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Abstract 

Background:  Melanoma is the deadliest of skin cancers and has an increasing annual incidence worldwide. It is a 
multi-factorial disease most likely arising from both genetic predisposition and environmental exposure to ultraviolet 
light. Genetic variability of the components of the biological circadian clock is recognized to be a risk factor for dif-
ferent type of cancers. Moreover, two variants of a clock gene, RORA, have been associated with melanoma patient’s 
prognosis. Our aim is to test the hypothesis that specific single nucleotide polymorphisms (SNPs) of the circadian 
clock genes may significantly influence the predisposition to develop cutaneous melanoma or the outcome of mela-
noma patients.

Methods:  We genotyped 1239 subjects, 629 cases of melanoma and 610 healthy controls in 14 known SNPs of seven 
selected clock genes: AANAT, CLOCK, NPAS2, PER1, PER2, RORA, and TIMELESS. Genotyping was conducted by q-PCR. 
Multivariate logistic regression was employed for susceptibility of melanoma assessment, modeled additively. Sub-
group analysis was performed by gender. For the female subgroup, a further discrimination was performed by age. 
For prognosis of melanoma assessment, multivariate Cox proportional hazard regression was employed. The Benja-
mini–Hochberg method was utilized as adjustment for multiple comparisons.

Results:  We identified two RORA SNPs statistically significant with respect to the association with melanoma sus-
ceptibility. Considering the putative role of RORA as a nuclear steroid hormone receptor, we conducted a subgroup 
analysis by gender. Interestingly, the RORA rs339972 C allele was associated with a decreased predisposition to 
develop melanoma only in the female subgroup (OR 0.67; 95% CI 0.51–0.88; P = 0.003) while RORA rs10519097 T allele 
was associated with a decreased predisposition to develop melanoma only in the male subgroup (OR 0.62; 95% CI 
0.44–0.87; P = 0.005). Moreover, the RORA rs339972 C allele had a decreased susceptibility to develop melanoma only 
in females aged over 50 years old (OR 0.67; 95% CI 0.54–0.83; P = 0.0002). None of the studied SNPs were significantly 
associated with the prognosis.

Conclusions:  Overall, we cannot ascertain that circadian pathway genetic variation is involved in melanoma sus-
ceptibility or prognosis. Nevertheless, we identified an interesting relationship between melanoma susceptibility and 
RORA polymorphisms acting in sex-specific manner and which is worth further future investigation.
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Background
Melanoma, which arises from the uncontrolled pro-
liferation of melanocytes, is the deadliest of skin can-
cers and has an annual incidence of 22 new cases per 
100,000 inhabitants in the US. It is a multi-factorial 
disease most likely arising from both genetic predispo-
sition and environmental exposure to ultraviolet light. 
Phenotypical characteristics such as fair skin type, 
dysplastic nevi and multiple common nevi contribute 
to increase melanoma risk. In general, the predispo-
sition to melanoma follows a polygenic model where 
in addition to the high penetrance genes with famil-
ial aggregation, as  CDKN2A  mutations, many low/
medium penetrance genes are recognized with a risk-
modifying role in the general population [1]. Approxi-
mately 5–10% of cutaneous melanoma cases occurs in 
a familial setting [2]. Genome-wide association studies 
(GWAS) and improved DNA sequencing techniques as 
next generation sequencing (NGS) contributed to eluci-
date the genetic basis of melanoma susceptibility with 
the identification of a plethora of new genetic loci asso-
ciated with melanoma. Although, several genes respon-
sible for melanoma predisposition have been identified, 
our knowledge on this field is still poorly understood 
[3].

An increasing number of epidemiological studies 
associates chronodisruption with the risk of develop-
ing various type of cancers, including melanoma [4, 
5], leading the International Agency for Research on 
Cancer (IARC) to classify Shifwork (with night shifts, 
which involves circadian disruption) as a potential car-
cinogenic for humans (Group 2A) [6]. Regarding the 
relationship between the circadian clock machinery 
and melanoma, the majority of researchers focused 
on the expression of the circadian clock genes in 
melanoma cell lines and in skin biopsies in human or 
mouse. These studies showed that clock genes are 
downregulated in melanoma as compared to normal 
adjacent tissue (or compared to nevi) [7, 8]; moreover, 
the reduced clock gene expression is associated with 
increased tumor aggressiveness and a worse prognosis 
[7, 9]. Only one study addressed the issue on genetic 
variability of the promoter region of the NPAS2 clock 
gene and melanoma risk, and found a significant asso-
ciation with a polymorphic GGC repeat [10]. Another 
study examined the association of polymorphisms of 
steroid hormone receptors and melanoma prognosis, 
and found significant associations between cutaneous 

melanoma-specific survival and two SNPs on the clock 
gene RORA, whose putative protein encodes a ligand-
activated transcription factor [11].

In our previous analysis on genetic predisposition to 
cutaneous melanoma, we studied the copy number vari-
ations (CNVs) of the transcription factor E2F1 [12] and 
found that 1.6% of melanoma patients harbored more 
than two copies of E2F1. The difference with the healthy 
subjects group was statistically significant. In the pre-
sent article, we focused our attention on the role of single 
nucleotide polymorphisms (SNPs) of the components of 
the circadian system on melanoma biology. In particu-
lar, we intended to test the hypothesis that specific SNPs 
of the circadian clock genes, such as AANAT (aryla-
lkylamine N-acetyltransferase), CLOCK (clock circadian 
regulator), NPAS2 (neuronal PAS domain protein 2), 
PER1 (period circadian clock 1), PER2 (period circadian 
clock 2), RORA (retinoic acid-related orphan receptor A), 
and TIMELESS (timeless circadian clock) could signifi-
cantly influence the predisposition to develop cutaneous 
melanoma or the outcome of melanoma bearing patients. 
To this aim, we genotyped 629 cases of melanoma and 
610 healthy controls in 14 known SNPs of the above 
reported clock genes.

Material and methods
Study design
We conducted a retrospective study to test the hypothesis 
that genetic variants, such as SNPs, of the circadian path-
way might be associated with the susceptibility or prog-
nosis of patients affected with melanoma. To this aim, we 
extracted the clinico-pathological data of patients treated 
at our institution (Veneto Institute of Oncology, Italy) 
between 2008 and 2015, using a prospectively maintained 
database linked to our institutional biobank (Clinica Chi-
rurgica I—University Hospital of Padova, Italy). To be 
included in the study, each case had to meet the following 
requirements: (1) histologically confirmed diagnosis of 
cutaneous melanoma or metastasis from melanoma; (2) 
pathology-based information on TNM stage; (3) follow-
up data (minimum follow up: six months); (4) availability 
of peripheral blood for genotyping purposes.

Patients and healthy donors
We retrospectively selected 629 consecutive melanoma 
patients, and 610 healthy controls. The selection of the 
latter was both population-based (n = 270 blood donors) 
and hospital-based (n = 340, healthy subjects who visited 
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the Clinica Chirurgica I practice for routine check-ups). 
All patients signed an informed consent form explaining 
the research purposes of the blood withdrawal. Healthy 
controls dataset was already employed in our previous 
analyses [13, 14].

SNPs selection
We focused on 5 core clock genes, which are CLOCK, 
NPAS2, PER1, PER2, and RORA. Moreover, we added 
two clock-related genes TIMELESS, associated with can-
cer risk in several studies [15–18] and AANAT for its role 
in the biosynthesis of melatonin, a key marker of the cir-
cadian system.

We selected either Tag SNPs, interrogating The 
Genome Variation Server of the University of Washing-
ton (http://gvs.gs.washi​ngton​.edu/GVS/) and the Tag-
SNP tool of the US National Institute of Environmental 
Health Sciences (https​://snpin​fo.niehs​.nih.gov/snpin​fo/
snpta​g.html), or variants already known to be associated 
with cancer susceptibility or prognosis, that had a minor 
allele frequency > 5%. We relied on our previous meta-
analysis [19], on our previous case–control studies [13, 
14, 20] and on literature. The publications referring to 
cancer studies for each SNP are listed in Table 2.

DNA extraction and genotyping as described in [13].

Statistical analysis
For susceptibility of melanoma assessment, multivariate 
logistic regression was employed, modeled additively by 
minor allele count. Odds ratios (OR) and 95% confidence 
intervals were used as a measure of association of each 
SNP. In those multivariate models, the evaluated out-
come was the presence or absence of melanoma, while 
the explanatory variables were the single SNPs adjusted 
for age and gender.

Subgroup analysis was performed by gender. For the 
female subgroup, a further discrimination was performed 
by age (> 50 years old vs < 50 years old).

Sensitivity analysis was conducted excluding patients 
with melanoma of unknown primary (MUP).

For prognosis of melanoma assessment, multivari-
ate Cox proportional hazard regression was employed. 
Overall survival was defined as the time from the date of 
tumor diagnosis to the date of death by any cause or last 
follow-up visit. Hazard ratios (HR) and 95% confidence 
intervals were used as a measure of association. In those 
multivariate models the evaluated event was the patient’s 
survival, the time to event were the months of sur-
vival, and the explanatory variables were the single SNP 
adjusted for age, gender and melanoma stage.

The Benjamini–Hochberg method (1995) was 
employed as adjustment for multiple comparisons (False 
Discovery Rate Online Calculator, 2016, Carbocation 

Corporation, https​://tools​.carbo​catio​n.com/FDR). False 
discovery rate (FDR) cut-off was set at 0.1.

Hardy-Weimberg Equilibrium (HWE) was tested for 
both samples (patients and healthy controls) for each 
SNP employing OEGE—Online Encyclopedia for Genetic 
Epidemiology studies [26], http://www.oege.org/softw​
are/hwe-mr-calc.shtml​. This tool is a HWE calculator for 
biallelic SNPs based on Chi—square statistic.

Statistical power was calculated for each SNP employ-
ing the on-line tool “Power and Sample Size” of the Uni-
versity of Vanderbilt (http://biost​at.mc.vande​rbilt​.edu/
wiki/Main/Power​Sampl​eSize​) [27]. Power was defined as 
the probability of correctly rejecting the null hypothesis 
that the relative risk (OR) was equal to 1, given 629 case 
patients and 610 controls. The type I error probability α 
was set to 0.05 and ψ (OR considered clinically relevant 
in our study) was set to 0.80. Finally, the expression quan-
titative trait locus (eQTL) analysis was carried out inter-
rogating the GTEx Portal (https​://gtexp​ortal​.org/home/).

Rcmdr: R Commander. R package version 2.4–2 was 
employed for the analyses.

Results
The analysis was based on a total of 1239 subjects, 629 
cases of melanoma and 610 healthy controls, all of Euro-
pean ancestry. Thirty-four out of 629 patients had mela-
noma of unknown primary. The healthy control dataset 
was already employed in our previous analyses [13, 14], 
detailed subjects’ characteristics and the main features of 
the SNPs we investigated are reported in Tables 1 and 2, 
respectively.

A total of 14 preselected SNPs in 7 circadian clock 
genes were successfully genotyped, and no departures 
from Hardy–Weinberg equilibrium were observed nei-
ther among the controls nor among the patients, as 
summarized in Additional file 1: Table S1. The mean sta-
tistical power for this analysis was approximately 70%; 
detailed statistical power for each SNP is reported in 
Additional file 1: Table S1.

Susceptibility and prognosis assessment
Associations between the selected clock gene SNPs and 
melanoma susceptibility were tested assuming an addi-
tive model of inheritance. We used odds ratios (ORs) and 
their corresponding 95% confidence intervals (95% CI) to 
measure the strength of association between each poly-
morphism and melanoma susceptibility. The results are 
reported in Table 3.

After adjusting for multiple testing, we identified two 
SNPs on RORA locus significantly associated with mela-
noma susceptibility. rs339972 C allele and rs10519097 T 
allele were associated with a decreased melanoma risk 
(OR 0.76; 95% CI 0.63–0.91; P = 0.003 and OR 0.77; 95% 
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CI 0.61–0.97; P = 0.026, respectively). Adjusted p-values 
are reported in Additional file 1: Table S2.

No differences were found excluding from the analyses 
the 34 patients with melanoma of unknown primary.

Considering the putative role of RORA as a nuclear 
steroid hormone receptor, we decided to conduct a sub-
group analysis by gender. The results are reported in 
Table 4.

Interestingly, the RORA rs339972 C allele was associ-
ated with a decreased melanoma susceptibility only in the 
female subgroup (OR 0.67; 95% CI 0.51–0.88; P = 0.003) 
while RORA rs10519097 T allele was associated with 
a decreased predisposition to develop melanoma only 
in the male subgroup (OR 0.62; 95% CI 0.44–0.87; 
P = 0.005). A further subgroup analysis was carried out 
dividing the female dataset by age at diagnosis (> 50 years 
old vs < 50  years old) to discriminate if menopausal or 
premenopausal status could interact with RORA variants 
and melanoma associations. Females aged over 50 years 
old carrying RORA rs339972 C allele had a decreased 
susceptibility to develop melanoma of 33% (OR 0.67; 95% 
CI 0.54–0.83; P = 0.0002). No other tested associations 
were statistically significant after correcting for multiple 
testing.

No statistically significant associations with prognosis 
were observed as reported, for each SNP, in Additional 
file 1: Table S3.

eQTL search
The expression quantitative trait locus (eQTL) analysis 
was carried out interrogating the GTEx Portal. A signifi-
cant result (P = 0.000015) was found for RORA rs339972 
in pancreas, while no significant eQTLs were identified 
for RORA SNP rs10519097.

Discussion
Summary
In the present study, we tested the hypothesis that DNA 
genetic variations of the circadian clock genes might 
influence the susceptibility to develop cutaneous mela-
noma or the outcome of melanoma patients. The hypoth-
esis stemmed from the growing number of studies 
correlating the risk or the prognosis of different tumour 
types with the genetic variability of the circadian system 
[19]. Moreover, cutaneous melanoma and the circadian 
system share a common denominator: ultraviolet (UV) 
radiation. The persistent exposure to sunlight, result-
ing in sunburn, especially in childhood, is an acknowl-
edged melanoma risk factor [45]. Of note, light is the 
principal zeitgeber (literally time giver) of the biological 
clock, and thus plays a key role in clock synchronization. 
We selected 14 single nuclear polymorphisms in seven 
clock-related genes and we genotyped 1239 subjects, 629 
melanoma patients and 610 healthy donors. Our results 
indicated that two SNPs of the RORA clock gene are 
associated with melanoma susceptibility. In particular, 
subgroup analysis revealed that rs339972 was statistically 
significant with respect to the association with melanoma 
susceptibility in females, while rs10519097 in males. 
Moreover, females carrying RORA rs339972 C allele aged 
over 50  years had a decreased susceptibility to develop 
melanoma of 33%. No associations were found with mel-
anoma prognosis.

RORA structure
RORA (also known as NR1F1, nuclear receptor subfam-
ily 1, group F, member 1) belongs to the nuclear ster-
oid hormone receptor family of transcription factors. 
It was identified in the 1990s for its sequence similarity 
with the retinoid acid receptor (RAR) [46, 47]. Recep-
tors without their ligands were called orphan-receptors. 
More recently, the crystal structure of its ligand binding 
domain identified cholesterol and cholesterol sulphate as 
putative ligands [48, 49]. The RORA locus maps to human 
chromosome 15q22.2 and spans 730 kb genomic region, 
comprised of 15 exons. Alternative splicing and alterna-
tive promoter usage generate four isoforms RORA1-4, 

Table 1  Clinico-pathological characteristics of  629 
melanoma patients and 610 healthy donors

Characteristic Controls (n = 610) Cases (n = 629)

Mean age, years (st.dev.) 48.6 (14.8) 56.5 (15.7)

Gender, n (%)

 Male 336 (55.2) 329 (52.3)

 Female 273 (44.8) 300 (47.7)

Female age, n (%)

 > 50 years 150 (54.9) 172 (57.3)

 < 50 years 123 (45.1) 128 (42.7)

Source of Controls, n (%)

 Hospital 340 (55.7)

 Population 270 (44.3)

Patient status, n (%)

 Alive 417 (66.3)

 Deceased 212 (33.7)

 Median survival, months (min, 
max)

73.3 (1.0, 340.6)

Primary tumor, n (%)

 Known 595 (94.6)

 Unknown 34 (5.4)

Tumoral stage, n (%)

 I 174 (27.7)

 II 159 (25.3)

 III 267 (42.4)

 IV 29 (4.6)



Page 5 of 10Benna et al. J Transl Med           (2021) 19:57 	

differently expressed in a tissue-specific manner. Differ-
ent isoforms of RORA have different binding specificities 
and strengths of transcriptional activity [47]. In the early 
2000s RORA was shown to display a rhythmic pattern 

of expression in a circadian manner in the  liver,  kid-
ney,  retina,  lung and suprachiasmatic nuclei, the region 
of the brain responsible for circadian rhythmicity con-
trol. Few years later, RORA was shown to be necessary 

Table 2  Genotypes and main features of the circadian gene SNPs

Gene SNP ID Genotype Controls
N (%)

Cases
N (%)

Chr Region Residue
change

References in cancer

AANAT rs3760138 TT 146 (24.3) 173 (27.7) 17 intron
5′-UTR​

[28]

TG 323 (53.7) 302 (48.3)

GG 132 (22.0) 150 (24.0)

rs11077821 CC 419 (69.1) 448 (71.5) 17 intron [29]

CT 175 (28.9) 166 (26.5)

TT 12 ( 2.0) 13 ( 2.1)

CLOCK rs1801260 TT 323 (53.2) 336 (53.4) 4 3′-UTR​ [13, 14, 20, 22, 24, 30–34]

TC 228 (37.6) 251 (39.9)

CC 56 ( 9.2) 42 ( 6.7)

rs3736544 GG 241 (39.8) 253 (40.2) 4 exon Asn > Asn

GA 269 (44.5) 294 (46.7)

AA 95 (15.7) 82 (13.0)

rs3749474 CC 259 (42.6) 258 (41.0) 4 3′-UTR​ [14, 19, 20, 28, 34]

CT 266 (43.8) 280 (44.5)

TT 83 (13.7) 91 (14.5)

NPAS2 rs2305160 GG 283 (46.7) 273 (44.0) 2 exon Thr > Ala [14, 16, 18, 23, 24, 28, 29, 34–43]

GA 264 (43.6) 290 (46.7)

AA 59 ( 9.7) 58 ( 9.3)

PER1 rs3027178 TT 281 (46.1) 262 (42.4) 17 exon Thr > Thr [14, 19, 25, 44]

TG 253 (41.5) 279 (45.1)

GG 76 (12.5) 77 (12.5)

PER2 rs934945 CC 386 (63.4) 410 (66.1) 2 exon Gly > Glu [13, 14, 19, 21–25, 44]

CT 206 (33.8) 194 (31.3)

TT 17 ( 2.8) 16 ( 2.6)

PER2 rs2304674 AA 330 (54.5) 349 (55.8) 2 intron [23, 24, 29]

AG 246 (40.7) 232 (37.1)

GG 29 ( 4.8) 45 ( 7.2)

RORA rs339972 TT 312 (51.4) 349 (55.7) 15 intron [13, 14, 19, 24]

TC 233 (38.4) 244 (38.9)

CC 62 (10.2) 34 ( 5.4)

rs10519097 CC 422 (69.3) 464 (74.4) 15 intron [13, 14, 19, 24]

CT 173 (28.4) 151 (24.2)

TT 14 ( 2.3) 9 ( 1.4)

TIMELESS rs3809125 CC 250 (41.4) 258 (41.0) 12 exon Ile > Val

CT 280 (46.4) 297 (47.2)

TT 74 (12.3) 74 (11.8)

rs7302060 TT 181 (29.9) 192 (30.6) 12 upstream [13–17, 19]

TC 304 (50.2) 299 (47.6)

CC 121 (20.0) 137 (21.8)

rs774027 AA 157 (25.9) 164 (26.1) 12 intron [13, 18, 19, 24, 39]

AT 301 (49.7) 303 (48.2)

TT 148 (24.4) 162 (25.8)
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for the rhythmic circadian behavior, indeed mice defi-
cient in RORA display an aberrant circadian rhythmic-
ity [50]. In the clock machinery, RORA competes with 
other nuclear receptors REV-ERBα and β (NR1D1 and 

2, nuclear receptor subfamily 1, group D, member 1 and 
2, respectively) to bind specific DNA response element 
(RORE) in the promoter of the core clock gene BMAL1 
(brain and muscle Arnt-like protein-1, also known as 
ARNTL1); RORA activates, while REV-ERBα and β sup-
press BMAL1 transcription [51–53]. Moreover, mela-
tonin, a major clock output, putatively regulates RORA 
[54].

Both RORA studied variants, rs10519097 and rs33997, 
are located within introns (first and second respectively) 
of RORA transcript 1, referred to as RORA1, while they 
are upstream to transcripts 2–4, RORA2-4.

Circadian clock and melanoma
Approximately ten years ago, a circadian clock was found 
also within the skin [55], in particular the different cel-
lular subtypes, fibroblasts, keratinocyte and melanocytes 
have a local circadian machinery which includes the 
expression of RORA [56]. In cutaneous melanoma it has 
been described a general reduction of clock genes abun-
dance compared to normal adjacent tissues [8]. RORA 
was found to be downregulated in melanoma compared 
to nevi, and the expression was directly correlated to 
overall and disease-free survival [7]. Moreover, non-met-
astatic cutaneous melanoma induces chronodisruption in 

Table 3  Associations of  circadian pathway gene SNPs 
with susceptibility to melanoma under the additive model 
of inheritance

GENE SNP ID Minor allele OR 95% CI P-value

AANAT rs3760138 G 0.98 [0.83—1.15] 0.770

rs11077821 T 0.96 [0.76—1.20] 0.700

CLOCK rs1801260 C 0.91 [0.76—1.09] 0.320

rs3736544 A 0.97 [0.82—1.15] 0.717

rs3749474 T 1.04 [0.88—1.23] 0.635

NP2S2 rs2305160 A 1.05 [0.88—1.25] 0.618

PER1 rs3027178 G 1.05 [0.89—1.25] 0.547

PER2 rs2304674 G 1.06 [0.87—1.28] 0.572

rs934945 T 0.90 [0.72—1.11] 0.315

RORA rs339972 C 0.76 [0.63—0.91] 0.003

rs10519097 T 0.77 [0.61—0.97] 0.026

TIMELESS rs3809125 T 0.99 [0.83—1.18] 0.907

rs7302060 C 1.02 [0.87—1.20] 0.813

rs774027 T 1.03 [0.87—1.21] 0.747

Table 4  Associations of  circadian pathway genes with  susceptibility to  melanoma under  the  additive model 
of inheritance. Stratification by gender and by age

GENE SNP ID FEMALES MALES

OR 95%CI P-value OR 95%CI P-value

AANAT rs3760138 0.95 [0.75–1.21] 0.693 0.98 [0.77–1.24] 0.850

rs11077821 0.89 [0.64–1.25] 0.505 1.03 [0.75–1.41] 0.874

CLOCK rs1801260 0.90 [0.69–1.17] 0.423 0.96 [0.74–1.24] 0.724

rs3736544 0.75 [0.59–0.96] 0.021 1.24 [0.98–1.57] 0.074

rs3749474 1.33 [1.05–1.68] 0.018 0.79 [0.62–1.01] 0.058

NPAS2 rs2305160 1.09 [0.84–1.41] 0.529 0.97 [0.75–1.24] 0.789

PER1 rs3027178 0.94 [0.74–1.20] 0.633 1.11 [0.87–1.41] 0.416

PER2 rs2304674 1.12 [0.86–1.47] 0.405 1.01 [0.76–1.32] 0.971

rs934945 0.87 [0.64–1.19] 0.393 0.93 [0.68–1.26] 0.618

RORA rs339972 0.67 [0.51–0.88] 0.003 0.84 [0.65–1.09] 0.181

rs10519097 0.93 [0.67–1.30] 0.673 0.62 [0.44–0.87] 0.005

TIMELESS rs3809125 1.05 [0.82–1.34] 0.701 0.95 [0.74–1.21] 0.668

rs7302060 1.00 [0.79–1.26] 0.994 1.07 [0.85–1.35] 0.564

rs774027 1.05 [0.84–1.33] 0.659 0.97 [0.77–1.22] 0.805

Age

 < 50 years

 RORA rs339972 0.84 [0.68–1.04] 0.100

rs10519097 0.83 [0.63–1.09] 0.180

 > 50 years

 RORA rs339972 0.67 [0.54–0.83] 0.0002

rs10519097 0.83 [0.64–1.08] 0.158
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central and peripheral circadian clocks [9]. Recently, two 
variants in the RORA locus were found to be associated 
with melanoma prognosis, rs782917 and rs17204952 as 
well as rs7253062 in DNMT1, a steroid hormone recep-
tor as well. Combined analysis of risk genotypes of the 
three variants revealed a decreased cutaneous melanoma 
specific survival in a dose–response manner. The authors 
performed a pathway-based analysis to evaluate genetic 
variants of 191 steroid hormone-related genes [11]. This 
research rationale was based on the shared idea that mel-
anoma represent a steroid-hormone related malignancy 
[57].

Sex hormones and melanoma
Beside the mentioned risk factors, additional variables are 
ethnicity, age and gender, in the latter a female advantage 
has been generally revealed. Lifestyle, X chromosome 
dosage and sex hormones play a role in this disparity 
[58]. It has been reported that incidence rates of cutane-
ous melanoma rise steeply in women until about age 50, 
suggesting estrogen as a possible risk factor. Moreover, a 
cumulative dose-dependent increased risk of cutaneous 
melanoma was shown with the use of estrogens, oral con-
traceptives and hormonal replacement therapy, [59] and 
the risk of premenopausal melanoma may be increased 
among women who are current oral contraceptive users, 
particularly among those with longer durations of use 
[60]. An epidemiological study reported that the inci-
dence of pregnancy-associated melanoma increases with 
increasing maternal age (women aged 40–55 had a 7.55-
fold higher risk than women aged 15–24) [61]. Women 
with a severe teenage acne history, reflecting a hormone 
imbalance, as a higher circulating level of free testoster-
one, had an increased relative risk of melanoma [62]. In 
males, personal history of prostate cancer, neoplasia in 
which androgens play a major role, was found to be asso-
ciated with an increased risk of melanoma [63].

Sexually dimorphic regulation of RORA
Male and female sex hormones differentially and recipro-
cally regulate RORA, with androgen suppressing RORA 
while estrogen enhancing RORA expression. Dihydrotes-
tosterone (DHT) and estradiol increase the binding of 
androgen receptor (AR) and estrogen receptor (ER) 
respectively to the RORA promoter region, and RORA in 
turn increases testosterone levels. The resultant negative 
feedback transcriptionally regulates aromatase, which 
converts male hormones to estrogens [64].

Possible RORA SNPs interactions with melanoma 
susceptibly in a gender‑specific manner
The results of the present study are supporting the role 
of hormone receptors in melanoma susceptibility. In 

particular, the analyzed RORA polymorphisms have 
different effect on melanoma susceptibility whereas 
rs339972 minor allele has a protective effect on pre-
menopausal women while rs10519097 minor allele has 
a protective effect exclusively in men. A speculation 
could be that those polymorphisms interact differently 
with sex hormones and RORA expression, given the 
general knowledge that clock genes as well as RORA are 
down regulated in cancer including melanoma. Another 
hypothesis might be that the effect of different genetic 
variations is related to different RORA isoforms or to dif-
ferent RORA functions; beside the involvement in circa-
dian rhythmicity, RORs molecules play a critical role in 
development, immunity and cellular metabolism [53]. 
Further information on these genetic variants derives 
from our previous studies. In our previous meta-analysis 
[19], rs339972 was statistically significant with respect to 
the association with cancer in general while rs10519097 
with breast cancer risk. In our previous case–control 
studies [13, 14, 20] we found rs339972 to be associated 
with both gastric cancer and sarcoma susceptibility. 
In all those studies, the minor allele C had a protective 
effect, but the associations were statistically less robust 
(in terms of P-value) as compared to the association 
revealed by the present work. Noticeably, in our previ-
ous meta-analysis subgroups meta-analysis employing 
two datasets (4587 subjects) showed that the association 
of rs10519097 with breast cancer was significant with an 
intermediate level of evidence (summary OR: 0.85, CI: 
0.75–0.96, P = 0.008). The A allele was associated with 
a reduced risk of developing cancer also in postmeno-
pausal breast cancer patients (3700 subjects; summary 
OR: 0.87, CI: 0.75–1, P = 0.04) [19]. Nonetheless, further 
studied will be needed to explain and understand the 
mechanisms underlying our results.

The GTEx Portal was queried for the expression quan-
titative trait locus (eQTL) analysis. A significant result 
(P = 0.000015) was found for RORA rs339972 in pan-
creas, nevertheless a GWAS [65] revealed no significant 
associations with pancreatic cancer risk (OR: 0.92, CI: 
0.85–1.00, P = 0.04). Further analyses are necessary to 
unravel the biological and clinical significance of those 
results.

Conclusions
To the best of our knowledge, this is one of the few pio-
neering analyses investigating the relationship between 
cutaneous melanoma susceptibility or prognosis and cir-
cadian gene variants. Nonetheless, we must acknowledge 
some limitations of our work. First, we tested a limited 
number of clock genes and for each of them evaluated 
only selected SNPs, based on our previous analyses or 
on literature, therefore studies involving a larger amount 
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of genes and SNPs are eagerly awaited. Second, all the 
enrolled subjects were of Caucasian ethnicity. Addi-
tional studies including multiple ethnicity should be per-
formed in order to validate our hypothesis also in people 
with different ancestry. Third, the source of controls was 
both population and hospital based (University Hos-
pital of Padova, Italy), nevertheless we choose patients 
with different conditions for the hospital-based fraction 
(i.e. patients treated for haemorrhoids, goitre, gastritis) 
to avoid selection bias. Fourth, we employed only one 
genetic model (that is, the additive model), whereas nei-
ther the recessive nor the dominant model were explored: 
however, our aim was not to identify the best genetic 
model for specific polymorphisms but rather to summa-
rize (in a quantitative fashion) the evidence regarding the 
selected genetic variants.

Overall, we cannot conclude in favour of the hypothesis 
that variability of the circadian clock genes may affect 
melanoma susceptibility or prognosis, but we did find an 
interesting relationship between melanoma biology and 
RORA gene variants, which we believe is worth further 
investigation.
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