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Abstract 

Extracellular vesicles are heterogeneous populations of naturally occurring secreted small vesicles. EVs function as 
signaling platforms to facilitate intracellular communication, which indicates the physiological or pathophysiological 
conditions of cells or tissues. Considering that EVs can be isolated from most body fluids and that molecular constitu-
ents could be reprogrammed according to the physiological status of the secreting cells, EVs are regarded as novel 
diagnostic and prognostic biomarkers for many diseases. The ability to protect encapsulated molecules from degrada-
tion in body fluids suggests the potential of EVs as biological medicines or drug delivery systems. This article focuses 
on the EV-associated biomarkers and therapeutic approaches in autoimmune diseases.
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Introduction
Extracellular vesicles (EVs) [1], membrane-encapsulated 
vesicles released by cells, are characterized by lipid bilayer 
membranes. EVs contain specific biomolecules, includ-
ing proteins, microRNAs, mRNAs, long noncoding RNAs, 
cytokines, growth factors, and bioactive lipids [2]. Some of 
these biomolecules indicate the vesicle origin, and others 
involve in targeting cells. According to the biogenesis, mor-
phology and dimensions, EVs are classified into (i) exosomes 
(30–150 nm); (ii) microparticles (MPs; 100–1000 nm); and 
(iii) apoptotic bodies (1000–5000 nm) [3]. EVs are released 
by almost all cell types and present in virtually all body flu-
ids, such as blood, urine, milk, saliva, semen, sweat, bile, cer-
ebrospinal fluid, amniotic fluid, and ascites [4, 5].

Released EVs involve in intercellular communication 
and cellular function regulation under normal physi-
ological conditions, while reprogrammed EVs cargo 
can lead to an immune response and contribute to the 

development of diseases under pathological condi-
tions [6]. Various cell types, including natural killer 
cells, monocytes, dendritic cells, and macrophages [7, 
8], have been shown to release EVs to mediate immu-
nostimulatory and immunosuppressive effects by trans-
porting antigens to antigen-presenting cells, activating 
T cells or inhibiting the activation of regulatory T cells 
[9]. Accumulating evidence suggested that total EVs, EVs 
constituents, and EVs surface molecules associate with 
autoimmune diseases, such as primary Sjögren’s syn-
drome (pSS), and systemic lupus erythematosus (SLE), 
oral lichen planus (OLP) [10–14]. Given that, theoreti-
cally, EVs can be released by every cell in the body and 
may increase in pathological conditions [4, 5, 15], EVs 
have been suggested as promising novel biomarkers 
[15, 16]. Compared to traditional biomarkers, biological 
medicines or drug delivery systems, EVs possess several 
distinct advantages, including (i) capacity to function as 
noninvasive biomarkers released by almost all cell types 
and present in almost all body fluids; (ii) ability to reflect 
the progress of diseases and the effects of treatments 
through vesicle origin or cargo; (iii) ability to protect 
natural cargos from freeze/thaw cycles during long-term 
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storage; and (iv) the biodegradability of EVs in body flu-
ids [15, 16].

This review focuses on the EV-associated biomark-
ers and potential applications of EVs in autoimmune 
diseases.

EVs as potential biomarkers in autoimmune diseases
Autoimmune diseases, characterized by self-immune 
responses, are one of the leading causes of morbidity and 
mortality among chronic diseases [17]. Imbalance in the 
activation and regulation of cells can result in dysregu-
lated cell activation, leading to the production of autoan-
tibodies and damage to tissues expressing the target 
antigen [18]. Considering the increasing number of new 
cases of autoimmune diseases and the poor understand-
ing of the etiologies of autoimmune diseases that greatly 
impedes the prevention, diagnosis and treatment of 
autoimmune diseases, researchers worldwide have been 
searching for more reliable and convenient biomarkers 
for autoimmune diseases. Some previous studies have 

determined that EVs are involved in immunostimulation 
or immunosuppression in autoimmune diseases through 
pro-inflammatory or anti-inflammatory effects induced 
by their specific constituents [10, 14, 15, 19, 20]. More-
over, studies have suggested increasing total EVs levels 
and specific EVs constituents as potential diagnostic bio-
markers in several autoimmune diseases, such as primary 
Sjögren’s syndrome, systemic lupus erythematosus, and 
systemic sclerosis [21] (Fig. 1).

EVs as biomarkers in primary Sjögren’s syndrome
Primary Sjögren’s syndrome, a chronic female‐dominant 
autoimmune disorder influencing approximately 1% 
of the general population and 3% of people older than 
50  years [21], is characterized by keratoconjunctivitis 
sicca and xerostomia induced by the focal lymphocytic 
infiltration in exocrine glands and lacrimal gland.

One previous study reported that although the lev-
els of MPs in pSS patients with high or low disease 
severity were higher than health controls, those in pSS 

Fig. 1  Potential biomarkers in extracellular vesicles (EVs) for autoimmune diseases. pSS primary Sjögren’s syndrome, PMPs platelet-derived MPs, 
EMPs endothelial MPs, APMAP adipocyte plasma membrane-associated protein, GNA13 guanine nucleotide-binding protein subunit alpha-1, WDR1 
WD repeat-containing protein 1, SIRPA tyrosine-protein phosphatase nonreceptor type substrate 1, LSP1 cell-specific protein 1, CPNE1 Copine 
1, CALM Calmodulin, moMPs monocyte-derived MPs, TMPs T cell-derived MPs, PS- MPs phosphatidylserine-negative MPs, SLE systemic lupus 
erythematosus, OLP oral lichen planus, TF + MPs tissue factor + MPs, BS Behçet’s syndrome, GAD65 glutamic acid decarboxylase 65, T1DM type 1 
diabetes mellitus
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patients with high disease severity were lower than 
those in patients with low disease severity(Table 1) [22].
The potential explanations include consumption or con-
finement of MPs by adhesion in the tissue target of pSS, 
MPs sequestered in leukocyte-platelet complexes, and 
MPs destruction induced by phospholipases, especially 
secretory phospholipase A2, in active disease [22–27]. 
In addition to increased PMPs levels, increased levels 
of endothelial microparticles (EMPs), which are signifi-
cantly correlated with the disease duration from symp-
tom onset and diagnosis, were also found in pSS patients 
compared with healthy controls [28]. Aqrawi et al. iden-
tified thirty-six proteins, including adipocyte plasma 
membrane-associated protein, which correlates with 
adipocyte differentiation, and SIRPA and LSP1, which 
are associated with activation of the innate immune sys-
tem, upregulated in the EVs from saliva of pSS patients 
compared to controls. They also revealed increased 
expressions of Copine 1 and Calmodulin in the tears of 
pSS patients [24]. Study also suggested hsa-mir-768-3p 
and hsa-mir-574-3p in the minor salivary glands, which 
are involved in minor salivary gland inflammation and 
detectable in salivary EVs, to be promising biomarkers 
in the minor salivary glands reflecting inflammation and 
salivary gland dysfunction in pSS [29, 30] Overall, these 
results revealed increased EVs from different biofluids in 
pSS, as well as changed expressions of specific proteins 
and miRNAs in EVs. Levels of EVs and specific compo-
nents of EVs may be promising diagnosis or prognosis 
markers and reflect the potential underlying mechanisms 
of pSS.

EVs in systemic lupus erythematosus
Systemic lupus erythematosus, a systemic autoimmune 
disease influencing multiple organs simultaneously with 
poor quality of life and substantial mortality, is character-
ized by the presence of autoreactive T cells and hyperac-
tive B cells that produce autoantibodies forming immune 
complex deposits [31, 32].

Proven to increase adhesion molecule expressions, 
chemokine productions, and structural alterations in 
macrovascular and microvascular endothelial cells, 
which can lead to endothelial alterations and tissue leu-
kocyte infiltration [10, 33], MPs in the plasma of SLE 
patients have been intensively studied as elements in “liq-
uid biopsies” for SLE (Table 2).

Many studies have shown increased total MPs lev-
els in the plasma of SLE patients compared with those 
of healthy controls [22, 34–38]. López et al. proved that 
total MPs, CD25 + MPs, EMPs, platelet-derived MPs, 
monocytes or T cells in the plasma of SLE patients asso-
ciated with the increased disease duration and higher risk 
of cardiovascular disease [23]. Scientists have also found 
increased total MPs and IgG + MPs [37, 38], as well as 
relatively lower IgM + MPs and C1q + MPs in patients 
with SLE [39]. Another study showed a positive associa-
tion between plasmatic CD14 + monocyte-derived MPs 
and disease activity [40]. A subsequent study showed that 
phosphatidylserine-negative MPs/MPs was increased 
in SLE patients compared to healthy controls, especially 
in females and smokers [36]. Moreover, Fortin et  al. 
revealed a positive correlation between CD41 + MPs 
harboring IgG and the SLE Disease Activity Index 2000, 
as well as a positive association between the concentra-
tions of CD41– MP harboring IgG and Systemic Lupus 
International Collaborating Clinics/American College of 
Rheumatology Damage Index, and carotid US plaques 
and intima-media thickness [41]. Moreover, a previous 
study reported higher CD31 + /annexin V + /CD42b- 
EMPs levels in SLE patients than in healthy controls and 
an association between CD31 + /annexin V + /CD42b- 
EMPs and the median global BILAG-2004 score after 
treatment [42]. Another study found increased EMPs 
levels and a lower ratio of CD54( +) EMPs/total EMPs in 
SLE patients, especially in women with moderate-to-high 
disease activity, compared to controls [34]. In conclu-
sion, EVs mediates intercellular communication between 
immune cells, endothelial cells, and platelets with the 
changes of specific components in the development of 
SLE and provide potential biomarkers for SLE diagnosis 

Table 1  EV-associated biomarkers in primary Sjögren’s syndrome

MPs microparticles, PMPs platelet-derived MPs, EMPs endothelial MPs, APMAP adipocyte plasma membrane-associated protein, GNA13 guanine nucleotide-binding 
protein subunit alpha-1, WDR1 WD repeat-containing protein 1, SIRPA tyrosine-protein phosphatase nonreceptor type substrate 1, LSP1 cell-specific protein 1, CPNE1 
Copine 1, CALM Calmodulin

EVs or constituents Source Isolation method Quantification method References

Total MPs, PMPs, leukocyte-
derived MPs

Plasma Centrifugation Functional prothrombinase capture 
assay and flow cytometry

[22]

EMPs Plasma Affinity-based capture Flow cytometry [28]

APMAP, GNA13,
WDR1, SIRPA, LSP1

Saliva Size-exclusion chromatography Flow cytometry [24]

CPNE1, CALM Tear Size-exclusion chromatography Flow cytometry [24]



Page 4 of 8Xu et al. J Transl Med          (2020) 18:432 

and prognosis. These biomarkers may partly implicate 
the mechanism of SLE and provide new directions for the 
targeted therapies of SLE.

EVs in other autoimmune diseases
EV-associated biomarkers have been intensively stud-
ied in other autoimmune diseases (Table 3). Oral lichen 
planus, a T cell-mediated chronic autoimmune disease 
with a prevalence rate of 0.1–4.0% in the adult popula-
tion [43, 44], is characterized by keratotic or erythema-
tous lesions in the oral mucosa. The symptoms of OLP 
could be symmetrical, bilateral, or multiple lesions with 
different patterns of plaque, reticular, papular, bullous, 
erosive, and atrophic features [45]. A previous study sug-
gested that different expression patterns of miRNAs in 

EVs associated with cytokine regulation in OLP patients 
may contribute to the elucidation of the pathogenesis of 
OLP [46], and a recent study reported that EVs from the 
plasma of OLP patients could enhance T cell prolifera-
tion and attenuate apoptosis, which might promote the 
development of OLP [47]. Ding et al. reported increased 
levels of hcmv-miR-UL59, which is primarily encapsu-
lated in EVs in the plasma, in the plasma of OLP patients 
[48]. Another study revealed the upregulated expression 
levels of miR-4484 in salivary EVs from OLP patients and 
identified this miRNA as a potential biomarker for OLP 
[45]. In addition, a study reported different expression 
levels of miR-34a-5p, miR-130b-3p, and miR-301b-3p in 
circulating EVs in OLP, as well as an association between 
the level of miR-34a-5p and disease severity [49].

Table 2  EV-associated biomarkers in systemic lupus erythematosus

MPs microparticles, PMPs platelet-derived MPs, EMPs endothelial microparticles, PS- MPs phosphatidylserine-negative MPs

EVs or cargo in EVs Source Isolation method Quantification method References

Total MPs Plasma Affinity-based capture Flow cytometry [35]

Total MPs, PMPs, CD25 + MPs, EMPs, monocyte-derived MPs, and T 
cell-derived MPs

Plasma Centrifugation Flow cytometry [23]

Total MPs and IgG + MPs Plasma Centrifugation Flow cytometry [37]

Total MPs, IgM + MPs, and IgG + MPs Plasma Centrifugation Flow cytometry [38]

IgM + MPs and C1q + MPs Plasma Affinity-based capture Flow cytometry [11]

CD14 + monocyte-derived MPs Plasma Centrifugation Flow cytometry [40]

Total MPs and phosphatidylserine-negative MPs Plasma Centrifugation Flow cytometry [36]

CD41 + MPs harboring IgG and CD41– MP harboring IgG Plasma Affinity-based capture Flow cytometry [41]

CD31 + /annexin V + /CD42b- EMPs Plasma Affinity-based capture Flow cytometry [42]

Total EMPs, CD54 + EMPs, CD54- EMPs, and CD54 + EMPs/total EMPs Plasma Fluorophore-conju-
gated mAb staining

Flow cytometry [34]

Total MPs and PMPs Plasma Centrifugation Flow cytometry and a 
functional prothrombinase 
capture assay

[22]

Table 3  EV-associated biomarkers in other autoimmune diseases

OLP oral lichen planus, RT-qPCR Realtime quantitative polymerase chain reaction, BS Behçet’s syndrome, TF + MPs tissue factor + MPs, PMPs platelet-derived MPs, 
T1DM type 1 diabetes mellitus, GAD65 glutamic acid decarboxylase 65

EVs or cargo in EVs Source Isolation method Quantification method Biomarkers References

MiR-4484 Saliva Precipitation MiRNA microarray analysis and 
flow cytometry

OLP [45]

MiR-34a-5p, miR-130b-3p and miR-
301b-3p

Plasma Membrane affinity -based 
capture

MiRNA microarray analysis and 
flow cytometry

OLP [49]

Hcmv-miR-UL59 Plasma Precipitation RT-qPCR analysis OLP [48]

Total MPs, CD14 + MPs, Granulocytes-
derived MPs, and tissue factor + MPs

Plasma Affinity-based capture Flow cytometry BS [59]

PMPs Whole blood Unreported Flow cytometry BS [60]

Procoagulant MPs Plasma Affinity-based capture Functional prothrombinase cap-
ture assay

BS [61]

MiR-16-5p, miR-574-5p and miR-302d-3p Plasma Ultracentrifugation RT-qPCR analysis T1DM [62]

Insulin-containing exosomes, exosomal 
islet autoantigen and GAD65

Plasma Size-based filtration Affinity-based capture and RT-PCR 
analyses

T1DM [63]
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Behçet’s syndrome (BS), a multisystem inflamma-
tory disorder involving venous and arterial vessels [50], 
is characterized by oral and genital ulceration, mucocu-
taneous lesions, arthritis, and uveitis [51]. Although the 
etiopathogenesis of BS is not fully understood, study 
have suggested an association between BS and activa-
tion of the hemostatic system which could be induced 
by EVs [52]. Studies have shown that clot propagation 
is affected by tissue factor + MPs, which are also associ-
ated with atherosclerosis and venous thromboembolism 
[53–55], in preclinical models [56–58]. A study reported 
increased levels of total MPs and tissue factor + MPs in 
BS patients and a low ratio of TFPI + MPs counts to tis-
sue factor + MPs counts, which associated with clinical 
thrombosis risk [59]. Furthermore, an increased percent-
age of platelet-derived MPs and increased procoagulant 
MPs expressions were found in BS patients [60, 61].

Type 1 diabetes mellitus (T1DM), a disorder caused 
by an autoimmune response against insulin-producing β 
cells in the pancreatic islets, is the most severe form of 
diabetes mellitus. A recent study indicated that EVs play 
an important role to transfer autoantigen peptides from 
insulin-producing β cells in the pathogenesis of T1DM 
[15]. Study had reported upregulated expressions of 

miRNAs in EVs, including miR-16-5p, miR-574-5p and 
miR-302d-3p, in the plasma of T1DM patients compared 
with those of healthy controls [62]. In addition, Korutla 
reported that insulin-containing EVs from transplanted 
islets and the cargos in these EVs, including islet autoan-
tigen and glutamic acid decarboxylase 65, could reflect 
the destruction of transplanted β cells secondary to 
recurrent T1DM autoimmunity [63]. In summary, fur-
ther studies are necessary to explore the potential diag-
nostic and prognostic EVs biomarkers in autoimmune 
diseases.

EVs as therapeutic approaches in autoimmune diseases
In addition to the promising use as biomarkers, EVs 
have been suggested as potential therapeutic approaches 
which can be divided into four categories: (i) utilizing 
EVs to transfer the natural cargo of EVs to induce immu-
nosuppressive or immunostimulatory effects, includ-
ing antimicrobial effects, anti-inflammatory effects, and 
antitumor effects or utilizing EVs as an alternative to 
mesenchymal stem cell transplantation; (ii) utilizing bio-
engineering techniques to modify EVs as nanocarriers 
for drug delivery systems to deliver specific nucleic acids 
(miRNAs, siRNAs, and mRNAs), proteins, and thera-
peutic agents to target cells or tissues; (iii) utilizing EVs 

Fig. 2  Research aimed at developing extracellular vesicles (EVs) for clinical applications. MVB multivesicular body
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to induce tissue regeneration and tissue repair; and (iv) 
utilizing EVs as novel vaccines in the treatment of tumors 
or infections (Fig. 2) [20].

Conclusion
Accumulating evidence supports that EVs involve in 
intercellular communication inducing immunostimula-
tion and immunosuppression, and EVs are promising 
biomarkers or therapeutic approaches for autoimmune 
diseases. In this review, we provided evidence for the bio-
marker potential of EVs in several autoimmune diseases 
and summarized the potential use of EVs in therapies. 
However, both basic and applied studies of EVs are still 
in the early stages, and the poor understanding of the 
underlying mechanisms hinders the clinical translation 
of EVs. Obviously, extensive studies of EVs are necessary 
before application for the clinical diagnosis, prognosis 
and therapy of autoimmune diseases can be performed, 
including (i) studies on the separation and purification 
of EVs; (ii) studies providing an intensive understanding 
of EVs biogenesis and targeting; (iii) studies providing 
an intensive understanding of the mechanism by which 
EVs induce immunostimulation and immunosuppres-
sion; (iv) studies assessing the effect and reliability of 
EVs as nanodrugs or drug delivery systems in  vivo; and 
(v) studies on clinical applications. Despite the challenges 
and difficulties remaining before EVs can be clinically 
applied, their biological and physiological characteristics 
have shown the great potential of EVs as biomarkers and 
therapeutic tools. In conclusion, intensive study of the 
biological functions and mechanisms of EVs could help 
to identify potential biomarkers and facilitate the clinical 
translation of EVs.
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