1  Correlation of PRICKLE1 expression with clinical and laboratorial parameters in AML patients

Patient’s parameters Total (n = 129) Status of PRICKLE1 expression P value

High (n = 65) Low (n = 64)

Sex, male/female 77/52 35/30 42/22 0.236

Median age, years (range) 51 (12–81) 52 (14–81) 50(12–80) 0.421

Median WBC, × 109/L (range) 15.60(0.30–381.60) 19.90 (0.30–381.60) 13.31 (0.65–263.45) 0.260

Median hemoglobin, g/L (range) 73 (33–151) 73 (33–141) 75 (36–151) 0.642

Median platelets, × 109/L (range) 30 (2–984) 32 (2–277) 27 (5–984) 0.456

Median BM blasts %, (range) 73.0 (16.0–97.0) 78.0 (16.0–97.0) 66.0 (21.0–97.0) 0.036

FAB subtypes (%) < 0.001

 M0 1 (0.8) 0 (0.0) 1 (1.6)

 M1 13 (10.1) 6 (9.2) 7 (10.9)

 M2 49 (38.0) 13 (20.0) 36 (56.3)

 M3 17 (13.2) 12 (18.5) 5 (7.8)

 M4 13 (10.1) 6 (9.2) 7 (10.9)

 M5 34 (26.4) 27 (41.6) 7 (10.9)

 Not determined 2 (1.6) 1 (1.5) 1 (1.6)

ELN risk stratification (%) 0.095

 Favorable 50 (38.8) 21 (32.3) 29 (45.3)

 Intermediate 44 (34.1) 20 (30.8) 24 (37.5)

 Adverse 19 (14.7) 13 (20.0) 6 (9.4)

 No data 16 (12.4) 11 (16.9) 5 (7.8)

Cytogenetic risk (%) 0.304

 Favorable 39 (30.2) 17 (26.2) 22 (34.4)

 Intermediate 59 (45.7) 28 (43.1) 31 (48.4)

 Adverse 15 (11.6) 9 (13.8) 6 (9.4)

 No data 16 (12.4) 11 (16.9) 5 (7.8)

Karyotypes (%) 0.023

 t(8;21)/RUNX1-RUNX1T1 18 (14.0) 4 (6.2) 14 (21.9)

 inv(16)/CBFβ-MYH11 4 (3.1) 1 (1.5) 3 (4.7)

 t(15;17)/PML-RARA​ 17 (13.2) 12 (18.5) 5 (7.8)

 11q23/MLL 7 (5.4) 6 (9.2) 1 (1.6)

 Normal karyotype 41 (31.8) 19 (29.2) 22 (34.4)

 Complex karyotype 5 (3.9) 2 (3.1) 3 (4.7)

 Other karyotype 21 (16.3) 10 (15.4) 11 (17.2)

 No data 16 (12.4) 11 (16.9) 5 (7.8)

FLT3 (%) 0.007

 FLT3-ITD 16 (12.4) 14 (21.5) 2 (3.1)

 FLT3-TKD 4 (3.1) 2 (3.1) 2 (3.1)

 Wild 85 (65.9) 40 (61.6) 45 (70.3)

 No data 24 (18.6) 9 (13.8) 15 (23.4)

CEBPA (%) < 0.001

 Single mutation 3 (2.3) 2 (3.1) 1 (1.6)

 Double mutation 15 (11.6) 1 (1.5) 14 (21.9)

 Wild 87 (67.4) 53 (81.6) 34 (53.1)

 No data 24 (18.6) 9 (13.8) 15 (23.4)

DNMT3A (%) 0.023

 Mutated 6 (4.7) 6 (9.2) 0 (0.0)

 Wild 99 (76.7) 50 (77.0) 49 (76.6)

 No data 24 (18.6) 9 (13.8) 15 (23.4)

IDH1 (%) 0.079
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the TCGA-LAML data and a non-M3 AML cohort of 
145 patients from the TARGET-AML data [20, 23]. 
We reached the same conclusion that PRICKLE1high 
cases showed an markedly shorter OS (TCGA-LAML 
data: P = 0.055, Fig.  6c; TARGET-AML data: P < 0.001, 
Fig. 6e) and EFS (TCGA-LAML data: P = 0.016, Fig. 6d; 
TARGET-AML data: P = 0.002, Fig. 6f ) compared with 
PRICKLE1low cases in the non-M3 AML patients. How-
ever, between PRICKLE1high and PRICKLE1low patients 
from TCGA-LAML data, there were no significant dif-
ference in OS (P = 0.348, Fig.  6a) and EFS (P = 0.230, 
Fig.  6b) of whole-cohort AML or in OS of CN-AML 
(P = 0.490, Additional file 1: Fig. S3b).

We then performed univariate analyses and multi-
variate analyses on OS in the total 129 AML patients, 
including the expression level of PRICKLE1, age, 
WBC, cytogenetic risk and NPM1/FLT3-ITD/CEBPA/
DNMT3A/IDH1/IDH2 mutations (mutant vs. wild-
type). As shown in Table 3, PRICKLE1 expression was 
significantly and independently associated with a worse 
OS both in univariate (P = 0.005) and multivariate 
analysis (P = 0.012). Besides, age and cytogenetic risk 
were related to poorer OS both in univariate analysis 
(P = 0.006; P = 0.020; respectively).

High expression of PRICKEL1 accompanied with core PCP 
pathway components upregulation in AML patients
Human WNT5A, WNT5B, and WNT11 are represent-
ative non-canonical WNTs transducing PCP signals 
through FZD3 or FZD6 receptors, and ROR1, ROR2 
or PTK7 co-receptors. Human VANGL1, VANGL2, 
CELSR1, CELSR2, CELSR3, DVL1, DVL2, DVL3 
(Dishevelled homologs), PRICKLE1, PRICKLE2, and 
ANKRD6 are core PCP signaling components [9, 24]. 
As our above data have shown that PRICKEL1 is dis-
tinctly upregulated in AML patients, we further ana-
lyzed the expression of the other core PCP signaling 
components. RNA-seq analysis showed that WNT6, 
WNT7B, FZD2, PRICKLE1 and CELSR1 were sig-
nificantly upregulated in AML patients; while WNT 
signaling inhibitors, such as AXIN2 [25], were down-
regulated (Fig.  1). Furthermore, the protein levels of 
DVL2, PRICKLE1, LEF1 and active β-catenin were 
increased in AML patients compared with normal con-
trol (Fig. 7a,b). These results revealed that PCP pathway 
may be activated in PRICKLE1high AML patients.

Table 1  (continued)

Patient’s parameters Total (n = 129) Status of PRICKLE1 expression P value

High (n = 65) Low (n = 64)

 Mutated 7 (5.4) 6 (9.2) 1 (1.6)

 Wild 98 (76.0) 50 (77.0) 48 (75.0)

 No data 24 (18.6) 9 (13.8) 15 (23.4)

IDH2 (%) 0.002

 Mutated 10 (7.8) 10 (15.4) 0 (0.0)

 Wild 95 (73.6) 46 (70.8) 49 (76.6)

 No data 24 (18.6) 9 (13.8) 15 (23.4)

NPM1 (%) < 0.001

 Mutated 23 (17.8) 20 (30.8) 3 (4.7)

 Wild 82 (63.6) 36 (55.4) 46 (71.9)

 No data 24 (18.6) 9 (13.8) 15 (23.4)

Table 2  Patients’ information

Patient’s characteristics Normal control (n = 12) AML-CR (n = 35) AML-Relapse (n = 13)

Median age in years (range) 29 (20–42) 42 (18–80) 54 (20–68)

Sex (male/female) 5 (41.7%)/7 (58.3%) 21 (60%)/14 (40%) 4 (30.8%)/9 (69.2%)

Unfavorable fusion gene – 3 (8.6%) 5 (38.5%)

Unfavorable karyotype – 3 (8.6%) 4 (30.8%)
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High expression of PRICKEL1 accompanied 
with the migration and invasion components upregulation 
in AML patients
The planar cell polarity (PCP) protein PRICKLE1, 

ArhGAP21/23 and the RhoGAPs are involved in coordi-
nating shape volatility during productive cell migration 
[26]. Our above data showed that PRICKLE1 protein 
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mutations [FLT3 (b), CEBPA (c), DNMT3A (d), IDH2 (e) and IDH1 (f)]
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levels were higher than normal control (Fig. 3d). Further 
RNA-seq analysis indicated that a series of metastasis 
and invasion molecules were upregulated in PRICKLE1-
high AML patients, such as CCL22, CCL23, CCL24, 
MMP2, MMP7, MMP14, MMP19 and S100A1; while 
invasion suppressors, such as CDH1 [27], were downreg-
ulated in PRICKLE1high AML patients (Fig. 7c and Addi-
tional file 1: Table S3).

Bioinformatic analysis of PRICKLE1 function in AML
To investigate the functional roles of PRICKLE1, we con-
structed a PRICKLE1-centered network showing genes 
in AML using GeneMANIA (Fig.  8a). Results showed 
that VANGL1, VANGL2, DVL2 and DVL3 have shared 
signaling pathways with PRICKLE1; moreover, DVL2 and 
DVL3 also have physical interactions with PRICKLE1. 
PRICKLE2, PRICKLE3 and PRICKLE4 have predicted 
interactions with PPRICKLE1. The protein–protein 
interactions of PRICKLE1 with other partners in AML 

Fig. 5  Survival analysis of AML patients in our study according to PRICKEL1 expression. a Overall survival (OS) of whole-cohort AML patients; b 
Event-free survival (EFS) of whole-cohort AML patients; c OS of non-M3 AML patients; d EFS of non-M3 AML patients



Page 11 of 17Jiang et al. J Transl Med          (2021) 19:211 	

Fig. 6  Survival analysis of AML cases from data online according to PRICKEL1 expression. a OS of whole-cohort AML in TCGA-LAML data; b EFS of 
whole-cohort AML in TCGA-LAML data; c OS of non-M3 AML in TCGA-LAML data; d EFS of non-M3 AML in TCGA-LAML data. e OS of non-M3 AML in 
TARGET-AML data; f EFS of non-M3 AML in TARGET-AML data



Page 12 of 17Jiang et al. J Transl Med          (2021) 19:211 

were analyzed using STRING online tools. The results 
showed that PRICKLE1 interacted with SMURF1 and 
SMURF2, which play a key roll in the regulation of cell 
motility, cell signalling, and cell polarity [26]. (Fig. 8b). In 
addition, PRICKLE1 interacted with VANGL1, VANGL2, 
DVL2 and DVL3, which are in line with the results of 
gene network analysis. Of note, PRICKLE1 interacted 
with PARD6A, a cell membrane protein which plays a 
role in cell polarization and the epithelial-to-mesenchy-
mal transition (EMT) that represents the invasive pheno-
type in metastatic carcinomas [28]. In general, these data 
shows that PRICKLE1 may be involved in cell polariza-
tion and migration.

Discussion
AML is a heterogeneous disease characterized by exten-
sive molecular changes that affect clinical outcomes 
and provide potential targets for drug development [1, 
2], such as targeting the FLT3 mutations in AML [29]. 
Genetic abnormalities are powerful prognostic factors 
[30, 31]. However, models incorporating genomic lesions, 
demographic, clinic and treatment and aimed at pre-
dicting are correct in only about 75% of cases [30]. This 
emphasizes the need to identify other prognostic fac-
tors. It is known that Wnt/β-catenin signaling pathway is 
required for self-renewal and function of leukemia stem 
cells (LSCs) in AML [5]. The nine upregulation genes and 
the four downregulation genes (Fig.  1) from our results 
of RNA-seq were selected for further investigation on the 
basis of their relevance to Wnt/β-catenin signaling path-
way of AML.

In the present study, we found that PRICKLE1 expres-
sion was significantly increased in newly diagnosed or 
relapsed AML patients compared with normal con-
trols, which was consistent with the results of RNA-seq. 

Moreover, GEPIA analysis indicated that PRICKLE1 
expression  is upregulated in AML. PRICKLE1 is known 
to be involved in PCP, including convergent extension 
and cell migration [32]. The overexpression of PRICKLE1 
has been found to be associated with poor survival in 
several solid tumors. In accordance with our findings, 
previous studies have revealed that the mRNA level of 
PRICKLE1 was substantially elevated in solid tumors, 
such as basal breast cancers [3], and triple-negative 
breast cancers [12]. More importantly, our data revealed 
that PRICKLE1 expression decreased after complete 
remission and reincreased during relapse phase. Of 
note, the expression of PRICKLE1 is significantly higher 
in resistant AML cell lines than sensitive AML cell 
lines, suggesting that PCP proteins PRICKLE1 may be 
involved in drug resistance through regulating cell polar-
ity and movements. In addition, the expression level of 
PRICKLE1 in monocytic-AML was higher than that in 
granulocytic-AML. We noticed that PRICKLE1 mRNA 
and protein levels were much higher in AML patients 
with extramedullary metastasis (Fig.  3d), especially in 
patients with central nervous system leukemia (CNSL). 
These results suggested that PRICKLE1 expression could 
be associated with therapeutic efficacy.

Moreover, we observed that high PRICKLE1 expres-
sion was associated with higher BM blasts, more 
unfavorable gene mutation and poorer ELN risk 
classification in AML. Survival analysis revealed 
that patients with high PRICKLE1 expression had 
a poor prognosis in whole cohort AML and non-
M3 AML. In addition, our study analyzed prognos-
tic significance of PRICKLE1 in TCGA-LAML data 
(represents adult AML) and TARGET-AML data (rep-
resents children and adolescents AML). The results 
showed that PRICKLE1high cases had shorter OS 

Table 3  Results of univariate and multivariate analysis for OS in non-M3 AML patients

OS: Overall survival; HR: hazard ratio; CI: confidence interval; WBC: white blood cell

Univariate Multivariate

HR (95% CI) P value HR (95% CI) P value

PRICKLE1 (high vs. low) 2.324 (1.289–4.192) 0.005 3.087 (1.288–7.397) 0.012

Age (> median vs. < median) 2.272 (1.270–4.067) 0.006 2.028 (0.896–4.590) 0.090

WBC (> median vs. < median) 1.508 (0.828–2.746) 0.179 1.743 (0.752–4.040) 0.195

Cytogenetic risk (poor vs. intermediate vs. 
favorable)

1.792 (1.095–2.935) 0.020 1.259 (0.739–2.144) 0.397

NPM1 (mutated vs. wild) 0.990 (0.451–2.174) 0.980 0.378 (0.099–1.445) 0.155

FLT3-ITD (mutated vs. wild) 1.379 (0.572–3.321) 0.474 0.923 (0.226–3.770) 0.912

CEBPA (mutated vs. wild) 0.400 (0.141–1.132) 0.084 0.407 (0.132–1.255) 0.118

DNMT3A (mutated vs. wild) 0.750 (0.180–3.128) 0.693 0.688 (0.082–5.793) 0.731

IDH1 (mutated vs. wild) 1.449 (0.509–4.123) 0.487 0.571 (0.159–2.047) 0.389

IDH2 (mutated vs. wild) 0.806 (0.246–2.641) 0.721 0.527 (0.106–2.618) 0.433
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(TCGA-LAML: P = 0.055; TARGET-AML: P < 0.001) 
than PRICKLE1low cases. It seems that PRICKLE1 has 
a better indication of prognostic significance in chil-
dren and adolescents AML than in adult AML. More 
importantly, we can reach the same conclusion that 

high PRICKLE1 expression is an independent prog-
nostic indicator of adverse outcomes in adults and 
children with AML. We also found that PRICKLE1 
was an independent prognostic factor for OS based on 
univariate and multivariate analyses.  Besides, age and 
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cytogenetic risk classification were prognostic factors 
based on univariate analysis. Consequently, it is con-
sidered that PRICKLE1 plays an important role in dis-
ease progression. Hence, PRICKLE1 expression could 
be used to predict inferior survival and assess treat-
ment outcome in AML.

PCP signalling is crucial for tissue morphogene-
sis and depends on a group of core proteins Frizzled 
(FZD), VANGL, Disheveled (DVL) and PRICKLE [10]. 
Human WNT5A, WNT5B, and WNT11 are represent-
ative non-canonical WNTs transducing PCP signals 
through FZD3 or FZD6 receptors, and ROR1, ROR2 or 
PTK7 co-receptors. Human VANGLs, CELSRs, DVLs, 
PRICKLE1 and PRICKLE2 are core PCP signaling 
molecules [9, 24]. Our results indicated that the core 
Wnt/PCP pathway components DVL2, PRICKLE1, 
LEF1 and active β-catenin were upregulated in AML 
patients. To explore the functional roles of PRICKLE1, 
we analyzed PRICKLE1 centered gene network and 
protein–protein interaction network using GeneMA-
NIA and STRING online tools, respectively. Some of 
the interaction between molecules have been veri-
fied experimentally, such as SMURF2 [33], VANGL1, 
VANGL2 [34] and DVL2 [35, 36]. However, we are 
very interesting to study about the interaction remains 
unknown in future, such as PRICKLE1 interacted with 
PARD6A.

Our study analyzed the DEGs in four AML patients 
and three normal controls. FLT3 gene was one of the 
high expression group in the DEGs of our study, which 
is accordance with previous studies [37–41]. Besides, 
the expression of FLT3 in AML was indeed increased, 
however, there was no significant difference in the 
expression of FLT3 between the PRICKLE1high and 
PRICKLE1low groups by using the TCGA-LAML data-
base (Additional file 1: Fig. S4). We identified that high 
PRICKLE1 expression represents poor survival in AML 
patients, and is associated with FLT3-ITD mutation 
and other known mutations. We explored PRICKLE1 
expression and its prognostic significance, in particu-
lar focuses on the relationship between PRICKLE1 
and Wnt signalling and metastasis/invasion. Collec-
tively, our analysis data here strongly suggest the role 
of PRICKLE1 in the Wnt/PCP pathway of AML.  This 
study showed PRICKLE1 was significantly upregulated 
in AML patients, which suggested that inhibition of 
PRICKLE1 is a potential therapeutic strategy in AML.

Conclusions
In conclusion, we comprehensively analyzed the 
expression of PRICKLE1 in AML patients and cell lines 
using our data and data online. Our results indicated 
that PRICKLE1 is overexpressed in AML patients, and 

its high expression is correlated with adverse risk fac-
tors. Moreover, high expression of PRICKLE1 was 
found in FLT3/DNMT3A/IDH1/IDH2-mutant AML 
and associated with poor prognosis.  More impor-
tantly, PRICKLE1 may mediate migration and inva-
sion through the Wnt/PCP signaling pathway. Overall, 
here we show that the key PCP pathway component 
PRICKEL1 is upregulated in AML cells. We show that 
patients with high expression of PRICKLE1, have a less 
favorable clinical prognosis. Our findings would help 
to better understand the role of PRICKLE1 in chem-
oresistance and progression of AML and highlight the 
unique function of PRICKLE1 as a candidate gene for 
prognostic biomarker and therapeutic target.
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