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Abstract 

Background and objectives: Sepsis is a leading cause of mortality and morbidity in the intensive care unit. Regu-
latory mechanisms underlying the disease progression and prognosis are largely unknown. The study aimed to 
identify master regulators of mortality-related modules, providing potential therapeutic target for further translational 
experiments.

Methods: The dataset GSE65682 from the Gene Expression Omnibus (GEO) database was utilized for bioinformatic 
analysis. Consensus weighted gene co-expression netwoek analysis (WGCNA) was performed to identify modules of 
sepsis. The module most significantly associated with mortality were further analyzed for the identification of master 
regulators of transcription factors and miRNA.

Results: A total number of 682 subjects with various causes of sepsis were included for consensus WGCNA analysis, 
which identified 27 modules. The network was well preserved among different causes of sepsis. Two modules desig-
nated as black and light yellow module were found to be associated with mortality outcome. Key regulators of the 
black and light yellow modules were the transcription factor CEBPB (normalized enrichment score = 5.53) and ETV6 
(NES = 6), respectively. The top 5 miRNA regulated the most number of genes were hsa-miR-335-5p (n = 59), hsa-
miR-26b-5p (n = 57), hsa-miR-16-5p (n = 44), hsa-miR-17-5p (n = 42), and hsa-miR-124-3p (n = 38). Clustering analysis 
in 2-dimension space derived from manifold learning identified two subclasses of sepsis, which showed significant 
association with survival in Cox proportional hazard model (p = 0.018).

Conclusions: The present study showed that the black and light-yellow modules were significantly associated with 
mortality outcome. Master regulators of the module included transcription factor CEBPB and ETV6. miRNA-target 
interactions identified significantly enriched miRNA.
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Background
Sepsis is defined as organ dysfunction syndrome caused 
by uncontrolled inflammatory response to infection. Sep-
sis is a leading cause of mortality in hospitalized patients 
[1, 2], and accounts for 30% of case fatality in hospitalized 
patients [3]. Despite the high mortality and morbidity, 

few agents are proven to be effective for the treatment of 
sepsis. Thus, more regulatory factors need to be identi-
fied to provide potential targets for the design of effective 
therapeutic agents.

Several studies have used transcriptome analysis to 
investigate potential biological pathways regulating the 
pathogenesis of sepsis [4–8]. These studies were per-
formed by differential gene expression analysis, followed 
by enrichment analyses to established functional path-
ways. In these analyses, genes were tested individually. 
The sensitivity to identify biologically meaningful genes 
can be low due to multiple testing adjustment. Sepsis is 
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a heterogeneous syndrome and its pathogenesis involves 
hundreds of genes. In this situation, the individual con-
tribution of a single gene is too small to be detected with 
univariate test. In most diseases, genes function via net-
works of co-expressed genes with similar biological func-
tions. Thus, identification of co-expression pattern could 
provide further insights into sepsis-associated biological 
pathways. Weighted gene co-expression network analysis 
(WGCNA) is a systems biology approach used for finding 
gene clusters with highly correlated expression levels and 
for relating them to phenotypic traits [9]. Rather than 
relating thousands of genes to the clinical trait, WGCNA 
focuses on the relationship between a few modules and 
the trait [10, 11]. To the best of our knowledge, WGCNA 
has been used to explore coexpression pattern in mouse 
model of sepsis [12], HIV infection [13], in vitro inflam-
matory cells [14], and pediatric sepsis [15]. Regulatory 
factors including transcription factors and miRNA were 
not systematically explored in adult sepsis.

The present study aimed to identify gene co-expression 
modules in sepsis by using the consensus WGCNA (con-
sensus from different causes of sepsis including pneu-
monia and abdominal sepsis). These consensus modules 
were related to clinical traits and enriched to functional 
biological pathways. Potential regulators of these mod-
ules were explored by using well curated databases.

Materials and methods
The GEO dataset and data preprocessing
The study used the publicly avaiable dataset GSE65682 
from the Gene Expression Omnibus (GEO) database. The 
dataset contained 802 samples including healthy con-
trols, non-sepsis critically ill patients and sepsis patients. 
Futhermore, the sepsis patients could be further cat-
egorized into pneumonia sepsis (n = 192), abdominal 
sepsis (n = 51) and others (n = 443) based on infection 
site. PAXgene blood RNA was isolated at intensive-care 
unit (ICU) admission and whole-blood leukocyte tran-
scriptome was performed at the platform of Affym-
etrix Human Genome U219 Array. Key benefits of the 
gene chip include increased productivity and efficiency 
through parallel processing, excellent gene expression 
accuracy and reproducibility and complete coverage 
of the annotated genome. Further detials of the dataset 
can be found at other publications [16, 17]. Raw inten-
sity expression data were preprocessed with the Robust 
Multi-array Average (RMA) method [18]. An advantage 
of this method is that normalization occurs at the probe 
level (rather than at the probeset level) across all of the 
selected hybridizations. The maximum expression inten-
sity was used when multiple probe sets mapped an indi-
vidual gene symbol. The quality of processed data were 
checked by using MA plot (Additional file 1: Figure S1).

Consensus weighted gene co‑expression network analysis
The first step in constructing a consensus WGCNA was 
to choose the soft threshoulding power to which co-
expression similarity was raised to calculte adjaency. We 
chose from a set of values from 4 to 20 based on the cri-
terion of approximate scale-free topology [10]. Since the 
topological overlap matrices (TOM) of different sepsis 
may have different statistical property, we performed 
quantile normalization over the three types of sepsis (e.g. 
pneumonia, abdomianl and other sepsis). The consen-
sus TOM was calculated by taking the component-wise 
(“parallel”) minimum of the TOMs in individual dataset, 
which was then input to hierarchical clustering. Finally, 
modules were identified in the resulting dendrogram 
using the Dynamic Tree Cut algorithm [19]. This algo-
rithm has several advantages such as capability of identi-
fying nested clusters and flexibility. Modules with similar 
expression profiles were merged at the threshold of 0.25.

Gene significance was defined as the Student t-test sta-
tistic for testing differential expression between sepsis 
and healthy controls. The significance level was adjusted 
for multiple testing with Bonferroni correction. The 
dataset also contained critically ill patients such as those 
with major abdominal surgery without infection. There 
were common pathways between critical illness and 
severe infection, the comparison between sepsis versus 
non-infectious critical illness would omit some impor-
tant genes. Thus, the differential expression was tested 
between sepsis versus healthy controls.

Relating consensus module to pneumonia‑specific sepsis 
module
Modules specific to pnenomia sepsis were identified by 
the method as described above. Pneumonia sepsis mod-
ules were then related to consensus modules. We calcu-
lated the overlaps of each pair of pneumonia-consensus 
modules, and used the hypergeometric test to assign 
a p-value to each of the pairwise overlaps. This is also 
known as the cross-tabulation based comparison of mod-
ules. This method is justified by the idea that if a module 
is well preserved and reproducible in all types of sepsis 
(pneumonia, abdominal and other sepsis), this mod-
ule could represent the common pathways involving the 
pathogenesis of sepsis [20].

Module preservation across all three datasets were 
explored by pairwise comparing eigengene networks in 
penumonia, abdominal and other sepsis. Mortality was 
added as an additional “eigengene”. Network preserva-
tion  is simply the difference between adjacencies in the 
two compared sets [20]. A small difference of the adja-
cency matrix between two sets indicate the modules are 
well preserved between the two comparing sets.
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Relating consensus modules to clinical traits
Module eigengene was calculated for each module as the 
first principal component of gene expressions for that 
module. Correlation analysis was performed to relate 
module eigengene to external traits including age, gender, 
mortality and survival time (e.g. survivors were censored 
at 28  days). We combined three datasets into one and 
performed correlation analysis.

Gene significance for mortality was correlated to the 
module membership to investigate whether genes signifi-
cantly associated with mortality outcome was also asso-
ciated with module membership. Module membership 
(eigengene-based connectivity) for each gene was calcu-
lated by correlating its gene expression profile with the 
module eigengene of a given module. For a given module, 
a module membership value of 0 indicates that a gene is 
not part of the module; whereas a module memberhsip of 
− 1 or 1 is highly connected to the module.

Enrichment analysis for biological function 
and transcription factors
Modules associated with important clinical trait such as 
mortality were further analyzed for their enrichment in 
Gene Ontology (GO) pathways [21]. Specifically, the gene 
set from a given module were enriched to GO terms to 
find whether some of functional GO terms are over-rep-
resented using annotations for that gene set. Upset plot 
was employed to display overlapped genes among differ-
ent GO terms. Dotplot shows the gene ratio and adjusted 
p values for each enriched GO terms. Enriched terms 
were organized into a network with edges connecting 
overlapping gene sets. In this way, mutually overlapping 
gene sets are tend to cluster together, making it easy to 
identify functional modules. The category netplot depicts 
the linkages of genes and GO terms as a network, which 
is helpful to see which genes are involved in enriched 
pathways and genes that may belong to multiple annota-
tion categories.

Modules (gene lists) significantly correlated with the 
mortality trait were tested for its over-representation 
in transcription factor (TF) binding motifs by using 
RcisTarget [22]. Two types of databases (i.e. Gene-motif 
rankings and the annotation of motifs to transcription 
factors) were employed in the analysis: Gene-motif rank-
ings which provides the rankings of all the genes for each 
motif and the annotation of motifs to transcription fac-
tors. Parameter settings for the score of each pair of gene-
motif were: species = Homo sapiens, Scoring/search 
space = 500 bp uptream the transcription start site (TSS), 
Number of orthologous species = 10. The annotation of 
motifs to transcription factors was performed using the 
motifAnnotations_hgnc (’mc9nr’, 24,453 motifs).

Identification of miRNA‑target interactions
The multiMiR package was employed for the retrieval of 
miRNA-target interactions from 14 external databases 
in R. These databases are comprehensive collections of 
predicted and validated miRNA-target interactions and 
their associations with diseases and drugs [23]. The mod-
ule of interest was those associated with mortlaity out-
come. It was interesting to check whether some, or all, of 
these genes within a module were targeted by the same 
miRNA(s). We restrited our search to the “mirtarbase” 
table because this table included only experimentally val-
idated miRNA-target interactions.

Survival analysis
The association of each module with the survival out-
come was determined by using Cox proportional model. 
The eigengene value of each module was added into the 
Cox regression model for univariate analysis. Genes 
matched to the module with the strongest associa-
tion with survival were used to cluster patients into two 
groups using reversed graph embedding (DDRTree), 
which projects data into a reduced dimensional space 
while constructs a principal tree which passes through 
the middle of the data simultaneously [24]. Samples were 
clustered into two groups using k-means clustering. Sur-
vival probablity of the two groups were comapred using 
the log-rank test.

Results
Demographic data
A total of 802 subjects were initially identified from the 
GEO database. 116 subjects were excluded because they 
were either healthy or non-infectious controls, and 4 
subjects were excluded because they were outliers (Addi-
tional file 1: Figure S2). As a result, a number of 682 sub-
jects were included in our analysis. These subjects were 
classified by the infection site into pneumonia sepsis, 
abdominal sepsis and unselected sepsis (other sepsis). 
Demographic data were comparable between the three 
groups (Table 1). The median age was 63 years (IQR: 53 
to 72), and 58% (394/682) patients were male. The overall 
28 day mortality rate was 17% (113/682).

Consensus Network construction and module detection
A soft-thresholding power of 6 was used to obtain 
approximate scale-free topology for the network (Addi-
tional file  1: Figure S3). Consensus WGCNA identified 
27 modules (Fig. 1). Gene differential expression analysis 
between healthy controls and sepsis showed that genes 
such as ARG1, CD177, MMP8 and C19orf59 were upreg-
ulated. Up-or down-regulation of modules were deter-
mined by the median of gene significance T value and 
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fold changes. For instance, the black model was signifi-
cantly upregulated with median T value > 3 and log2 fold 
change > 0.5 (Fig. 2).

Consensus eigengene networks and their differential 
analysis are shown in Fig. 3. The results showed that the 
eigengene networks in the three datasets were well pre-
served. To explore whether modules identified in the 
pneumonia sepsis could also be identified in consensus 
modules, the correspondence of pneumonia set specific 
and consensus modules was explored (Fig. 4). The result 
indicates that most peumonia set-specific modules have 

a consensus counterpart (Fig. 4). The black color module 
in the consensus analysis corresponds to the red module 
in the pneumonia specific set analysis (275 genes overlap 
with significant p value).

Relating Consensus modules to external clinical traits
The correlation between module eigengene and clini-
cal traits were explored by Pearson’s correlation analysis 
(Fig.  5). The black module was significantly associated 
with mortality with higher module express correlated 
to lower mortality rate (coefficient = -0.16; p < 0.001). 

Table 1 Demographic data on the study population stratified by the causes of sepsis

IQR interquartile range;

Variables Total (n = 682) Abdominal sepsis 
(n = 48)

Other sepsis (n = 442) Pneumonia sepsis 
(n = 192)

p

Age, median (IQR) 63 (53, 72) 64 (54, 68.75) 63 (53, 73) 63 (53, 72) 0.977

Sex, n (%) 0.538

 Female 288 (42) 23 (48) 189 (43) 76 (40)

 Male 394 (58) 25 (52) 253 (57) 116 (60)

Follow up days, Median (IQR) 28 (28, 28) 28 (28, 28) 28 (20.5, 28) 28 (28, 28) 0.176

Mortality, n (%) 113 (17) 7 (15) 66 (15) 40 (21) 0.172
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Fig. 1 Consensus weighted gene coexporession network analysis. Modules were identified in the resulting dendrogram using the Dynamic Tree 
Cut algorithm. A total of 27 modules were identified. Modules were distinguished from each other by assigning different colors
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However, the light-yellow module was positively associ-
ated with mortality (coefficient = 0.14; p < 0.001). The 
black module was positively associated with survival time 
(coefficient = 0.16; p < 0.001). The correlations between 
gene significance for mortality and module membership 
were explored and the results showed that there was a 
highly significant correlation between module member-
ship and gene significance for mortality in three modules 
inclusing the light-yellow, ligh cyan and pink modules 
(Additional file 1: Figure S4).

Module biological function
The most enriched pathways of the black mod-
ule included myeloid leukocyte mediated immunity, 

neutrophil mediated immunity, leukocyte degranulation 
and myeloid cell activation involved in immune response 
(Fig. 6). The light-yellow module was enriched in biologi-
cal pathways such as translation, nucleobase-containing 
compound catabolic process, heterocycle catabolic pro-
cess and cellular nitrogen compound catabolic process 
(Fig. 7).

Enrichment analysis for transcription factors
Modules were made up of co-expressed genes, indicat-
ing that they were regulated by common mechanisms 
such as the transcription factors. Thus, we performed 
enrichment analysis for transcription factors. The enrich-
ment analysis involved three steps: (1) motif enrichment 
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analysis with cumulative recovery curves (Additional 
file  1: Figures  S5, S6 and S7), (2) motif-TF annotation, 
and (3) selection of significant genes. The results showed 
that the transcription factor CEBPB was the master regu-
lator for the black module, which was annotated to the 

motif dbcorrdb__CEBPB__ENCSR000BQI_1__m1. A 
total of 93 genes in the black module was enriched in this 
motif. The normalized enrichment score (NES) was 5.53. 
This motif was directly annotated to the transcription 
factor CEBPB which is an important transcription factor 
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regulating the expression of genes involved in immune 
and inflammatory responses [25–27]. All enriched motifs 
and corresponding transcription factors for the black 
module were shown in Additional file  2: Supplemen-
tal Digital Content (SDC) 2. The network of the top 3 
enriched motifs and corresponding genes are shown in 
Additional file 1: Figure S8.

The transcription factor ETV6 was the master regula-
tor for the light-yellow module, which was annotated to 
the motif taipale__ETV6_full_CCG GAA SCGG AAG TN_
repr and cisbp__M5425. A total of 12 genes in the light-
yellow module were enriched in the motifs. The NES was 
6 and 5.98 for these two motifs [Additional file 3: Supple-
mental Digital Content (SDC) 3].

Identification of miRNA‑target interactions
From the “mirtarbase” table with validated miRNA-tar-
get interactions, we identified 1,981 miRNA that were 
potential regulators of the black module [Additional 

file  4: Supplemental Digital Content (SDC) 4]. The top 
5 miRNA regulated the most number of genes were 
hsa-miR-335-5p (n = 59), hsa-miR-26b-5p (n = 57), hsa-
miR-16-5p (n = 44), hsa-miR-17-5p (n = 42), and hsa-
miR-124-3p (n = 38). A network connecting miRNA and 
target genes are shown in Additional file 1: Figure S9.

For the light-yellow module, we identified 893 miRNA 
that were potential regulators of the module [Additional 
file 5: Supplemental Digital Content (SDC) 5]. The top 5 
miRNA regulated the most number of genes were hsa-
miR-16-5p (n = 14), hsa-miR-92a-3p (n = 12), hsa-miR-
26b-5p (n = 9), hsa-miR-615-3p (n = 9), and hsa-let-7b-5p 
(n = 8).

Survival analysis
To further validate that the black module was related to 
the mortality outcome, the high-dimension space was 
reduced to lower dimension space by using reversed 
graph embedding (DDRTree). The method provided 
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non-linear dimension reduction that retains the intrin-
sic structure of the sample data. The silhouette method 
showed that 2-cluster would be the optimal number 
(Fig. 8a). In the 2-dimension space (Fig. 8b), the samples 
were classified into two clusters. Heatmap of all module 
genes showed that the two clusters could be well sepa-
rated (Fig. 8c), which supported that the intrinsic struc-
ture was well preserved with the dimension reduction. 
The two clusters were significantly associated with sur-
vival outcome (p = 0.018 in the Cox proportional haz-
ard model, Fig. 8d). Cluster 2, as compared with Cluster 
1, was characrized by activated functions including 
myeloid cell activation, cell activation, leukocyte activa-
tion and myeloid leukocyte activation (Fig. 9).

The light-yellow module was also related to the mor-
tality outcome. The silhouette method showed that 
2-cluster would be the optimal number (Fig. 10a). The 
study population could be classified into two clusters in 
a 2-dimension space. Heatmap (Fig. 10b, c) showed that 
the study population could be well separated into two 
clusters. Cluster 2 showed significantly lower survival 
probability than cluster 1 (p = 0.01, Fig. 10d).

Discussion
The study employed consensus network analysis to iden-
tify gene co-expression modules. These modules were 
involved in distinct biological functions and were associ-
ated with clinical traits. Regulatory mechanisms of some 
important modules involving transcription regulators 
and miRNA were explored by validated databases. Con-
sistent with previously published studies employing high-
throughput dataset to examine sepsis, these modules 
were enriched for pathways related to immune response 
[28, 29]. The black module was significantly associ-
ated with survival outcome and the transcription factor 
CEBPB was the master regulator of this module. Several 
miRNAs including hsa-miR-335-5p, hsa-miR-26b-5p, 
hsa-miR-16-5p, hsa-miR-17-5p and hsa-miR-124-3p 
were identified to be important regulators of the gene 
expressions in the module.

Our analysis has several implications for research and 
clinical practice. First, sepsis is shown to have a dysregu-
lated immune response highlighted by the upregulation 
of the black module involving biological functions such 
as myeloid leukocyte mediated immunity, neutrophil 
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mediated immunity, leukocyte degranulation and mye-
loid cell activation involved in immune response. Immune 
dysfunction has long been recognized as an important 
mediator of sepsis [4, 30, 31]. However, previous studies 
mostly analyzed high-throughput data at individual gene 
level involving differential expression analysis followed by 
functional pathway enrichment [4, 15, 31, 32]. In neonate 
sepsis, Meng and colleagues identified 7 hub genes in key 
pathways. However, the study did not relate these gene 
expression profiling to clinical outcomes and the results 

cannot be extrapolated to adult sepsis [33]. The present 
study employed WGCNA to identify modules associated 
with mortality by treating co-expressed genes as a mod-
ule. The idea is that genes are working together to take 
their functions in disease processes. Second, by focusing 
on modules most significantly associated with mortality, 
we identified several important regulators including tran-
scription factors and miRNAs. The results support the 
hypothesis that co-expressed genes are very likely to be 
regulated by common factors. These transcription factors 
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(such as CEBPB and ETV6) and miRNAs are potential 
targets for the treatment of sepsis. Since the upregula-
tion of the black module is significantly associated with 
mortality, drugs targeting these sites may improve the 
survival outcome. Third, although sepsis is a heteroge-
neous syndrome [34–38], different types of sepsis share 
some common important immune regulatory pathways. 
Our study employed consensus WGCNA and examined 
whether the module identified in one cause of sepsis 
can also be found in other causes of sepsis. The results 
show that most modules are well preserved despite the 

various causes of sepsis, indicating common pathways 
associated with the sepsis. Furthermore, the module net-
work constructed by TOM is also well preserved across 
various causes of sepsis. Collectively, these findings sup-
port the notion that sepsis can be considered as a clinical 
symdrome because various causes of sepsis lead to com-
mon pathways. Drugs designed to target these common 
pathways can be helpful in improving clinical outcomes. 
For example, our study showed that cluster 2 identified 
by the black module was associated with lower survival 
probability, and this subtypes of sepsis was characterized 
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by leukocyte activation. Such over-activation of inflam-
matory response may indicate that immunoregulatory 
agents such as arachidonic acid and eicosapentaenoic 
acid can help to improve the survival outcome [39].

Mortality is an important clinical trait and thus we tried 
to identify modules most significantly assocated with 
mortlaity. Two methods were employed to validate that 
the black module was associated with mortality. Firstly, 
we simply correlate the module eigengene to the mortal-
ity. Module eigengene is computed as the first component 
in principal component analysis (PCA), which however is 

a linear transformation of the high-dimensional space. 
It is well recognized that linear transformation cannnot 
fully recover the intrinsic structure of a high-dimensional 
space [40–42]. Thus, we also emplyed manifold learning 
to better capture the black module [24]. The result is con-
sistent with the above observation that the black module 
can well separate survivors from non-survivors. Most 
clinical trials of sepsis are focusing on how to reduce 
mortality. The identified black module in our study can 
help to design drugs that potentially useful for reduc-
ing mortality rate. For example, our analysis shows that 
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Fig. 8 The survival analysis with the black module. a Optimal number of classes derived from DDRTree reduced dimension space with the 
silhouette width; the two-class model was the best fit model with the highest silhouette width. b Discriminative dimension reduction (DDR) graph 
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sorted by DDR score. The two clusters identified by the DDR score were consistent with that identified by black module genes. Genes showing on 
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proportional hazard modelling of module groups showed that the cluster membership was significant association with survival (p = 0.018)
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hsa-miR-335-5p is the top ranked miRNA in the regula-
tion of the black module. Since the black module con-
sists mostly genes involved in inflammatory response, 
the upregulation of hsa-miR-335-5p is proposed to have 
inflammatory suppression effects [43–45]. More recently, 
hsa-miR-335-5p is shown to reduce inflammation via 
negative regulation of the TPX2-mediated AKT/GSK3β 
signaling pathway in a chronic rhinosinusitis mouse 
model [46]. Collectively, these observations strongly sup-
port our results that hsa-miR-335-5p can be a candidate 
therapeutic target.

The CEBPB was annotated to the most significantly 
enriched motifs for genes in the black module. The 

eigengene of black module is the most significant associ-
ated with mortality, and thus the master regulator CEBPB 
is also an important risk factor for mortality via immu-
nomodulation [47, 48]. Our finding is also consistent 
with a recent study comparing sepsis with and without 
shock, in which CEBPB is significantly enriched in septic 
shock versus non-shock patients [49]. Since the presence 
of shock is a significant risk factor for mortality, the result 
supports the notion that CEBPB can be a potential target 
for improving survival outcome.

The strength of the study is the large sample size. 
To the best of our knowledge, the MARS consor-
tium is the largest sepsis cohort with genome-wide 
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blood transcriptional profiling [16]. Furthermore, the 
included sepsis subjects were classified into different 
causes of sepsis, allowing for the consensus network 
analysis. The consensus analysis identified common 
functional modules involved in sepsis. However, there 
are limitations in the study. First, the severity of ill-
ness is not available in the cohort, prohibiting correla-
tion analysis for modules and severity scores. However, 
since most severity scores are developed with the mor-
tality as the end point, the mortality can be used as a 

surrogate for the severity of illness. Second, the tran-
scription regulators were predicted by bioinformatic 
analysis, which might have high false positive rate. 
The in vivo function of these transcription factors and 
miRNAs should be validated in experimental studies. 
In this regard, results from the current analysis can be 
considered as hypothesis-generating. Third, there are 
more causes of sepsis that have not been categorized in 
the study. For example, urinary tract infection is also an 
important cause of sepsis in clinical practice, however, 
the dataset did not contain this subclass of sepsis.
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Fig. 10 The survival analysis with the light-yellow module. a Optimal number of classes derived from DDRTree reduced dimension space with 
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Conclusion
In conclusion, the present study identified the black and 
light-yellow modules to be the most significantly associ-
ated with mortality. Master regulators of the black mod-
ule included transcription factor CEBPB. miRNA-target 
interactions identified significantly enriched miRNA. 
These regulators can be potential therapeutic targets for 
the treatment of sepsis.
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