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Abstract 

Background:  Most often, the patients with pancreatic diseases are presented with a mass in pancreatic head region 
and existing methods of diagnosis fail to confirm whether the head mass is malignant or benign. As subsequent man-
agement of the disease hugely depends on the correct diagnosis, we wanted to explore possible biomarkers which 
could distinguish benign and malignant pancreatic head masses.

Methods:  In order to address that gap, we performed a case–control study to identify genome-wide differentially 
expressed coding and noncoding genes between pancreatic tissues collected from benign and malignant head 
masses. These genes were next shortlisted using stringent criteria followed by selection of top malignancy specific 
genes. They subsequently got validated by quantitative RT-PCR and also in other patient cohorts. Survival analysis and 
ROC analysis were also performed.

Results:  We identified 55 coding and 13 noncoding genes specific for malignant pancreatic head masses. Further 
shortlisting and validation, however, resulted in 5 coding genes as part of malignancy specific multi-gene signature, 
which was validated in three independent patient cohorts of 145 normal and 153 PDAC patients. We also found that 
overexpression of these genes resulted in survival disadvantage in the patients and ROC analysis identified that com-
bination of 5 coding genes had the AUROC of 0.94, making them potential biomarker.

Conclusions:  Our study identified a multi-gene signature comprising of 5 coding genes (CDCA7, DLGAP5, FOXM1, 
TPX2 and OSBPL3) to distinguish malignant head masses from benign ones.
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Background
Pancreatic cancer is one of the most aggressive forms of 
cancers, with 5-year survival as low as 7 per cent. Chronic 
pancreatitis (CP) is considered as a major risk factor for 
pancreatic cancer. In about 30–75% of CP cases, a benign 

inflammatory mass is formed in pancreatic head region 
which is very much similar to malignant pancreatic head 
mass which occurs in about 65–70% of PC [1]. Jaundice, 
gastric outlet obstruction, weight loss, back-ache are 
symptoms common to both. Diagnosis is difficult even 
during the surgery as features like hard mass, vascular 
invasion are present in both the cases. Distinguishing 
benign and malignant head mass based on their clinical 
and imaging features is very challenging but necessary 
as they have very different treatment and management 
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strategies. Misdiagnosis of benign head mass as malig-
nant head mass will result in unnecessary surgical treat-
ment and misdiagnosis of malignant head mass as benign 
head mass could result in unnecessary delay in required 
treatment. In doubtful situations radical approach is used 
and pancreaticoduodenectomy is performed. The situ-
ation further worsens in regions where tropical calcific 
pancreatitis (TCP) is more common. Pancreaticoduo-
denectomy in those patients is associated with very high 
post-operative morbidity as the patients are nutrition-
ally deficient due to exocrine and endocrine insufficiency 
[2, 3]. So, the need of distinction between benign and 
malignant is even more pronounced in tropical country 
like India. It has been shown that integration of dynamic 
contrast-enhanced CT scan, MRI and 18F-FDG-PET/CT 
imaging methods could be used for differential diagno-
sis of benign and malignant head mass, but evidences 
are still not strong enough [4]. Platelet-Lymphocyte ratio 
(PLR) along with CA19-9 has been shown to address the 
issue to some extent but they have their own limitations 
[5–7].

Hence, there is an urgent need for the identification 
of some other parameter or method which could distin-
guish between the two types of head masses confirma-
tively. There are also studies looking into the proteome 
profile of pancreatic cancer and pancreatitis but with not 
much success [8, 9]. Analysis of transcriptome has also 
been used to distinguish benign and malignant lesions in 
other cancers [10, 11], but such studies directly address-
ing issues with benign and malignant pancreatic head 
masses are lacking. The importance of transcriptome 
analysis is that the investigation of identified DEGs not 
only helps us to derive and validate potential signatures 
specific for diagnosis of a disease condition but also help 
to understand the biology as well.

In this study, we performed gene expression analysis 
between benign and malignant pancreatic head masses 
and identified differentially expressed mRNAs and non-
coding RNAs. In the next step, a small set of markers was 
carefully shortlisted and validated by qRT-PCR. Addi-
tionally, their expression was checked in TCGA pancre-
atic cancer datasets and other publicly available datasets 
and our findings were consistently replicated. Finally we 
performed ROC analysis and were able to propose a 5 
gene signature that can effectively distinguish malignant 
pancreatic head masses from benign.

Methods
Sample collection
Tissue samples were collected from patients undergo-
ing surgery at IPGME&R, Kolkata, RG Kar Medical Col-
lege and Hospital, Kolkata and Chittaranjan National 
Cancer Institute, Kolkata for benign pancreatic disease 

condition i.e. chronic pancreatitis as well as for malig-
nant pancreatic disease condition i.e. pancreatic cancer. 
Additionally, adjacent normal pancreatic tissue samples 
were also collected and all tissue samples were stored in 
RNA-Later. All the tissues were collected while perform-
ing the surgery after careful investigation of the head 
mass. Histopathological examination by expert patholo-
gists confirmed whether they were malignant or benign 
in nature. For the present discovery set investigation, 9 
normal, 6 CP and 11 PC samples were selected and 9 CP 
and 9 PC samples were selected for validation. Relevant 
patient information has been given in Additional file  1: 
Table S1.

RNA extraction
About 20  mg of tissue sections were taken for each 
samples and total RNA was extracted according to the 
instructions mentioned in the manual of All-Prep DNA/ 
RNA/ miRNA isolation kit from Qiagen (catalog number: 
80224). Quantification was done using multi-channel 
spectrophotometer (Model number: ND 8000, Thermo 
Fisher Scientific). Quality of RNA was checked by dena-
turing agarose gel electrophoresis for characteristic RNA 
bands.

Microarray
Gene expression profiling was done by microarray using 
Affymetrix human transcriptome array 2.0 (HTA 2.0) 
platform, which consists of probes for both coding and 
non-coding genes. cDNA was prepared from ~ 10  µg 
of RNA, biotinylated according to standard Affymetrix 
protocol and then hybridized onto Affymetrix HTA 2.0 
Arrays for overnight in the hybridization oven and then 
the array chips were washed and stained in the Affym-
etrix Fluidics Station 450. GeneChips were scanned using 
the Affymetrix GeneChip® Scanner 3000 7G and raw 
files were obtained as CEL files.

Data acquisition and pre‑processing
Raw data were obtained as CEL files which were further 
pre-processed before calculating differential expression. 
The raw data were first read into R as an affybatch object 
and an expression set is created as an expression set 
object. An expression set object is created from affybatch 
object and then pre-processed for background correc-
tion, normalization, probe summarization. Background 
correction and probe summarization was done by using 
“Oligo” package of R Bioconductor [12]. Normalization 
was done by ‘Invariant Set Method’ using “affyPLM” 
package of R [13]. In this method of normalization, a set 
of genes whose expression is consistent in all the samples 
were identified and based on those expression values, the 
expression values of other genes were adjusted in each 
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sample. The raw and processed data have been submitted 
to GEO (GSE143754).

Quality control analysis
The quality of array was checked using “array-Quality-
Metrics” package in R [14]. It has four parameters for 
checking the quality, as follows: (a) between array com-
parisons: The difference between the arrays was checked 
using principal component analysis and distance between 
individual arrays (Additional file 2: Figure S1). (b) Array 
intensity distributions: These were checked by boxplots 
and density plots (Additional file 3: Figure S2). (c) Vari-
ance mean dependence: It was checked by plotting a 
graph between standard deviations in y-axis versus rank 
of mean of intensities in x-axis (Additional file 4: Figure 
S3). (d) Individual array quality: They were checked by 
plotting MA plots (Additional file 5: Figure S4).

Differential expression
The differential expression between study groups was 
calculated using the “limma” package of Bioconductor 
after removing non-specific probes [15]. Model matrix 
was designed based on the study groups. The expression 
was fitted onto a linear model and then contrasts were 
generated. Empirical Bayes moderation of the standard 
errors was performed for computing moderated t-statis-
tics and detection of differential expression. The p-values 
obtained were further corrected for multiple testing by 
Benjamini–Hoechberg method [16]. Adjusted p-value 
of 0.05 and absolute fold change of 2 < FC > -2 was then 
imposed to identify the differentially expressed genes. 
DEGs from different groups were compared using Venny 
2.1 [17].

Annotation of genes
Genes were annotated to KEGG and Reactome pathways, 
OMIM and GAD diseases, GO terms and UniProt key-
words using DAVID functional annotation tool [18].

Validation of genes
The expression of genes was validated by quantitative 
RT-PCR using PMM1 as housekeeping gene (expression 
level of GAPDH was found to be altered in our results). 
The primer sequences are given in Additional file  6: 
Table S2. The experiment was carried out in Applied Bio-
system Step One Plus Instrument using Luna Universal 
One-Step RT-qPCR Kit (Catalog number: E3005X) from 
New England Biolabs, USA; following manufacturer’s 
instructions. Unpaired t-test was performed for sta-
tistical significance. Gene expression was further vali-
dated in pancreatic adenocarcinoma (PAAD) dataset of 
TCGA data using the web-tool GEPIA [19]. Moreover, a 

meta-analysis was done to identify differential expression 
status of the selected genes. The normalized data from 
GSE62452, GSE15471 and GSE28735 were combined to 
form a single expression set and batch effects were cor-
rected using comBat function of “sva” package in R [20]. 
Differential expression was calculated using “limma” 
package of Bioconductor [15]. Log2 transformed data 
was used to calculate fold change or relative expression 
between benign and malignant groups. The character-
istics of each dataset are described in Additional file  7: 
Table S3. Lastly, we have used a fresh set of 9 benign and 
9 malignant pancreatic head mass tissues and validated 
the gene signature in them by quantitative RT-PCR. The 
overall plan has been shown in Fig. 1.

Survival analysis
Survival analyses were done in PAAD dataset of TCGA 
data using the web-tool GEPIA [19]. Kaplan–Meier sur-
vival curves were plotted for the 178 pancreatic cancer 
samples were divided into two groups based on high and 
low expression of the genes respectively. Then log rank 
test was done to compare both the curves. Hazard ratio 
was also calculated to find out the difference between 
high expression group and low expression group. A 
p-value of less than 0.05 was considered significant for 
both log rank test and hazard ratio.

ROC Analysis
GSE62452, GSE28735 and GSE15471 were used as vali-
dation cohort for ROC analysis in multiple levels.

a.	 Level 1: Here, ROC curve was generated and sensi-
tivity, specificity and AUROC were calculated for 
each gene in each of the three datasets. This was 
done using “ROCR” package in R [21].

b.	 Level 2: A single ROC curve for each gene in the 
merged dataset was generated as in ‘Level 1’.

c.	 Level 3: In order to evaluate the combined biomarker 
potential of the genes, a ROC curve was generated 
after combining the genes by linear modeling in a 
cross validation approach. The detail steps are as fol-
lows:

Correlation of genes in merged datasets: Gene expres-
sion correlation was checked for the five selected coding 
genes by using “Hmisc” and “corrplot” package of ‘R’ [22].

Data partitioning: Then the combined data was parti-
tioned into ‘training set’ with 70% of the samples and ‘test 
set’ with remaining 30% of the samples. Thus, ‘training 
set’ was created with 107 PC samples and 104 normal 
samples and ‘test set’ were created with 46 PC samples 
and 41 normal samples. Data partitioning was done using 
“caret” package of R [23].
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LASSO regression model: After data partitioning, a 
10-fold cross validation approach was taken to generate a 
Lasso regression model from the training set using all the 
5 genes and their interaction terms and predictions were 
made on the test set. This was done using the R package 
“glmnet” [24]. Then sensitivity, specificity and AUROC 
was calculated from the predictions using “ROCR” pack-
age in R [21]. The overall plan has been shown in details 
in Additional file 8: Figure S5.

Results:
Our primary objective was to distinguish benign and 
malignant pancreatic head masses. We chose to explore 
key transcriptomic alterations and focused on both 
coding and long noncoding RNA expression changes. 
It is established fact that SNPs modulate gene expres-
sion due to their variation in different populations 
[25] and we don’t have much information regarding 
genetic alteration of PDAC patients in India. Therefore, 
instead of combining our results with other published 
reports and do a meta-analysis, we decided to validate 

the findings of our patients in TCGA data and other 
expression datasets to assess their importance. Subse-
quent to identification of differentially expressed genes 
and adequate statistical testing, we selected malignancy 
specific genes which do not alter between normal and 
CP but changes in PC. Resulting 55 coding and 13 
noncoding genes were further validated by qRT-PCR, 
in TCGA dataset and three other datasets from GEO. 
Survival analysis was performed and their biomarker 
potential was also investigated.

Identification of differentially expressed genes
To distinguish benign and malignant pancreatic head 
masses, we chose to explore their transcriptomic pro-
files via microarray analysis. Total RNA was isolated 
from surgically resected head mass tissues and gene 
expression patterns of both coding and noncoding RNAs 
were analysed in three study groups of 9 normal (N), 6 
chronic pancreatitis (CP) and 11 pancreatic ductal ade-
nocarcinoma (PC) patients. After comparison between 

Fig. 1  Schematic flowchart showing the study design followed in this study
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themselves, three differential gene expression patterns 
were obtained as described below:

•	 CP vs N: In this comparison 7 upregulated and 181 
downregulated coding genes were obtained. Along 
with that we also obtained 148 upregulated and 11 
downregulated non-coding genes.

•	 PC vs N: Similarly we obtained 367 upregulated 
and 249 downregulated coding genes, along with 40 
upregulated and 75 non-coding genes in this com-
parison.

•	 PC vs CP: We got 894 upregulated and 124 downreg-
ulated coding genes along with 47 upregulated and 
475 downregulated non-coding genes in this com-
parison.in this comparison.

While heat maps demonstrate the expression status of 
different genes between two groups, volcano plots show 
the fold change along with their significance. Additional 
file  9: Figure S6; panel A, B and C shows volcano plots 
corresponding to the coding genes compared between 
three groups while Additional file  9: Figure S6; panel 
D, E and F shows the respective heat maps. Similarly, 
Additional file 10: Figure S7; panel A, B and C and Addi-
tional file 10: Figure S7; panel D, E and F shows the vol-
cano plots and heat maps for noncoding gene expression 
comparisons. The lists of differentially expressed genes 
(both coding and noncoding) resulting from these three 
comparisons are given as Additional file  11: Table  S4, 
Additional file 12: Table S5, Additional file 13: Table S6, 
Additional file  14: Table  S7, Additional file  15: Table  S8 
and Additional file 16: Table S9.

Identification of malignancy specific gene 
signature
For a gene to be specific for malignancy, its expres-
sion should be unaltered in ‘normal’ (N)  and ‘chronic 
pancreatitis’ (CP)  samples as both are benign condi-
tion and deregulated in ‘pancreatic cancer’ (PC)  i.e. in 
malignant condition. In other words, a gene specific 
for malignancy should not be differentially regulated 
in CP vs. N comparison but significantly deregulated 
in PC vs. N and PC vs. CP comparisons. The q-value 
and fold-change criteria used for this selection is shown 
in Fig. 2, panel a. Here q-value refers to fdr (false dis-
covery rate) corrected p-value. The criteria was chosen 
such that top genes specific for malignancy are selected. 
The first criterion was to select the gene whose expres-
sion was not altered in CP as compared to N, both of 
them being benign conditions. So a q-value ≥ 0.95 was 
used to select such genes. The second criterion was to 
select the gene whose expression is altered in PC as 
compared to CP. Using both the criteria we identified 

55 coding and 13 non-coding genes as shown in Fig. 2, 
panel b. The complete list of the malignancy specific 
genes is shown in Table 1. Further short-listing of both 
the coding and noncoding genes were made based on 
their consistent expression in all the cases as compared 
to controls and also based on previous reports of the 
same in solid tumours, as shown in Additional file 17: 
Figure S8. 

Annotation of genes
Once we have the differentially expressed genes iden-
tified, it is very important to know what is their func-
tional importance and what are the major biological 
pathways they alter or what are the diseases they are 
associated with. Malignancy specific genes annotated 
to KEGG and Reactome pathways and GAD diseases, 
GO terms and UniProt keywords. We found that these 
genes contributed to various pathways including Cell 
cycle, pancreatic secretion, cytokine-cytokine recep-
tor interaction, chemokine signaling, metabolic path-
ways and signaling pathways like p53 signaling pathway, 
PI3K-Akt signaling pathway, FoxO signaling pathway 
among the important ones. Furthermore, many of the 
genes could also be annotated to diseases like can-
cer, immunity-related diseases, aging and metabolic 
diseases according to Genetic Association Database 
(GAD) [26]. The detailed results could be found in 
Additional file 18: Table S10.

Evaluation of the gene expression status in Global 
dataset of PDAC
We selected 7 top hits from both coding and noncoding 
malignancy specific genes (Additional file 17: Figure S8) 
and initially performed the cross-platform evaluation 
by testing their expression by quantitative RT-PCR. We 
could confirm expression of 6 coding genes and 5 non-
coding genes as shown in Fig.  3. The qRT-PCR results 
corroborated with the microarray results and confirmed 
significant deregulation of those genes as seen in high-
throughput studies (panel b). Furthermore, we also 
wanted to test the nature of expression of these genes in 
TCGA data. We followed the GEPIA web-tool and found 
all of our selected coding genes were also significantly 
altered in same direction in the TCGA pancreatic cancer 
samples (panel c). They might not be top hits in that pop-
ulation, but their similar deregulation supports that what 
we have found must be important in disease context. 
However, we couldn’t validate three of the noncoding 
genes in TCGA dataset as it didn’t have expression infor-
mation for them. They got validated only by qRT-PCR 
(panel g). Additionally, the expression status of these 6 
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coding genes was also checked in the combined data gen-
erated from GSE62452, GSE28735 and GSE15471 (shown 
in Additional file 7: Table S3). All the 6 genes were found 
to be significant with adjusted p-value < 0.05 (Fig. 3d).

Survival Analysis
It is apparent that a gene important for oncogenesis, 
especially, if involved in metastasis, will have its direct 
influence on patient survival. We wanted to assess 
whether our malignancy specific coding and noncoding 
gene signatures are also responsible for poor-progno-
sis. Survival analysis was done for them in 178 samples 
of PAAD dataset from TCGA using GEPIA to identify 

Fig. 2  Identification of malignancy specific genes: a The criteria used for identification and b the number if genes identified following this criteria 
for each of the comparisons
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the total survival estimates. Statistically significant dif-
ference was observed in Kaplan–Meier plots between 
higher expression group and lower expression group 
for DLGAP5, FOXM1, KIF4A and TPX2, where higher 
expression of these genes shows poor prognosis and 
overall survival disadvantage as shown in Fig. 4. We have 
also performed the disease-free survival analysis and the 
results are similar (data not shown). In other words, these 
genes seem not only to be important for distinguishing 
pancreatic malignancy from benign conditions but also 
important for prognosis of the disease. However, we 
could only perform the analysis using two of the selected 
noncoding genes (SAMD12-AS1 and MCTS2P) and both 
of them didn’t show any significant survival advantage. As 
mentioned before, because of the unavailability of expres-
sion information in TCGA dataset, we couldn’t perform 
the survival analysis for LOC100506281, SNORD116-1 
and SNORD115-15.

Validation of our results in a new Pancreatic Head 
Mass Cohort
Initial validation of the six coding gene signature using 
global gene expression datasets like TCGA and GEO 
confirmed that these genes are significantly deregulated 
in pancreatic tumour tissues from patients all over the 
world. However, it is known that around 65–70% of all 
the malignancy in pancreas is anatomically located in 
‘pancreas head’ [27]. Hence, validation of our multi-gene 
signature in global pancreatic cancer datasets might not 
accurately reflect their expression status in malignant 
pancreatic head masses. Therefore, to have a more con-
clusive picture, we further took a fresh set of 9 benign 
and 9 malignant pancreatic head mass tissue samples 
and checked the expression of all these genes in them by 
quantitative RT-PCR. We found that five among the six 
genes (DLGAP5, CDCA7, FOXM1, TPX2, and OSBPL3) 
were still significantly upregulated in malignant pan-
creatic head masses (Fig.  5a–e). KIF4A couldn’t survive 
the validation analysis. The finding clearly confirms the 

candidature of those five genes to be tested for their bio-
marker potential for detection of malignant pancreatic 
head masses.

ROC Analysis
Finally, we planned to perform the ROC analysis to 
assess the biomarker potential of the validated coding 
gene signatures for pancreatic malignancy using datasets 
GSE62452, GSE28735 and GSE15471. As described in 
Additional file 8: Figure S5, we followed rigorous analysis 
methods. Firstly, analysis was done individually for each 
gene in each of the three dataset (Table 2). Secondly, we 
combined these three datasets and analyzed the AUROC 
of each of the genes in the combined or merged dataset 
and found that values for the all the genes were quite 
impressive. Next, in order to find out the combinato-
rial effect of the genes, we first looked at correlation of 
their respective expression pattern in the merged dataset 
and found that the genes had varied degree of correla-
tions among themselves. Expression of DLGAP5, FOXM1 
and TPX2 emerged to be as most correlated (Additional 
file 19: Figure S9). In order to improve the results further, 
all the five genes were combined and the analysis was 
repeated in the merged dataset. The diagnostic poten-
tial of multi-gene biomarker was found to be better than 
individual gene biomarkers with AUROC of 0.94, 84.78% 
sensitivity and 90.24% specificity. Detailed result is given 
in Table 2 and Fig. 6 shows the AUROC plots for all the 
genes in the merged dataset. 

Discussion:
In majority of the cases the inflammatory mass result-
ing from chronic pancreatitis occurs in the head region 
of the pancreas. On the other hand, malignant pancreatic 
head masses are also predominant in the pancreatic head. 
Hence, it is a diagnostic dilemma for the clinicians when 
a patient comes to the clinic with a pancreatic head mass, 
whether the mass is benign or malignant. We wanted to 
identify potential biomarkers capable of distinguishing 

Table 1  List of the malignancy specific genes identified in this study

Coding genes up-regulated in malignancy

NQO1, SERPINB5, CLRN3, ACSL5, CENPE, LGR5, SLC6A14, TPX2, SLC5A1, SMIM24, NDC80, FAM111B, ASPM, FAM72D, CDCA7, VSIG1, DLGAP5, GUCY2C, B2M, 
CKAP2, C17orf78, CYP2C18, POSTN, SLC44A4, CCNB2, OTC, LRRC66, CCL24, GDA, OSBPL3, SEMA3C, CDC6, TMC7, KIF4A, MYOA1, FOXM1, MYOF, GPA33, ABCG2, 
IL2RG, LAMA3, PLEKHA2, C6orf47, RAD51AP1, ANO1, ADAM28, NAPEPLD, HPGD, KIAA1551, GBP1, MED27

Coding Genes Down-regulated in malignancy:

CPA1, REG1B, C7, SPP1

Non-coding Genes Up-regulated in malignancy:

SAMD12-AS1, LINC00263, LINC00294, RCN1P2, MCTS2P, LINC01133

Non-coding Genes Down-regulated in malignancy:

SNORD116-1, SNORD116-3, SNORD116-5, SNORD116-29, SNORD115-15, LOC100506281, SNORA76C
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Fig. 3  Evaluation of gene expression in global datasets: Level of gene expression for selected coding genes in a microarray, b qRT-PCR, c PAAD 
Dataset of TCGA and d GEO datasets. Level of gene expression for selected non-coding genes in e microarray, f qRT-PCR and g PAAD Dataset of 
TCGA. Error bars in (b) and (f) represents standard deviation. All the expression values in (a–d) and (f) are statistically significant. Only the expression 
values marked with (*) are significant in (e)
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these two types of masses and set out to explore the tran-
scriptome profile between them. We didn’t restrict our 
investigation to coding genes but focused on both coding 
and noncoding genes together and our differential gene 
expression analysis identified relevant alterations for 
each of the three pairs of groups compared (Additional 
file 9: Figure S6 and Additional file 10: Figure S7). Further 
analysis of malignancy specific gene expression pattern 
identified a set of 55 coding and 13 noncoding genes dif-
ferentially expressed in malignant head masses as com-
pared to benign ones (Table 1). As described in ‘Results’ 
section corresponding to Fig. 2, we focused our analysis 
to identify genes which are unaltered in normal pancreas 
and benign head mass both, but significantly changed 
in malignant conditions. This list included both up and 
down regulated genes and could be a good starting point 
to explore their functions and importance as potential 
diagnostic marker. We further explored the functional 
annotations of these deregulated genes and found their 
involvement in major biological pathways as well as could 
connect their expression alterations to specific diseases 
like cancer among others. The finding, as detailed in 

Additional file 18: Table S10, supports the importance of 
the DEGs we identified in pancreatic carcinogenesis.

Next, we rearranged the list to find out the genes which 
are mostly altered in all of our samples and concentrated 
on the top hits among them. Thus, 7 coding and 7 non-
coding genes were selected for subsequent validation. We 
performed cross-platform validations by qRT-PCR and 
could validate 6 coding and 5 noncoding genes and sub-
sequently checking their expression in TCGA and GEO 
datasets confirm similar finding in patients belonging to 
other populations.

Incidentally, all of these six genes were found to be 
upregulated and was reported as promoters of tumouri-
genesis. However, there are no reports of CDCA7 and 
KIF4A of their involvement in PDAC. CDCA7 is cell 
division cycle associated protein-7 which is a c-MYC 
responsive gene and its role in c-MYC dependent 
tumourigenesis has been established by several stud-
ies [28, 29], while KIF4A is a member of kinesis fam-
ily known to be a predictor and prognostic marker for 
hepatocellular carcinoma, oral and colorectal cancer 
[30–32]. We report here for the first time involvement of 
CDCA7 and KIF4A in PDAC. On the other hand, there 

Fig. 4  Survival analysis: The survival plots with Kaplan–Meier curves for the selected coding genes as mentioned
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are multiple reports showing TPX2 and FOXM1 being 
involved in development and progression of PDAC [33–
36]. TPX2 is microtubule nucleation factor while FOXM1 
is a member of Forkhead box transcription activator 
proteins involved in cell proliferation. DLGAP5 is DLG 
associated protein 5, thought to play multiple roles in 
carcinogenesis and has been established as a promising 

early detection biomarker for lung adenocarcinoma and 
bladder cancer [37–39]. Interestingly, one bioinformatics 
study has also identified DLGAP5 as a progression bio-
marker for PDAC, which, in turn, supports our finding 
[33]. The last one is OSBPL3, oxysterol binding protein 
like-3, involved in cell adhesion and organization of actin 
cytoskeleton. The important fact about this gene is that it 

Fig. 5  Validation of gene expression in a separate cohort: a–e the expression of the respective genes in 9 benign and 9 malignant head mass 
tissue samples, as measured by qRT-PCR. 2^-∆Ct values are plotted against the ‘Y’ axis, denoted by ‘relative gene expression’, where the individual 
dot represents the normalized expression value (with respect to house-keeping gene PMM1) of that particular gene in that particular sample. The 
difference in expression values marked with (*) are statistically significant (p-value < 0.05/ unpaired t-test)
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has emerged as one of the novel predictive biomarker for 
PDAC in an integrative gene expression profiling analysis, 
further endorsing our results [40]. In case of noncoding 
genes, we didn’t find much information from published 
literature. Among the two upregulated noncoding genes, 
the most important is SAMD12-AS1, known to promote 
malignant progression in glioma and high-risk neuro-
blastoma [41, 42]. We are the first to report the possible 
involvement of this long noncoding RNA in pancreatic 
malignancy. The other upregulated noncoding gene is 
MCTS2P, which is a pseudogene for MCTS1, a criti-
cal cell cycle regulator. No available information is there 
regarding contribution of this long noncoding RNA in 
cancer. With respect to the down regulated noncod-
ing genes, we report LOC100506281, SNORD116-1 and 
SNORD115-15 found to be down regulated for the first 
time in PDAC. Interestingly enough, LOC100506281, 
another long noncoding RNA, has not been associ-
ated with any pancreatic disease before. However, it has 
been reported as hugely overexpressed in normal pan-
creas [43]. Therefore, our observation of its down regu-
lation in PDAC could be necessary for tumourigenesis 
and would really be worth exploring for further details. 
Similarly, snoRNAs SNORD115 and SNORD116 are con-
sidered to be orphan C/D box snoRNAs and reported 
to alter expression of multiple genes [44]. Members of 
these families of RNAs have been found to be involved 
in tumourigenesis and loss of these gene clusters has also 
been linked with other diseases [45, 46]. SNORD116 gene 

cluster has also been found to be important for devel-
opment of pancreas. Thus, detailed exploration of pub-
lished reports on our top selected genes shows that we 
have found some new players both in terms of coding 
and noncoding genes, significantly altered in our patients 
with malignant head mass. This further supports our ini-
tial hypothesis that there could be population specific 
differences in gene expression. Furthermore, the higher 
expression of our upregulated genes demonstrated poor 
survival of the patients (Fig.  4) and DLGAP5, FOXM1, 
KIF4A and TPX2 emerged having significant survival dis-
advantages when overexpressed, indicating their possible 
involvement in poor-prognosis. However, establishment 
of this fact needs further investigation. Unfortunately, we 
couldn’t perform similar analysis for the noncoding genes 
as the expression information of those genes were not 
available in that database.

We have increased the stringency of selection criteria 
of the genes by another level considering the fact that 
validation in TCGA or GEO datasets of pancreatic can-
cer might not exactly reflect the true scenario as results 
from malignant head masses constitute a fraction in 
them. Hence we further validated expression of those 6 
coding genes in additional 9 benign and 9 malignant pan-
creatic head mass tissue samples and DLGAP5, FOXM1, 
CDCA7, TPX2 and OSBPL3 showed similar expression 
pattern. Finally, we performed the ROC analysis at mul-
tiple levels (Fig.  6) using the individual genes where all 
of them had impressive AUROC values (Table  2). The 

Table 2  ROC parameters

This table shows the ROC parameters for the selected genes individually in each datasets, merged dataset as well as all genes combined in merged dataset

Gene Parameters GSE15471 GSE28735 GSE62452 Merged Dataset

CDCA7 Sensitivity 0.769 0.689 0.812 0.673

Specificity 0.667 0.822 0.639 0.703

AUROC 0.736 0.79 0.747 0.722

DLGAP5 Sensitivity 0.769 0.889 0.87 0.804

Specificity 0.692 0.756 0.721 0.731

AUROC 0.779 0.842 0.83 0.814

FOXM1 Sensitivity 0.821 0.778 0.681 0.712

Specificity 0.641 0.756 0.738 0.724

AUROC 0.721 0.817 0.764 0.768

OSBPL3 Sensitivity 0.769 0.844 0.783 0.804

Specificity 0.744 0.778 0.803 0.759

AUROC 0.87 0.856 0.852 0.857

TPX2 Sensitivity 0.718 0.844 0.826 0.771

Specificity 0.744 0.844 0.754 0.786

AUROC 0.743 0.850 0.837 0.818

CDCA7 + DLGAP5 + FOXM
1 + TPX2 + OSBPL3

Sensitivity – – – 0.847

Specificity – – – 0.902

AUROC – – – 0.942
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obvious approach at this point was to evaluate whether 
the combined multi-gene signature could perform better 
and we found the plot to have AUROC of 0.942, clearly 
having diagnostic edge over any of the single genes. In 
this context, it will be important to mention that CA19-9 
has been used clinically for the diagnosis of Pancreatic 
Cancer. In various systematic reviews, it has been found 
that the sensitivity of CA19-9 is in the range of 78–81% 
and specificity is in the range of 80–85% [47–49]. The 
combined sensitivity and specificity we are getting is bet-
ter than CA19-9 alone. However, we couldn’t evaluate 

CA19-9 in combination with the five-gene signature as 
none of these datasets had relevant CA19-9 information 
for the patients.

Conclusions:
Therefore, considering the importance of diagnos-
tic dilemma related to the nature of pancreatic head 
mass, here we have first identified a set of differen-
tially expressed coding and noncoding genes between 
benign and malignant pancreatic head masses. Next, 
we validated the top deregulated genes by qRT-PCR 

Fig. 6  ROC Analyses: a–e ROC plots for the selected coding genes individually and f ROC plot of the combined genes
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in separate validation cohort and also in TCGA and 
GEO datasets and reported a multi-gene signature of 
5 coding genes (CDCA7, DLGAP5, FOXM1, TPX2 and 
OSBPL3) capable of acting as potential biomarker to 
distinguish malignant pancreatic head masses from 
benign ones.
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