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Abstract 

Background:  Myopic maculopathy (MM) is the most serious and irreversible complication of pathologic myopia, 
which is a major cause of visual impairment and blindness. Clinic proposed limited number of factors related to MM. 
To explore additional features strongly related with MM from optic disc region, we employ a machine learning based 
radiomics analysis method, which could explore and quantify more hidden or imperceptible MM-related features to 
the naked eyes and contribute to a more comprehensive understanding of MM and therefore may assist to distin-
guish the high-risk population in an early stage.

Methods:  A total of 457 eyes (313 patients) were enrolled and were divided into severe MM group and without severe 
MM group. Radiomics analysis was applied to depict features significantly correlated with severe MM from optic disc 
region. Receiver Operating Characteristic were used to evaluate these features’ performance of classifying severe MM.

Results:  Eight new MM-related image features were discovered from the optic disc region, which described the 
shapes, textural patterns and intensity distributions of optic disc region. Compared with clinically reported MM-
related features, these newly discovered features exhibited better abilities on severe MM classification. And the mean 
values of most features were markedly changed between patients with peripapillary diffuse chorioretinal atrophy 
(PDCA) and macular diffuse chorioretinal atrophy (MDCA).

Conclusions:  Machine learning and radiomics method are useful tools for mining more MM-related features from 
the optic disc region, by which complex or even hidden MM-related features can be discovered and decoded. In this 
paper, eight new MM-related image features were found, which would be useful for further quantitative study of 
MM-progression. As a nontrivial byproduct, marked changes between PDCA and MDCA was discovered by both new 
image features and clinic features.
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Background
Pathologic myopia is a major cause of visual impair-
ment and blindness worldwide, especially in East Asian 
populations [1, 2]. Mostly developing from high myopia, 
pathologic myopia may cause a wide spectrum of com-
plications, such as glaucoma, retinal detachment, and 
myopic maculopathy. Myopic maculopathy (MM), also 
known as myopic macular degeneration, is the most seri-
ous and irreversible complication. It is estimated that by 
2050, visual impairment from MM will affect 55.7 million 
people and 18.5 million will become blind [3]. Accord-
ing to the International Photographic Classification 
and Grading System for myopic maculopathy (META-
PM) [4], MM from mild to severe could be graded as 
no macular lesions (C0), tessellated fundus (C1), diffuse 
chorioretinal atrophy (C2), patchy chorioretinal atrophy 
(C3), and macular atrophy (C4). A higher grade of MM 
has more marked fundus changes and visual impair-
ment. Thus, the identification of early fundus changes 
in patients who then further develop MM may offer the 
potential insights for earlier intervention and reduction 
in visual impairment and blindness.

The early identification of MM, however, is challeng-
ing. Fang et al. [5] and Yan et al. [6] recently reported that 
the peripapillary atrophy (PPA) was a risk factor for the 
development from high myopia to pathologic myopia and 
the development of MM. Our previous study[7] also sug-
gested that tilt ratio and PPA area were associated with 
macular and peripapillary choroidal thickness in young 
high myopic patients. These studies indicated that the 
region of the optic disc has features that may correlate 
with the development of MM. In the short term, these 
features could imply different fundus image changes 
between population who develop severe MM and who 
do not. In a long run, because optic disc changes usu-
ally occur in high myopia stage, these features also have 
potential to serve as indicators to discern the high-risk 
population in an early stage. Thus, exploring and quanti-
fying more hidden or imperceptible MM-related features 
to the naked eyes in optic disc region may contribute to 
a more comprehensive understanding of MM and there-
fore may assist to distinguish the high-risk population.

Radiomics is a methodology that extracts a large num-
ber of features from medical images using data-char-
acterization algorithms. These features offer potential 
to discover disease characteristics that are beyond the 
perception capacity of the naked eye. Although not yet 
used in ophthalmic imaging analysis, radiomics has been 
widely used in tumor phenotype classification, preopera-
tive prediction, treatment assessment and etc. based on 
image feature mining [8–17]. Recently, machine-learn-
ing has been used to identify image features in a variety 
of eye diseases including diabetic retinopathy, glaucoma 

and macular degeneration [18–21]. However, the mor-
phological assessment of the optic disc region in patho-
logic myopia is complicated, and the features solely 
from surface are far from sufficient for more accurate 
diagnosis and more descriptive characteristics are yet to 
be revealed. Employing machine learning and radiom-
ics methods to extract and quantify these hidden image 
features could help discover more MM-related fundus 
image characteristics, and transfer retinal specialists’ 
experience to practical evaluating indicator to help make 
diagnosis [22].

This research aims to (1) mine MM-related image fea-
tures from the optic disc region of fundus images via 
machine learning and radiomics methods; and (2) pro-
vide quantitative analysis on MM characteristics to assist 
ophthalmologists have further insights of the develop-
ment of MM, and to support objective early diagnosis.

Patients and methods
Patients
The patients included in this study were recruited in 
the Shanghai High Myopia Study for Adults. The study 
protocol has been described in our previous study [23] 
and was approved by the Medical Ethics Committee of 
Shanghai General Hospital, Shanghai Jiao Tong Univer-
sity School of Medicine, consistent with the Declaration 
of Helsinki. Written informed consent was obtained from 
all study participants. The study (# NCT03446300) was 
registered at http://​www.​clini​caltr​ials.​gov.

They were over 50 years of age and had an Axial length 
(AL) more than 26  mm. Exclusion criteria included: an 
IOP over 21  mmHg; previous intraocular or refractive 
surgery other than cataract surgery; media opacity; coex-
isting or history of ocular or severe systemic diseases, 
including dense cataract, glaucoma, diabetic retinopathy 
or diabetic macular edema and autoimmune disease; and 
other evidence of retinal pathology not related to myo-
pia. Patients were also excluded if the retinal images were 
‘poor’, for example, images out of focus, interfered of 
light, occluded and etc. Generalized estimating equation 
regression models were used to account for correlation 
between left and right eyes of the same patient [23]. Both 
eyes were included in this study, and if an eye was not eli-
gible based on the inclusion criteria, it was excluded from 
this particular analysis.

According to the META-PM Study Group [4], myopic 
maculopathy was classified into C0, C1, C2, C3, and C4. 
According to the earlier reports, [5, 24–26] C2 was sub-
classified into peripapillary chorioretinal atrophy (PDCA) 
and macular chorioretinal atrophy (MDCA). Lacqure 
cracks, myopic choroidal neovascularization and Fuch’s 
spot were classified as “plus lesions”. Eyes with graded 
greater than or equal to MDCA or associated with plus 

http://www.clinicaltrials.gov
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lesions were classified as severe MM group, while eyes 
with C0, C1 or PDCA were classified as without severe 
MM group. The classification and grading of MM were 
performed by two independent, well-trained graders 
(Q.Y.C and J.N.H). In cases of disagreement, an adjudi-
cation was made by a retinal specialist (Y.F). The clinical 
characteristics of the patients are listed in Table 1.

A total of 457 eyes of 313 participants with high myo-
pia were included in the study, noted as the whole data-
set. We split 70% of the eyes as training dataset consisting 
of 319 eyes, and 30% as validation dataset consisting of 
138 eyes.

Methods
The radiomics method involved: (1) delineation of the 
regions of interests (ROIs); (2) construction of a fea-
ture pool by the automatic extraction of image features 
from the ROIs and, (3) selection of discriminative fea-
tures using the correlation analysis and machine learning 
method.

ROI delineation
The ROIs were interactively extracted and annotated 
from fundus images according to the PPA and optic disc 
boundaries using an in-house annotation software as 
shown in Fig.  1. The contours of the delineated regions 
were smoothed through B-spline interpolation to avoid 
blurs generated by manual errors [27].

Construction of the feature pool
Before the feature extraction, all scans of left eyes were 
mirrored to conform to scans of right eyes. There were 
316 high throughput features that were extracted and 
comprised 151 morphologic, 54 intensity and 111 texture 
features. All of the features were extracted from the ROI 
of images (Fig.  1). Various morphological characteris-
tics of the optic disc region included regional properties, 
such as the Hausdorff distance and the curvatures of con-
tours, and global properties, such as perimeters, central 
moments and moment invariants [28, 29]. Correspond-
ing shape description operators were used to obtain these 
features. The intensity features described intensity distri-
butions, such as mean value, variance, and statistics his-
tograms. The definition of intensity and texture features 
was detailed in the website (https://​pyrad​iomics.​readt​
hedocs.​io/​en/​latest/). These features were extracted with 
the PyRadiomics package from R, G, B channels of color 
fundus images, separately [30].

Six shape features had been reported previously by 
ophthalmologists and regarded as possible MM-related 
candidates [31–33]. We termed these six features as clinic 
features which conducted clinic feature set. Among them, 
AreaPPA was defined as the area between the contour of 

PPA and the contour of optic disc. AreaDisc was defined 
as the area within the contour of optic disc. Tilt of optic 
disc was defined as the ratio of the short axis and the long 
axis of optic disc. Torsion referred to the angle between 
the long axis of optic disc and the line perpendicular to 
the line of macular and center of optic disc. Dist_MD 
referred to the distance of macular and center of optic 
disc. Angle_MD referred to the angle between horizon-
tal and line of macular and center of optic disc. All of the 
indexes were counted in pixels. Since all of the color fun-
dus images had the same size of 2032*1934 with 150 dpi, 
it has been ensured that these data were obtained under 
the same metric. These six clinic features were included 
into shape features subclass for further selection.

MM‑related features selection
We selected MM-related features from 322 features 
based on evaluating their ability to classify patients with 
and without severe MM. The data in training dataset 
were normalized by Z-score in advance [34, 35]. First, 
mutual information and student’s t test were employed 
to filter out noisy and irrelevant features [36, 37]. Then, 
SFFS (Sequential Floating Forward Selection) algorithm 
with random forest classifier was used to select the opti-
mal feature set [38, 39]. fivefold cross validation was 
employed to avoid over-fitting in SFFS procedure. Finally, 
a final feature set was selected according to the number 
of features, mean score and standard deviation of cross 
validation. A decision model was trained using this fea-
ture set by random forest classifier. ROC (Receiver Oper-
ating Characteristic) and AUC (Area Under the Curve) 
indexes were used to evaluate the feature set’s perfor-
mance of classifying patients with or without severe MM.

Statistical analysis
The final feature set was termed new feature set. The fea-
tures in the final feature set were termed new image fea-
tures. To assess how the new feature set would generalize 
an independent data set, the performance of decision 
model was evaluated on the validation dataset. To assess 
the effectiveness of each new image feature, the classifica-
tion ability and intra-class distribution property of these 
features were calculated on the whole dataset. The clas-
sification ability of new image features was assessed by 
the univariate performance using the logistic regression 
model under fivefold cross validation. The intra-class dis-
tribution of new image features was illustrated by boxplot 
on patients with and without severe MM. To evaluate the 
independence of the new image features, the correlation 
between new image features and clinic features was eval-
uated using the Pearson Correlation Coefficient. To put 
the results, in visualization, we selected five high univari-
ate score features (AUC > 0.75) from new image features 

https://pyradiomics.readthedocs.io/en/latest/
https://pyradiomics.readthedocs.io/en/latest/
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and the clinic feature set and visualized them in graphs. 
Furthermore, we displayed the mean value and stand-
ard deviation value of the five features on subclasses of 
META-PM Study Group.

Results and evaluation
The generalized estimating equation regression models 
revealed that there were no significant differences in ocu-
lar biometry between the two eyes; thus, no adjustment 
is needed for the associations between the two eyes. 
Therefore, the eyes, including those from a same person, 
were regarded as independent samples and were included 
in this study based on the inclusion criteria.

Features selection results
Among the 322 features, 220 had passed mutual infor-
mation filter (threshold = 0.2), and 244 had passed 
independent student’s t test (p < 0.05). An intersection 
of 188 features retained after the filter method phase. 
Among the clinic features, AreaPPA and Tilt retained 
while the others had been filtered out. The maximal 
number of features evaluated by SFFS was set to 30. 
The mean score of classification performance were aris-
ing until the number of selected features increased to 
eight (Fig. 2). For a better trade-off between the classi-
fication performance and the refinement of our model, 
we chose these eight features as the new feature set.

Performance of new image features and clinic features
The performance of new feature set in classifying 
severe MM was scored 0.8263 AUC on the validation 
dataset (Fig.  3). The performance of clinic feature set 

was scored 0.7925 AUC on validation dataset (Fig.  3). 
Finally, we combined the new image features and clinic 
features together to generate the union feature set. 
The union feature set got 0.8358 on validation dataset 
(Fig. 3).

The univariate performance of new image features and 
clinic features on the whole dataset as well as their defi-
nitions were listed in Table  2. Five new image features, 
including firstorder_Energy_R, firstorder_Entropy_B, 
Coarseness_NGTDM, PPAweight_u20R and glcm_
shade_135, had the univariate AUC scores higher than 
0.70. There was only one clinic feature, AreaPPA, had the 
individual AUC score higher than 0.70.

Statistics distribution of each feature on patients 
with and without severe MM
The feature selection phase has ensured the new image 
features had statistical discriminative power on patients 
with and without severe MM (student’s t test, p < 0.05). 
The boxplot figure has intuitively displayed the intra-class 
distribution of new image features and clinic features 
(Fig. 4) on patients with and without severe MM. All of 
the new image features and four clinic features (except 
for Torsion and Angle_MD) had significant differences 
between patients with and without severe MM (P < 0.05).

Correlation between new image features and clinic 
features
The correlation coefficients between new image features 
and clinic features were quantitatively evaluated by Pear-
son Correlation Coefficient and shown in Fig. 5. Among 
the new image features, firstorder_Energy_R and first-
order_Entropy_B had high correlation coefficient scores 

Fig. 1  Delineation of ROI: a original fundus image; b mask of optic disc; c mask of contour of PPA with optic disc; d mask of PPA region and, e 
masked PPA
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with AreaPPA. The feature firstorder_Energy_R occupied 
the PPA area factors, so it was thought to be depend-
ent with AreaPPA. The feature firstorder_Entropy_B 
depicted the entropy of the region rarely effected by area, 
so it was thought to be an independent factor. The other 
pairs of new image features had little relevancy with 
the clinic features. Thus, they were thought to be new 
findings.

Visualization of new image features and clinic features
Four new image features (AUC > 0.75) and one clinic fea-
ture AreaPPA (AUC > 0.75) were visualized in four cases 
consisting of patients both with and without severe MM 
to help understanding (Fig. 6).

Analysis of subclass of MM
In the whole data set, patients were divided into six sub-
classes: C0, C1, PDCA, MDCA, C3, C4. We explored 
how the values of MM-related features would change 
along with these different subclasses. For the four new 
image features (AUC > 0.75) and one clinic feature Are-
aPPA (AUC > 0.75), their mean values and standard 
deviation in each subclass were estimated on the whole 
data set (all subclasses had been labeled based on clinical 
reports), as shown in Fig. 7. It showed that the mean val-
ues of these features changed significantly at two places: 
one was between C0 and C1, another was between PDCA 
and MDCA.

Discussion
In this study, we applied radiomics method into the field 
of ophthalmology to explore comprehensive MM-related 
features. Our main findings were as follows: (a) eight 
new image features were discovered to have better per-
formance than clinic features in classifying severe MM 
patients. These features were difficult to be perceived in 
clinic; (b) an effective machine learning tool for automat-
ically extracting and decoding various MM-related image 

Fig. 2  SFFS algorithm feature selection result; as the number of selected features increases, average scores and standard deviation of discriminative 
power on patients with and without severe MM fluctuated

Fig. 3  The ROC and AUC of new feature set, clinic feature set and 
union feature set on the validation dataset for classifying severe MM
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Table 2  New image features–description and properties

New image features Clinic features

FeatureIndex Description AUC​ FeatureIndex Description AUC​

Firstorder_Energy_R The intensity distribution of PPA 0.8471 ± 0.0023 AreaPPA The area of PPA 0.8317 ± 0.0226

Firstorder_Entropy_B The intensity distribution of PPA 0.8369 ± 0.0377 Tilt The tilt of optic disc 0.6742 ± 0.0620

Coarseness_NGTDM The texture pattern of PPA 0.8176 ± 0.0243 Dist_MD The distance between macula and 
optic disc

0.6013 ± 0.0259

PPAweight_u20R The intensity distribution of PPA 0.7886 ± 0.0356 AreaDisc The area of optic disc 0.5670 ± 0.0683

glcm_shade_135 The texture pattern of PPA 0.7085 ± 0.0339 Angle_MD The angle of the horizonal and 
Dist_MD

0.5562 ± 0.0627

PPAweight_u30R The intensity distribution of PPA 0.6727 ± 0.0807 Torsion The torsion of optic disc 0.4649 ± 0.0362

Fourier_Circularity_PPA The shape of PPA 0.6632 ± 0.0401

DiscCurvature13 The shape of optic disc 0.6547 ± 0.0589

Fig. 4  The boxplot of eight new image features and six clinic features
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features was developed; (c) marked changes between 
PDCA and MDCA was discovered by both new image 
features and clinic features.

We have found eight new image features based on their 
performances for classifying patients with and without 
severe MM. The overall performance of the new feature 
set was higher than the clinic feature set. The highest 
score was achieved from the combination of these two 
sets, which implied that the new image features revealed 
more characteristics related to MM and had comple-
mentary values to clinic features. Supporting cases were 
shown in Fig. 6. The new image features enabled the right 
diagnosis to complex cases, while in comparison the con-
ventional clinical factor of PPA area failed.

Most of the new image features were new find-
ings. Among them, seven out of eight were completely 
new factors by pearson correlation analysis, while the 
only common factor was relevant to the area of PPA. 
This common factor consistently supported the previ-
ous study results that PPA area was a risk factor for the 
development of MM. The seven new image features 
indicated that changes of intensity and texture also 
occurred in optic disc region between patients with and 
without MM in the cohort. Specifically, the feature first-
order_Energy_R indicated that the PPA of MM cases 
were bigger and brighter than those without MM in this 

study. The feature firstorder_Entropy_B indicated that 
the color level of PPA of MM cases was denser. And the 
feature Coarseness_NGTDM indicated the PPA of MM 
cases had locally more non-uniform texture. The highest 
performance of new features was 0.8471 AUC, implying 
comparability to the classic indicator PPA area (0.8317 
AUC).

The new image features provided a more comprehen-
sive view for the characteristics of the development of 
MM. The intensity, texture and high order morphology 
properties revealed by those features could only be sensu-
ously perceived but difficult to interpret by routine clinic. 
However, this subjective operator-dependent expertise 
and experience may often play critical role on making 
accurate diagnosis for complex cases. With the capacity 
of providing quantitative and descriptive imaging char-
acteristics of MM status, our study thus would serve to 
transfer the experience of retinal specialists to practical 
indicators, which therefore might inspire standardizing 
the diagnosis.

Moreover, the feature extraction and screening 
approach in this study was highly automatic. Previously, 
several optic disc morphologic changes were reported 
to be significantly associated with the progression of 
high myopia and the development and progression of 
MM [5, 6, 31–33]. However, these clinic features were 

Fig. 5  Correlation between new image features and clinical factors. (*p value < 0.05. **p value < 0.01. ***p value < 0.001. no marker: p value > 0.05)

(See figure on next page.)
Fig. 6  Visualization of new image features and clinic proposed features. Column 1 and 2: fundus images of two patients with severe MM. Column 
3 and 4: fundus images of two patients without severe MM. The first row: the macula-centered fundus images. The second row: the corresponding 
optic disc-centered fundus images. The third row: AreaPPA (PPA areas. We chose patients with similar PPA areas as examples, only by counting areas 
could not distinguish if a patient had severe MM or not). The fourth row: firstorder_Energy_B (energy of PPA). Higher values of firstorder_Energy_B 
meant brighter intensity in PPA region. The fifth row: PPAweight_u20R (pixel distribution of PPA). Higher average values of PPAweight_u20R meant 
more rapid fluctuation of pixel values along broadwise direction of PPA region. The sixth row: firstorder_Entropy_B (entropy of PPA). Higher value 
of firstorder_Entropy_B meant more complexity pixel values distribution in PPA region (zoomed from the rectangular in row 2rd fundus images). 
The seventh row: Coarseness_NGTDM (Coarseness of PPA). Higher Coarseness_NGTDM values meant a lower spatial change rate and a locally less 
nonuniform texture
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measured manually and separately, and highly depended 
on the ophthalmologists’ experience. In addition, with 
difficulty to access the retinal specialists, junior ophthal-
mologists lacking of experience might not always be able 
to make correct clinical decisions. In this research, the 
fundus images were only required to be annotated for 
ROI regions in advance. High throughput features were 
extracted in automatic processing manner via computer-
aided technique and MM-related features were filtered 
out automatically via an AI model. Our approach illumi-
nated capability for rapid population-based screening, by 
providing time- and labor- efficient, and objective and 
quantitative measurement.

Another interesting finding in the present study was 
that, when analyzing changes in mean values of new 
image features and clinic features between different sub-
classes, most of the features changed remarkably in two 
places. One was from C0 to C1, another was from PDCA 
to MDCA. The substantial change from C0 to C1 was 
not hard to understand and mainly because in C0 there 
normally no fundus changes, while in contrast, C1 tended 
to have tessellated fundus. Interestingly and surprisingly, 
our study found that there was also a distinctive varia-
tion from PDCA to MDCA among most features, includ-
ing both new image features and clinic features; and in 
comparison, the changes from MDCA to C3 and C4 were 
relatively slight. To avoid the possibility that the varia-
tion of features from PDCA to MDCA might be a com-
mon result that they were separately categorized, we 
additionally categorized them into the same group and 
repeated our experiments. The new selected features also 
illustrated large variations from PDCA to MDCA (Please 
refer to the Additional file 1). Previous studies classified 
PDCA, MDCA and more serious grades as MM [4, 40].

Our study suggested that MM could be further sub-
divided. For patients with PDCA, the fundus changes 
were mainly around the optic disc, and no significant 
lesions were found in the macular region. Thereby, it was 

more appropriate to classify PDCA as mild MM. It was 
reported that patients with PDCA had thicker macular 
choroidal thickness and better BCVA than patients with 
MDCA and severer MM in elder patients [24]. How-
ever, whether the elder patients with PDCA would pro-
gress to MDCA had not been reported in the literature. 
Hence, MM might to be further subdivided so that PDCA 
would be classified as mild MM while MDCA along 
with more serious grades defined as severe MM for the 
elderly population. This suggested further classification 
might be helpful for prognostic evaluation and follow-
up plan guidance for different age groups. In the future 
study, we would collect follow-up data to further test our 
hypothesis.

Conclusions
In conclusion, this study was the first effort on employ-
ing radiomics method to precisely quantify MM-related 
features that otherwise were difficult to be perceived in 
the routine clinic. And it was the first time to potentially 
substitute the subjective evaluation factors for the char-
acteristics of different grades of MM based on retinal 
specialists’ experience with the objective and quantitative 
evaluation system. In the future, more follow-up studies 
are needed to prove that AI could help realize MM early 
prediction.
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