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Abstract 

Background:  Although the tumour immune microenvironment is known to significantly influence immunotherapy 
outcomes, its association with changes in gene expression patterns in hepatocellular carcinoma (HCC) during immu-
notherapy and its effect on prognosis have not been clarified.

Methods:  A total of 365 HCC samples from The Cancer Genome Atlas liver hepatocellular carcinoma (TCGA-LIHC) 
dataset were stratified into training datasets and verification datasets. In the training datasets, immune-related genes 
were analysed through univariate Cox regression analyses and least absolute shrinkage and selection operator 
(LASSO)-Cox analyses to build a prognostic model. The TCGA-LIHC, GSE14520, and Imvigor210 cohorts were sub-
jected to time-dependent receiver operating characteristic (ROC) and Kaplan–Meier survival curve analyses to verify 
the reliability of the developed model. Finally, single-sample gene set enrichment analysis (ssGSEA) was used to study 
the underlying molecular mechanisms.

Results:  Five immune-related genes (LDHA, PPAT, BFSP1, NR0B1, and PFKFB4) were identified and used to establish 
the prognostic model for patient response to HCC treatment. ROC curve analysis of the TCGA (training and validation 
sets) and GSE14520 cohorts confirmed the predictive ability of the five-gene-based model (AUC > 0.6). In addition, 
ROC and Kaplan–Meier analyses indicated that the model could stratify patients into a low-risk and a high-risk group, 
wherein the high-risk group exhibited worse prognosis and was less sensitive to immunotherapy than the low-risk 
group. Functional enrichment analysis predicted potential associations of the five genes with several metabolic pro-
cesses and oncological signatures.

Conclusions:  We established a novel five-gene-based prognostic model based on the tumour immune microenvi-
ronment that can predict immunotherapy efficacy in HCC patients.

Keywords:  HCC, Risk model, Immune environment, Prognosis, Immunotherapy

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds 
the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://crea-
tivecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo-
main/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Hepatocellular carcinoma (HCC) is a highly malignant 
cancer and ranks as the third leading cause of cancer-
related deaths worldwide [1]. The 5‐year survival and 
overall survival (OS) rates are below 12%. Precursors 
of most HCC cases include liver cirrhosis, chronic 
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hepatitis viral infections, alcohol-related liver disease, 
non-alcoholic fatty liver disease, and drug-induced 
hepatitis. As HCC is usually diagnosed at advanced 
stages [2], it can be difficult to treat. Thus, it is impor-
tant to elucidate the molecular mechanisms underlying 
HCC progression and develop novel therapeutic targets 
to improve patient survival outcomes.

The immune microenvironment plays a critical role 
in tumorigenesis and is correlated with tumour pro-
gression and treatment efficacy [3, 4]. Systemic immune 
therapeutics have shown efficacy against HCC, espe-
cially for patients without an opportunity to undergo 
resection or liver transplantation [2, 5]. Common 
immunotherapy strategies include chimeric antigen 
receptor-engineered T cells (CAR-T cells), cancer 
vaccines, cytokine therapy, and immune checkpoint 
inhibitors (ICIs). Currently, ICIs are the most success-
ful class of immune therapeutics, both as monotherapy 
and combination therapy [6]. For example, the efficacy 
of anti-programmed cell death 1 (anti-PD-1) and anti-
programmed cell death ligand 1 (anti-PD-L1) in HCC 
has been investigated. PD-L1 expressed by T cells 
regulates immune responses at the initiation phase in 
lymph nodes and at the effector phase in tumour cells 
[7]. The restoration of function in “exhausted” T cells 
and the depletion of immunosuppressive regulatory T 
lymphocytes using monoclonal antibodies targeting 
these receptors have opened up new avenues for the 
treatment of several malignancies [8]. However, only 
approximately 25% of HCC patients with high infiltra-
tion of PD-1-expressing T cells respond to ICIs [9], and 
identification of patients who will respond well to ICIs 
is challenging.

Conventional strategies using tumour-node-metastasis 
(TNM) classification to predict HCC prognosis can help 
guide decisions in HCC clinical therapy [10]. However, 
their predictive efficacies are less than satisfactory. Nota-
bly, the use of genome-sequencing technologies coupled 
with bioinformatics analyses has improved tumour diag-
nosis and prognosis capabilities. Gene-based prognos-
tic models have been established to identify differential 
mRNA expression patterns between cancer and normal 
tissues. Datasets reporting the expression profiles of long 
noncoding RNAs (lncRNAs) [11], genes that regulate epi-
genetic modifications [12], and immune-related genes 
[13] from The Cancer Genome Atlas (TCGA) and NCBI 
Gene Expression Omnibus (GEO) databases have been 
increasingly explored to study disease prognosis. How-
ever, there is no mature model that can stably predict 
patient response to HCC immunotherapy and treatment 
outcome. Therefore, we established a novel five-gene-
based model pertaining to the immune microenviron-
ment and conducted bioinformatics analyses to assess 

the ability of this model to predict HCC immunotherapy 
outcomes.

In the present study, we conducted univariate Cox 
regression analyses and least absolute shrinkage and 
selection operator (LASSO)-Cox regression analyses to 
build a risk model. Risk score, time-dependent receiver 
operating characteristic (ROC) AUC, and Kaplan–Meier 
survival analyses were used to assess the prognostic abil-
ity of the model. The results indicate that our model can 
effectively predict the efficacy of immunotherapy and 
that the five genes can serve as potential independent 
biomarkers in clinical applications. Functional enrich-
ment analysis predicted the potential associations of 
the upregulated and downregulated genes identified in 
our model with relevant biological mechanisms. Con-
clusively, we established a five-gene-based model based 
on the influence of the tumour immune microenviron-
ment that could potentially be applied to predict patient 
response to HCC immunotherapy.

Methods
Data collection
Data from a total of 365 HCC patient samples from the 
TCGA-liver hepatocellular carcinoma (LIHC) dataset 
were retrieved and used for the analysis of prognostic 
gene expression signatures and the development of a 
prognostic model. Genes were excluded if correspond-
ing patient sample data were lacking. Random sampling 
with arrangement was performed, wherein the 365 sam-
ples (including the training set [n = 219] and validation 
set [n = 146]) were randomly sampled 100 times with 
replacement. There was no significant difference in TNM 
stage, grade, OS, sex, or age between the training set and 
validation set (p > 0.05). The clinical data and mRNA 
expression data of the GSE14520 dataset (n = 221) were 
retrieved from the NCBI GEO database (https​://www.
ncbi.nlm.nih.gov/geo/), and an immunotherapy dataset 
(Imvigor210) was obtained from published study [14]. 
All patient data that were used in the present study had 
complete clinical information, including TNM stage, 
grade, survival time, sex, age, and immune-related gene 
expression.

Establishment of the five‑gene model based 
on immune‑related genes
First, we screened for immune-related genes associ-
ated with HCC prognosis. The immune-related genes 
involved in HCC pathogenesis were collected from pre-
vious studies [15–17]. In the TCGA-LIHC training set, 
immune-related gene and survival data were analysed 
by univariate Cox regression analysis using the R pack-
age “coxph”. The criterion of p < 0.001 was selected as 
the filtering threshold. We screened the immune-related 
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genes associated with HCC prognosis. Second, a LASSO-
Cox regression analysis was used to further filter the 
prognostic genes[18]. This method enables the simul-
taneous selection of variables and parameter estima-
tion and can better solve the multicollinearity problem 
in regression analyses [18]. A prognostic gene signa-
ture was established based on the LASSO-Cox regres-
sion model coefficients (β values) multiplied by the 
mRNA expression level. The risk score = [0.307 × mRNA 
expression level of LDHA] + [0.268 × mRNA expres-
sion level of PPAT] + [0.455 × mRNA expression 
level of BFSP1] + [0.234 × mRNA expression level of 
NR0B1] + [0.109 × mRNA expression level of PFKFB4].

Assessment of the five‑gene‑based model by tissue 
microarray (TMA) analysis
To assess the prognostic ability of the five-gene-based 
model, we constructed a TMA comprised of 90 carci-
noma tissues from HCC patients (Shanghai Outdo Bio-
tech Co. Ltd., Shanghai, China) according to a reference 
method that was described previously [19]. Subsequently, 
immunohistochemistry (IHC) and integrated optical 
density (IOD) analyses were performed as described pre-
viously [20]. The primary antibodies used are shown in 
Additional file 1: Table S1. The IHC scores were obtained 
from independent assessments by three senior patholo-
gists without any prior knowledge of patient charac-
teristics. The IHC score of each patient was calculated 
using the following formula: IHC score = [0.307 × pro-
tein expression level of LDHA] + [0.268 × protein 
expression level of PPAT] + [0.455 × protein expression 
level of BFSP1] + [0.234 × protein expression level of 
NR0B1] + [0.109 × protein expression level of PFKFB4]. 
A Kaplan–Meier log-rank analysis was used to evaluate 
the difference in survival rates between the groups with a 
high IHC score and low IHC score.

Validation of the performance and prognostic ability 
of the five‑gene‑based model
Time-dependent ROC analyses and Kaplan–Meier log-
rank tests were used to evaluate the performance and 
prognostic ability of the model using verification datasets 
from the TCGA-LIHC dataset, the entire TCGA-LIHC 
dataset, the GSE14520 cohort, and the immunotherapy 
dataset (Imvigor210).

Functional enrichment analyses
To explore the underlying molecular mechanisms of the 
five-gene-based model, single-sample gene set enrich-
ment analysis (ssGSEA) of the gene expression profiles 
was used to identify the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathways predicted to be cor-
related with the risk score [21, 22]. Clustering analyses 

were performed by gene set variation analysis (GSVA). A 
p < 0.05 and false discovery rate (FDR) < 0.05 were consid-
ered statistically significant.

Statistical analysis
Statistical analyses were performed using SPSS v25 (IBM, 
Chicago, IL, USA), GraphPad Prism 7.0 (GraphPad Soft-
ware, La Jolla, CA, USA), and R software (version 3.5.1). 
Student’s t-test was used for statistical comparisons, the 
Kaplan–Meier method was used to estimate OS, and 
p < 0.05 was considered statistically significant.

Results
Identification of HCC prognostic gene expression 
signatures to construct the HCC prognostic model
A flowchart of the analysis workflow is illustrated in 
Fig.  1a. Using the TCGA-LIHC training set, univariate 
Cox regression analysis of the screening results, includ-
ing 4,227 immune-related genes, led to the identification 
of 245 immune-related genesas potential prognostic indi-
cators of HCC OS.

Construction of the five‑gene‑based HCC prognostic 
model
After primary filtering, a LASSO-penalized Cox analy-
sis was performed to further narrow down the mRNA 
expression profiles (Fig.  1b and c). Five genes were 
identified: lactate dehydrogenase A (LDHA), phos-
phoribosyl pyrophosphate amidotransferase (PPAT), 
beaded filament structural protein 1 (BFSP1), nuclear 
receptor subfamily 0 group B member 1 (NR0B1), 
and 6-phosphofructo-2-kinase/fructose-2,6-bispho-
sphatase 4 (PFKFB4). A stepwise multivariate Cox 
regression analysis was then performed to estab-
lish the prognostic model. The risk score was calcu-
lated by summing the weighted gene expression level 
of each of the five genes multiplied by their respec-
tive LASSO coefficients: risk score = [0.307 × mRNA 
expression level of LDHA] + [0.268 × mRNA expres-
sion level of PPAT] + [0.455 × mRNA expression 
level of BFSP1] + [0.234 × mRNA expression level of 
NR0B1] + [0.109 × mRNA expression level of PFKFB4]. 
All five genes showed positive LASSO coefficients in 
the multivariate Cox regression analysis. Next, the five-
gene-based model was further evaluated for stability and 
reliability.

Evaluation of the predictive efficacy of the five‑gene‑based 
model using the TCGA‑LIHC training set
To determine the association between the gene expres-
sion signatures of these five genes and HCC patient 
survival outcome, risk scores (AUC values) were calcu-
lated with the five-gene-based model for each sample 
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separately, and the optimal cut-off for the risk score was 
defined using the TCGA-LIHC training set (Fig.  2a). 
Higher AUC values indicated better classification 
performance of the five-gene-based HCC prognostic 
model. AUC values of 0.80, 0.77 and 0.73 were obtained 
for the 1-year, 3-year and 5-year survival rates, respec-
tively. Kaplan–Meier survival analysis revealed that 
patients in the high-risk group showed worse prognosis 
than patients in the low-risk group (p < 0.0001; Fig. 2a). 
Taken together, these results indicate good perfor-
mance of the established five-gene-based model for 
predicting HCC survival outcomes.

Validation of the five‑gene‑based HCC prognostic model 
using the GSE14520 dataset, TCGA‑LIHC testing set, 
and whole TCGA‑LIHC dataset
To validate the stability of the five-gene-based model, 
a similar workflow was employed for the training set, 
wherein three datasets (the GSE14520 dataset, TCGA-
LIHC testing set, and whole TCGA-LIHC dataset) were 
analysed. Risk scores for the five-gene-based model were 

obtained by calculating the AUC values of the respec-
tive ROC curves. AUC values of 0.75, 0.73 and 0.67 were 
obtained for 1-year, 3-year and 5-year survival rates, 
respectively, for the GSE14520 validation dataset. The 
results indicated that patients in the high-risk group 
showed significantly worse survival rates than patients 
in the low-risk group (p < 0.001; Fig. 2b). Consistent with 
the results of the GSE14520 dataset, patients in the high-
risk group showed poorer OS than patients in the low-
risk group (all p < 0.05) and the AUC values were above 
0.6 for the whole TCGA-LIHC validation dataset and the 
TCGA-LIHC dataset (Additional file 2: Figure S1a and b). 
The results collectively showed that the five-gene-based 
model could predict patient survival duration based on 
gene expression levels.

Upregulated genes (LDHA, PPAT, BFSP1, NR0B1, 
and PFKFB4) identified from the IHC TMA analysis predict 
poor prognosis
Next, the protein expression levels of the five genes LDHA, 
PPAT, BFSP1, NR0B1 and PFKFB4 were determined with 

Fig. 1  Overall analysis workflow and LASSO model profile plots for the potential prognostic indicators of HCC. a. Schematic flowchart of the 
workflow performed to build and validate the HCC prognostic model. b. LASSO coefficient profile plots of the 245 prognostic genes showing that 
the variations in the size of the coefficients of parameters shrink with an increasing value of the k penalty. c. Penalty plot for the LASSO model for 
the 245 prognostic genes with error bars denoting the standard errors. LASSO least absolute shrinkage and selection operator, HCC hepatocellular 
carcinoma, OS overall survival
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an HCC TMA using IHC. Notably, we found that the 
protein levels of the five genes were significantly different 
in HCC tissues (Fig.  3a). The IHC score was calculated 
using the following formula: IHC score = [0.307 × pro-
tein expression level of LDHA] + [0.268 × protein 
expression level of PPAT] + [0.455 × protein expression 
level of BFSP1] + [0.234 × protein expression level of 
NROB1] + [0.109 × protein expression level of PFKFB4]. 
The group with high IHC scores was associated with 
higher protein expression levels and poorer disease prog-
nosis than the group with low IHC scores (Fig. 3b). Vari-
ables that showed statistical significance in the univariate 
analysis were included in the Cox multivariate survival 
regression analysis. The results showed that the five-
gene-based model score, grade and TNM stage were sta-
tistically significant (p < 0.05; Table  1). Thus, the results 
suggest that high protein expression of the five genes pre-
dicts poor disease prognosis.

Assessment of the ability of the five‑gene‑based model 
to predict immunotherapy efficacy
Biomarkers that can effectively predict the efficacy of 
immunotherapy drugs are currently lacking. Thus, iden-
tifying new predictive markers is necessary to further 
improve precision immunotherapy. A transcriptome 
dataset (Imvigor210) of the treatment response data of 
patients who underwent anti-PD-L1 immunotherapy 
was retrieved to assess the ability of the five-gene-based 
model to predict immunotherapy efficacy. Kaplan–Meier 
analysis showed that a high-risk score was associated 
with a poorer survival rate than a low risk score (Fig. 4a). 
ROC curve analysis showed that the combined con-
sideration of neoantigen (NEO) burden, tumour muta-
tional burden (TMB) and risk score output a higher AUC 
value (AUC = 0.91) than NEO burden (AUC = 0.7), TMB 
(AUC = 0.65), or risk score (AUC = 0.54) alone (Fig. 4b). 
The risk score was not correlated with the immuno-
therapy efficacy subgroup (p > 0.05; Fig. 4c) but was cor-
related with the immune cell and tumour cell subgroups 
(p < 0.05; Fig.  4d and e). These results suggest that con-
sidering the five-gene-based model score together with 
NEO burden and TMB could enhance the assessment of 
immunotherapy efficacy and identify patients who will 
respond to immunotherapy.

The five‑gene‑based model can predict different clinical 
characteristics
After confirming the efficacy of the five-gene-based 
model in predicting patient response to immunotherapy, 
whether the five-gene-based model could be applied 
to determine the survival outcomes in subgroups with 
different clinical characteristics was investigated. The 
results indicated that the five-gene-based model could be 
used to predict different clinical characteristics (p < 0.05; 
Fig. 5).

Risk model and prognostic analyses of different gene 
mutation subtypes
To determine the clinical efficacy of the model in 
predicting treatment response in HCC patients with 
somatic mutations, Kaplan–Meier survival analyses 
were performed. First, 11 genes that are commonly 
mutated in HCC (tumour protein p53 [TP53], phos-
phatidylinositol-4,5-bisphosphate 3-kinase catalytic 
subunit alpha [PIK3CA], retinoblastoma protein [RB1], 
cyclin-dependent kinase inhibitor 2A [CDKN2A], 
tuberous sclerosis-2 [TSC2], β-catenin [CTNNB1], 
AT-rich interactive domain-containing protein 2 
[ARID2], axin 1 [AXIN1], ribosomal protein S6 kinase 
A3 [RPS6KA3], AT-rich interactive domain-containing 
protein 1A [ARID1A], and lysine methyltransferase 
2D [KMT2D]) were selected. TP53, CTNNB1, AXIN1, 
and ARID1A showed the highest mutation frequencies 
(28%, 24%, 8% and 7%, respectively) and were therefore 
used for the Kaplan–Meier analysis (Additional file 3: 
Figure S2). There was a significant difference in OS 
between patients in the high-risk and low-risk groups 
(Additional file  3: Figure S2a with TP53 mutation; 
Figure S2b without TP53 mutation; Figure S2c with 
CTNNB1 mutation; and Figure S2d without CTNNB1 
mutation [p < 0.05; Additional file  4: Figure S3]). 
Patients with AXIN1 or ARID1A mutations showed 
no significant difference in OS between the high-
risk and low-risk groups, but a significant difference 
was observed for patients without AXIN1 or ARID1A 
mutations between the high-risk and low-risk groups. 
The results suggest that the five-gene-based model can 
also be used to predict the survival outcomes of HCC 
patients with genetic mutations.

Fig. 2  Output profiles from the analyses of the TCGA and GSE dataset based on the prognostic model. Risk score (top left), patient status (top right), 
mRNA expression heatmap (bottom left), and time-dependent ROC and Kaplan–Meier curves (bottom right) of the five-gene-based model for the 
a. TCGA-LIHC training set and b. GSE14520 dataset. TCGA​ The Cancer Genome Atlas, ROC receiver operating characteristic, PPAT phosphoribosyl 
pyrophosphate amidotransferase, BFSP1 beaded filament structural protein 1, LDHA lactate dehydrogenase A, NR0B1 nuclear receptor subfamily 0 
group B member 1, PFKFB4 6-phosphofructo- 2-kinase/fructose-2,6-bisphosphatase 4

(See figure on next page.)
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The five‑gene‑based model can serve as an independent 
biomarker in clinical applications
Next, we evaluated whether the five-gene-based model 
could serve as an independent biomarker with clinical 
implications. Univariate and multivariate Cox regres-
sion analyses of the clinicopathological parameters 
(including age, sex, T stage, stage, and tumour grade) of 
365 patients (Table 2) revealed that the HR of the risk 
model was approximately 1.7 (p < 0.001), and the HR 
of the T stage model was approximately 1.3 (p < 0.001; 
Fig.  6a). Multivariate Cox regression analysis showed 
that T stage and the prognostic model were independ-
ent risk factors associated with OS.

Comparison of the five‑gene‑based model and other 
models
Next, the ability of our established model to determine 
HCC prognosis was compared with those of three other 
prognostic models: the four-gene signature [23], the HCC 
prognostic evaluation model [24] and the six-gene signa-
ture [25]. We calculated the risk score of the correspond-
ing genes in these three models for the TCGA-LIHC 
dataset using a method similar to that used for the estab-
lishment of our five-gene-based model (described above). 

The four-gene-based model had lower AUC values for 
1-, 3- and 5-year survival rates than our model; the HCC 
prognostic evaluation model and the six-gene-based 
model had slightly higher AUC values for the 1-year 
survival rate than our model but had lower AUC values 
for 3- and 5-year survival rates (Fig. 6b-d). These results 
indicated that our model performed better at predicting 
the long-term survival (3-year and 5-year survival) than 
the short-term survival (1-year) of HCC patients. Similar 
to our model, these three models could also predict the 
OS of the high- and low-risk groups (log-rank p < 0.001; 
Fig. 6e–g).

Relationship between risk score and KEGG pathways
We performed ssGSEA to identify potential KEGG path-
ways (with a correlation coefficient > 0.45) associated with 
the risk score. A total of 21 KEGG pathways were identi-
fied (Fig.  7a). Analysis of the relationship between gene 
sets and the risk score revealed that the KEGG pathways 
positively correlated with the risk score included DNA 
replication, mismatch repair, cell cycle, homologous 
recombination, spliceosome, oocyte meiosis, progester-
one-mediated oocyte maturation, and pathogenic Escheri-
chia coli infection. There were also downregulated pathway 

Fig. 3  The expression levels of the 5 genes in tumour tissues linked to prognosis of HCC. a. IHC images of the expression of proteins included in 
the five-gene-based model in HCC tumour tissues in the tissue microarray. b. Kaplan–Meier analysis of the five-gene-based model for patients 
with low- or high-risk scores. PPAT phosphoribosyl pyrophosphate amidotransferase, BFSP1 beaded filament structural protein 1, LDHA lactate 
dehydrogenase A, NR0B1 nuclear receptor subfamily 0 group B member 1, PFKFB4 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 4, IHC 
immunohistochemistry, HCC hepatocellular carcinoma

Table 1  Univariate and multivariate analyses of factors correlated with overall survival

HR hazard ratio, CI confidence interval, TNM tumour-node-metastasis

Variables Univariate analysis Multivariate analysis

HR 95%CI p value HR 95%CI p value

Five-gene-based model 2.054 1.087–3.882 0.027 2.19 1.152–4.163 0.017

Sex 1.499 0.463–4.847 0.499

Grade 1.936 1.062–3.529 0.031 1.878 1.024–3.443 0.042

Age 1.442 0.779–2.668 0.244

TNM stage 1.792 1.054–3.046 0.031 1.79 1.033–3.103 0.038
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terms that negatively correlated with the risk score in 
HCC, including butanoate metabolism, peroxisome, fatty 
acid, linoleic acid, tryptophan and tyrosine metabolism 
(Fig. 7b). The enrichment analysis revealed potential criti-
cal pathways implicated in HCC pathogenesis.

Discussion
Immune subsets were found to be significant effectors 
of immune defence [26–28]. The use of gene expression 
signatures to determine the outcomes of treatments has 
been reported by several groups. We showed that the 
correlation between gene signatures and the tumour 
immune microenvironment can be used to predict HCC 
immunotherapy outcome. Similarly, He et al. [13] estab-
lished a model based on the expression of immune-
related genes to predict treatment outcome, Shen et  al. 
[29] identified a clinical-immune signature to estimate 
OS in ovarian cancer, and Tekpli et al. [30] discovered a 
novel independent prognostic factor based on the tumour 
immune microenvironment in breast cancer. Recently, 

integrative analysis of multi-omics data revealed epider-
mal growth factor receptor (EGFR) as a critical node in 
the gene regulatory network that is related to immune 
phenotype, and the inclusion of therapeutic EGFR inhibi-
tion enhanced head and neck squamous cell carcinoma 
patient response to ICIs [31]. This finding suggests that 
critical genes associated with the tumour immune micro-
environment may serve as prognostic signatures and be 
useful for clinical immunotherapy.

HCC is a highly heterogeneous tumour at the molec-
ular level and is pathological [32]. The most frequent 
mutations were identified in telomerase reverse tran-
scriptase (TERT), ARID1A, TP53, and CTNNB1 [33–37]. 
These gene mutations were also associated with cell dif-
ferentiation, proliferation, and clinical features [32, 38]. 
In our study, the five identified genes had a low frequency 
of mutations, and they were conducive to constructing a 
stable prognostic model. In addition, the five-gene-based 
model established in the present study could predict 
HCC treatment outcomes for patients with or without 

Fig. 4  The five-gene-based model can predict immunotherapy efficacy for the Imvigor210 dataset. a Kaplan–Meier analysis of the five-gene-based 
model. b ROC curves of TMB, NEO burden, risk score, and the combination (NEO burden, TMB and risk score). The risk score was grouped by c 
immunotherapy efficacy, d immune cell subgroups, and e. tumour cell subgroups. ROC receiver operating characteristic, NEO neoantigens, TMB 
tumour mutational burden, CR complete response, PR partial response, SD stable disease, PD progressive disease, IC immune cell, TC tumour cell



Page 9 of 13Gu et al. J Transl Med           (2021) 19:26 	

tumour-specific mutations in the TP53, CTNNB1, AXIN1 
or ARID1A genes. Thus, the five-gene-based prognostic 
model was a useful classification tool for patients with 
various genetic mutation backgrounds.

TMB is an emerging biomarker of sensitivity to immu-
notherapy [39, 40]. Cai et al. [41] showed that high TMB 
in liver cancer patients with radical resection was signifi-
cantly correlated with poor prognosis. Stenzinger et  al. 
[42] reported that high TMB correlated with increased 

Fig. 5  Kaplan–Meier analyses of the five-gene-based model in subgroups with different clinical characteristics. Kaplan–Meier survival plot analyses 
to assess the efficacy of the five-gene-based model in predicting the survival outcomes of subgroups with different clinical characteristics (age, sex, 
T1 + T2, T3 + T4, N0, M0, stage I + II, stage III + IV, G1 + G2, and G3 + G4). Kaplan–Meier survival curves for a age > 60, b age < 60, c male, d female, 
e T1 + T2, f T3 + T4, g N0, h M0, i stage I + II, j stage III + IV, k G1 + G2, and l G3 + G4 for the low-risk and high-risk groups. T tumour, N node, M 
metastasis, G grade

Table 2  Univariate and multivariate analyses of all TCGA datasets

HR hazard ratio, CI confidence interval, TCGA​ The Cancer Genome Atlas

Variables Univariate analysis Multivariate analysis

HR 95% CI of HR P HR 95% CI of HR P

lower upper lower upper

Age 1.013 0.999 1.027 0.073 1.013 0.999 1.027 0.069

Sex 0.815 0.572 1.161 0.257 0.904 0.626 1.305 0.589

T stage 1.577 1.337 1.860 6.4E-08 1.317 1.037 1.672 0.024

Stage 1.382 1.218 1.569 5.3E-07 1.096 0.896 1.340 0.372

Grade 1.164 0.949 1.427 0.145 1.038 0.841 1.283 0.727

Risk score 1.834 1.564 2.151 8.6E-14 1.730 1.463 2.046 1.5E-10
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patient response rates and survival benefits from immune 
checkpoint inhibitors. Tumour-specific NEO that form 
as a consequence of mutations are thought to be another 
important biomarker for the therapeutic efficacy of can-
cer immunotherapies [43, 44]. In our study, ROC curve 
analysis showed that the combined consideration of NEO 
burden, TMB and risk score output a higher AUC value 

than NEO burden, TMB, or risk score alone. Combining 
the five-gene-based model with NEO burden and TMB 
could enhance the assessment of immunotherapy efficacy 
and identify patients who will respond to immunother-
apy. In the present study, we identified five genes (LDHA, 
PPAT, BFSP1, NR0B1, and PFKFB4) associated with the 
tumour immune microenvironment in HCC patient 

Fig. 6  The forest plot and comparison of the five-gene-based model and other models. a Forrest plot of the clinicopathological parameters age, 
T stage, stage, grade, and risk score of 365 HCC patients. Time-dependent ROC analysis and Kaplan–Meier analysis for b, e. the five-gene signature, 
c, f. the HCC prognostic evaluation model, and d, g. the six-gene model. ROC receiver operating characteristic, HCC hepatocellular carcinoma, T 
tumour, AUC​ area under the curve, HR hazard ratio, CI confidence interval

Fig. 7  Relationships between the risk score and KEGG pathways. a. Twenty-one KEGG pathways were found to be correlated with the risk score by 
ssGSEA. b. The ssGSEA score of the KEGG pathway changes as the risk score increases. Samples (rows) are ranked from low to high risk scores. The 
colour scale indicates upregulation (red) or downregulation (blue) of gene expression. ssGSEA single-sample gene set enrichment analysis, KEGG 
Kyoto Encyclopedia of Genes and Genomes
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cohorts that may be applied as potential biomarkers of 
HCC immunotherapy outcome. The correlation between 
the risk score and HCC prognosis was determined by 
analysing the mRNA expression and protein expres-
sion of the identified genes with an HCC TMA by qPCR 
and IHC, respectively. We showed for the first time that 
BFSP1 is correlated with HCC outcomes. PPAT cataly-
ses the first committed step of de novo purine nucleo-
tide biosynthesis [45, 46], suggesting that targeting PPAT 
might be a promising cancer strategy [47]. PPAT was also 
identified as a prognostic biomarker in HCC [48]. Many 
studies have reported that upregulated LDHA promotes 
tumour metastasis and is correlated with poor prognosis 
in several cancers, including lung adenocarcinoma [49], 
breast cancer [50], HCC [51], gallbladder carcinoma [52], 
and renal cell carcinoma [53]. Since high LDHA expres-
sion can reduce the oxygen dependency of tumour cells 
by promoting efficient anaerobic/glycolytic metabolism, 
targeting LDHA is a potential anti-tumour strategy. Epi-
genetic modification of NR0B1 leads to its ectopic acti-
vation in Ewing’s sarcoma and lung cancer, enabling it 
to promote cancer cell proliferation [54–57]. The over-
expression of PFKFB4 was found to be associated with 
a poor prognosis in gastric cancer [58], bladder cancer 
[59], colon cancer [60], acute monocytic leukaemia [61], 
glioblastoma [62], thyroid cancer [63], and breast cancers 
[64–66]. A better understanding of the molecular mecha-
nisms underlying the ability of the five-gene signature to 
predict HCC pathogenesis as well as prospective studies 
to validate its utility in clinical applications are needed 
for the further development of new therapeutic and 
prognostication strategies (Additional file 5: Table S2).

In this work, we established a prognostic signature 
for HCC OS prediction that also effectively predicts the 
efficacy of immunotherapy through combined analysis 
of gene expression datasets from GEO and TCGA. The 
model was based on gene mRNA expression but not 
gene mutations or epigenetic modifications of these five 
genes. Therefore, it has good clinical feasibility, as it does 
not require whole-genome sequencing for all patients. 
Moreover, the methods used in this study might also be 
suitable for other types of malignancies. In further stud-
ies, we plan to detect the expression of these five genes in 
circulating tumour cells. However, there are several limi-
tations in our study. First, the prognostic role of the five 
genes at the protein level warrants further research. Sec-
ond, the model was established with tumour tissues, so it 
can only predict the prognosis of HCC patients after sur-
gery and cannot detect and diagnose tumours at the early 
stage. Third, further functional experiments are needed, 
and the underlying mechanism of the five genes needs to 
be clarified (Additional file 6).

Conclusions
In this study, we established a novel five-gene-based 
prognostic model based on the tumour immune micro-
environment. Importantly, our model could effec-
tively predict the efficacy of immunotherapy and might 
serve as a potential independent biomarker in clinical 
applications.
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