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Abstract 

Background: Colon cancer is a disease with high malignancy and incidence in the world. Tumor immune micro-
environment (TIM) and tumor mutational burden (TMB) have been proved to play crucial roles in predicting clinical 
outcomes and therapeutic efficacy, but the correlation between them and the underlying mechanism were not 
completely understood in colon cancer.

Methods: In this study, we used Single-Sample Gene Set Enrichment Analysis (ssGSEA) and unsupervised consensus 
clustering analysis to divide patients from the TCGA cohort into three immune subgroups. Then we validated their 
differences in immune cell infiltration, overall survival outcomes, clinical phenotypes and expression levels of HLA and 
checkpoint genes by Mann–Whitney tests. We performed weighted correlation network analysis (WGCNA) to obtain 
immunity-related module and hub genes. Then we explored the underlying mechanism of hub genes by gene set 
enrichment analysis (GSEA) and gene set evaluation analysis (GSVA). Finally, we gave an overall view of gene variants 
and verified the correlation between TIM and TMB by comparing microsatellite instability (MSI) and gene mutations 
among three immune subgroups.

Results: The colon cancer patients were clustered into low immunity, median immunity and high immunity groups. 
The median immunity group had a favorable survival probability compared with that of the low and high immunity 
groups. Three groups had significant differences in immune cell infiltration, tumor stage, living state and T classifica-
tion. We got 8 hub genes (CCDC69, CLMP, FAM110B, FAM129A, GUCY1B3, PALLD, PLEKHO1 and STY11) and predicted 
that immunity may correlated with inflammatory response, KRAS signaling pathway and T cell infiltration. With higher 
immunity, the TMB was higher. The most frequent mutations in low and median immunity groups were APC, TP53 
and KRAS, while TTN and MUC16 showed higher mutational frequency in high immunity group.

Conclusions: We performed a comprehensive evaluation of the immune microenvironment landscape of colon can-
cer and demonstrated the positive correlation between immunity and TMB. The hub genes and frequently mutated 
genes were strongly related to immunity and may give suggestion for immunotherapy in the future.

Keywords: Colon cancer, Tumor immune microenvironment, Tumor mutational burden, Weighted correlation 
network analysis
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Background
Colon cancer is one of the most malignant tumors 
worldwide [1]. Thanks to the progression in systemically 
medical treatment and surgical techniques, prognosis of 
patients with colon cancer has dramatically improved 
if they are diagnosed at early stage [2]. Prognostic 
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prediction of patients with colon cancer mainly relies 
on the TNM staging system, histopathological criteria, 
molecular markers and tumor-cell differentiation [3]. 
Nowadays, accumulated studies have demonstrated the 
role of gene mutation status, gene expression levels and 
signaling pathway changes in tumor progression and 
malignization, but it is still a challenge to find out prog-
nostic factors which can also provide targets for therapy 
[4, 5]. The viewpoint that the immune system can influ-
ence the progression of cancer has been the hotspot for 
study over a century. Recently, numerous evidences indi-
cate that the tumor immune microenvironment (TIM) 
is of great value in predicting prognosis and evaluat-
ing therapeutic efficacy factors [6]. TIM is composed of 
immune cells, immune-related pathways and cytokines 
that secreted by immune cells. In colon cancer, there 
has been studies showed that adaptive immune reaction 
is strongly correlated with survival outcomes and recur-
rence, and the infiltration of different kinds of immune 
cells might construct a favorable or unfavorable environ-
ment for tumor cells to proliferate and metastasize [7].

Since immune checkpoint-inhibiting agents, such 
as programmed death-1 receptor (PD1) and cytotoxic 
T-lymphocyte antigen 4 (CTLA-4) inhibitors, have 
been developed as antitumor drugs, immunotherapy 
has become a promising field of cancer treatment and 
demonstrated its impressive clinical value in patients 
across multiple types of solid tumors [8, 9]. Lympho-
cyte activation gene-3 (LAG3) is another immunother-
apy target in the clinic, whose up-regulation is required 
to prevent the onset of autoimmunity. Sustained anti-
gen exposure in the TIM leads to up-regulated LAG3 
expression, resulting in exhaustion of immune cell pro-
liferation and cytokine production [10]. Recently, many 
studies proved that the expression levels of Indoleam-
ine 2, 3-dioxygenase 1 (IDO1) plays an important 
role in engender immune tolerance and pathogenic 
inflammatory processes, which highlights its strong 
association with T-cell infiltration [11]. The essence 
of tumor immunotherapy is to arouse and strengthen 
the immune system to kill tumor cells in various ways. 
Tumor mutational burden (TMB) was defined as the 
total amount of coding errors of somatic genes, base 
substitutions, insertions or deletions detected across 
per million bases [12]. If TMB is larger, the cancer cell 
is more mutated, and it is easier for immune cells to 
recognize and kill it [13]. And tumors which respond 
to immune checkpoint-inhibiting agents have a higher 
level of immune cell infiltration and exhibit a T-cell 
inflamed phenotype. There is a certain correlation 
between TIM and TMB, and exploring this correla-
tion is of great significance for us to select immuno-
therapeutic drugs and explore new immunotherapeutic 

targets [14]. KRAS  and  BRAF mutational status have 
been considered as prognostic factors in colon cancers 
with MSI and may give clues for adjuvant therapy in 
the future [15–17]. Lin et  al. have reported that acti-
vation of STAT3 plays a significant role in increasing 
infiltration with  CD8+  lymphocytes and inhibiting the 
recruitment of T-regs that enhance colon tumor pro-
gression and immune escape [18]. There were several 
researches which explored the characteristics of TIM 
in pan-cancer and evaluate the correlation between the 
landscape of TIM and prognosis of patients, but they 
were focused on comparing different cancer types in 
immune cell infiltrating. As a result, further exploration 
of TIM in genetic level is of great significance.

In this study, by applying unsupervised consen-
sus clustering analysis, we divided patients from the 
TCGA cohort into three groups (high, median and low 
immunity) according to ssGSEA scores. Furthermore, 
we validated their differences in immune cell infiltra-
tion, overall survival outcomes, clinical phenotypes 
and expression levels of HLA and checkpoint genes. 
In order to screen out essential genes for construct-
ing colon cancer immune microenvironment, we per-
formed WGCNA and got 8 hub genes which were in 
the module correlated with immune capacity. Finally, 
we explored the underlying mechanism of hub genes by 
GSEA and GSVA, and verified the correlation between 
TIM and TMB to give ideas for immunotherapy of 
patients with colon cancer.

Methods
Data download
The transcriptome data, somatic mutation data and clini-
cal information of colon cancer patients were obtained 
from the TCGA database via the GDC data portal (https 
://porta l.gdc.cance r.gov/repos itory ). We downloaded 
RNA-seq (level 3, HTSeq-FPKM data) of 445 colon can-
cer patients [445primarytumortissueand41solidnormalt-
issue] with complete clinical information from the TCGA 
database. The clinical information of patients from 
TCGA database are summarized in Table  1. We down-
loaded “Masked Somatic Mutation” subtype of somatic 
mutation data and used the VarScan software to process 
it. We used a R package called “maftools” [19] to analyze 
and visualize the Mutation Annotation Format (MAF) 
of somatic variants. Human Protein Atlas (https ://www.
prote inatl as.org) was used to validate expression levels 
of hub genes by immunohistochemistry. MSI informa-
tion (MSI-H, MSI-L or MSS) for each TCGA samples 
were obtained from a previous study by Liu et al.[20]. The 
annotations of genes were obtained from Uniprot data-
base (https ://www.unipr ot.org/).

https://portal.gdc.cancer.gov/repository
https://portal.gdc.cancer.gov/repository
https://www.proteinatlas.org
https://www.proteinatlas.org
https://www.uniprot.org/
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Implementation of Single‑Sample Gene Set Enrichment 
Analysis ssGSEA
We obtained the marker gene sets for immune cells and 
immune pathways from another article [21]. We per-
formed ssGSEA to derive the enrichment score of each 
immune-related term using a R package called “GSVA” 
[22]. The ssGSEA applies gene signatures expressed 
by immune cell populations and immune pathways to 
every cancer samples. The computational approach 
used in our study included immune cells types and 
immune pathways that are involved in innate immunity 
and adaptive immunity. We obtained 29 immune gene 
sets from several literatures, including immune cell 
types and functions [23], tumor-infiltrating lympho-
cytes (TILs) [24], proinflammatory [25], para-inflam-
mation (PI) [26], cytokine and cytokine receptor (CCR) 

[27], human leukocyte antigen (HLA) [28], regulatory T 
(Treg) cells [29], immune checkpoint [30].

Identification of immune subgroups by consensus 
clustering
To investigate the correlation between immunity and 
clinical phenotypes in colon cancer, we clustered colon 
cancer samples from TCGA into 3 different groups (high, 
medium and low immunity) with “Consensus Clus-
ter Plus” (50 iterations, resample rate of 80%) based on 
enrichment scores of immune terms in ssGSEA. In order 
to validated that those 3 subgroups are different in immu-
nity, we use a R package called “estimate” to calculate the 
immune score, stromal score and ESTIMATE score of 
every tumor sample [31]. And we compared tumor purity 
of samples in 3 subgroups by Mann–Whitney U test.

Analysis of clinical information 
and immunotherapy‑related genes
The Chi-square test was performed to analyze the corre-
lation between immunity and clinical phenotypes, includ-
ing gender, age, venous invasion, lymphatic invasion, 
stage, TNM classification and survival state. We classified 
the total TCGA cohort into subgroups based on clini-
cal phenotypes: gender (male/female), age (> 60/ ≤ 60), 
venous invasion (yes/no), lymphatic invasion (yes/no), 
stage (stage1 + stage2/stage3 + stage4), T(T1 + T2/
T3 + T4), N(N0/N1 + N2), M(M0/M1). And we analyzed 
the difference in overall survival rate between 3 immune 
subgroups in clinical subgroups by a R package called 
“survival”. The expression level of human leukocyte anti-
gens (HLA) and checkpoint-related genes in 3 immune 
subgroups were compared by Mann–Whitney test. The 
proportions of the 22 tumor infiltrating immune cells in 3 
immune subgroups were determined by Kruskal–Wallis 
tests using a R package called “CIBERSORT” [32].

Construction of co‑expression module networks
The Weighted correlation network analysis (WGCNA) 
was used to construct the gene co-expression network to 
find clinical-phenotype-related modules and hub genes 
by the R package “WGCNA”[33]. All genes and samples 
were filtered by good genes or good samples test. Fil-
tered genes were used to construct a scale-free network 
by calculating the connection strength between genes. 
Scale-free  R2 ranging from 0 to 1 was used to determine 
a scale-free topology model. To minimize effects of noise 
and spurious associations, the adjacency matrix was 
transformed into Topological Overlap Matrix (TOM). 
And TOM-based dissimilarity was used to form modules 
by dynamic tree cut. Here, we set minimal module size as 
30 and cut height as 0.25. We evaluated the correlation 

Table 1 Clinical characteristics of  the  included TCGA 
dataset

Characteristics Total TCGA 
N

Age years  < 60 133

 ≥ 60 312

Gender Male 212

Female 233

T T1 10

T2 76

T3 302

T4 56

Unknown 1

M M0 328

M1 61

Unknown 56

N N0 264

N1 102

N2 79

Unknown 0

Stage Stage I 75

Stage II 174

Stage III 124

Stage IV 61

Unknown 11

Lymphatic invasion No 245

Yes 159

Unknown 41

Venous invasion No 292

Yes 95

unknown 58

Fustat Alive 351

Dead 94
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among module eigengenes (MEs), clinical traits and 
modules which are related to the traits. For each module, 
gene significance (GS) and module membership (MM) 
were calculated and used for hub gene selection. Moreo-
ver, Kyoto Encyclopedia of Genes and Gene Ontology 
(KEGG) pathway enrichment analyses and Gene Ontol-
ogy (GO) analysis were performed for genes in the mod-
ules using the KOBAS database. The cutoff criteria set as 
p value < 0.05.

Predicting underlying mechanism of immunity‑related 
modules and hub genes
Wilcox test was performed to compare the expression 
level of hub genes in normal samples colon cancer sam-
ples with different clinical phenotypes. We performed 
GSEA [22] and GSVA to explore correlated pathways of 
our immune-related risk signature. Gene ontology gene 
sets “h.all.v7.0.symbols.gmt” were downloaded from 
Molecular Signatures Database (MSigDB, https ://softw 
are.broad insti tute.org/gsea/downl oads.jsp) and were 
used for the enrichment analysis. When the false discov-
ery rate (FDR) was less than 0.25, the enriched gene set 
was considered to be statistically significant. We dem-
onstrated the correlation between hub genes expression 
levels and immune cells infiltration by calculating the 
Person correlation coefficients, which was performed 
by using TIMER database (https ://cistr ome.shiny apps.
io/timer ). The function of hub-genes was analyzed by 
Metascape database (http://metas cape.org/) [34].

Calculation of TMB scores and prognostic analysis
In our study, we calculated the mutation frequency with 
number of variants/the length of exons for each sample 
via Perl scripts based on the JAVA8 platform. We classify 
the colon cancer samples into low-TMB and high-TMB 
groups according the median data. Mann–Whitney test 
was conducted to compare the TMB difference among 3 
immune subgroups. The survival curves for the prognos-
tic analysis were generated via the Kaplan–Meier method 
and log-rank tests were utilized to identify significance of 
differences.

Results
Immune microenvironment landscape of colon cancer
The immunity of tumor samples was assessed by apply-
ing the ssGSEA approach to the transcriptomes of TCGA 
colon cancer samples. 29 immune-related pathways and 
infiltrating immune cells were incorporated to estimate 
the immune capacity of colon cancer tissues (Fig.  1a). 
The total TCGA cohort were clustered into 3 subgroups 
(low immunity: 136 samples, median immunity: 206 
samples, high immunity: 103 samples) by applying unsu-
pervised consensus clustering analysis (Fig.  1b–d). To 

validate the immunity of 3 immune subgroups, we also 
showed the ESTIMATE score, immune score and stromal 
score in the heatmap. The association of immunity and 
colon cancer patients’ prognosis was indicated by com-
paring survival rates of 3 immune subgroups in different 
clinical subgroups (Fig.  1e–k, Additional file  1: Figure 
S1). The result showed that survival rates of 3 immune 
groups have statistical difference in the total TCGA 
cohort (P = 0.004), age < 60 (P = 0.019), no lymphatic 
invasion (P = 0.041), M0 (P = 0.024), N0 (P = 0.018), 
stage1 + stage2 (P = 0.026) and T3 + T4 (P = 0.014). In all 
of these clinical subgroups, patients with median immu-
nity have the best prognosis while patients with lowest 
immunity have the worst prognosis. The Chi-square test 
(Additional file 2: Figure S2) showed that immunity clas-
sification was correlated with stage (P < 0.001), metastasis 
(P < 0.001), N classification (P < 0.01) and survival state 
(P < 0.05). This demonstrated that immunity could have 
strong correlation with clinical phenotypes and also serve 
as a prognostic factor in colon cancer.

immune subgroups are different in immune cell infiltration 
and expression of immunotherapy‑related genes
To explore the biological behaviors among these immune 
subtypes, we performed GSVA enrichment analysis. As 
shown in Fig. 2a, b, Immunity-L was related to immune 
suppression biological process. Immunity-M was 
enriched in stromal and carcinogenic activation pathways 
such as TGF beta signaling pathway, apoptosis, VEGF 
and MAPK signaling pathways. Immunity-H was associ-
ated with immune activation including the activation of 
chemokine signaling pathway, cytokine-cytokine recep-
tor interaction, T cell receptor signaling pathway and 
Natural killer cell mediated cytotoxicity. These 3 immune 
subgroups were also significantly different in tumor 
purity: the high immunity group has the lowest tumor 
purity and the low immunity group has the highest tumor 
purity (Fig.  2c). The fraction of 20 types of infiltrating 
immune cells were compare among 3 immune subgroups 
(Fig.  2d). The result showed that 11 types of immune 
cells, including B cell, macrophages M1, macrophages 
M2, macrophages M3, resting mast cell, activated mast 
cell, NK cell, plasma cell, CD4 T cell, CD8 T cell and T 
cell follicular helper, had significantly different infiltrating 
levels in different immune subgroup. The expression level 
of 19 HLA genes were all significantly different among 3 
immune subgroups (Fig. 2e). With higher immunity, the 
expression level of HLA genes was higher. We chose 4 
immune checkpoint genes which are regarded as targets 
in immunotherapy, including CTLA4, IDO1, LAG3 and 
PDCD1(PD-1). And we found that the expression level 
of all these genes are highest in high immunity group 
and lowest in low immunity group (Fig.  2f–i). Median 

https://software.broadinstitute.org/gsea/downloads.jsp
https://software.broadinstitute.org/gsea/downloads.jsp
https://cistrome.shinyapps.io/timer
https://cistrome.shinyapps.io/timer
http://metascape.org/
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immunity group has medium expression level of those 
4 genes. As a result, patients in high immunity group 
may be more sensitive to immune checkpoint-inhibiting 
agents, such as PD1 inhibitors and CTLA-4 inhibitors. 
The different landscape of immune cell infiltrating could 

also give ideas for immunotherapy, as high immunity 
group has higher level of T cells (CD4 T cell, CD8 T cell 
and T cell follicular helper) infiltration while low immu-
nity group has higher level of macrophages M0, mast cell 
and NK cell infiltration.

Fig. 1 Identification and validation of colon cancer immunity-related subgroups. a In ssGSEA, 29 immune-related gene sets are enriched with 
colon cancer. These gene sets are composed of immune cells and immune processes. The tumor purity, ESTIMATE score, immune score and stromal 
score are also shown in this heatmap. b Consensus clustering cumulative distribution function (CDF) for k = 2 to 9. c Relative change in area under 
CDF curve for k = 2 to 9. d Heatmap of sample clustering at consensus k = 3. e–k Survival analysis of the total TCGA cohort, samples without 
lymphatic invasion. samples without metastasis, samples without lymph node metastasis, samples which are stage1 or 2, samples which are T3 or 
T4 and samples with age less than 60
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Detection of immunity‑related module and 8 hub genes 
by WGANA
In WGCNA analysis, we identified 8 co-expression mod-
ules and analyzed their association with 10 clinical phe-
notypes, including fustat, TNM classification, stage, age, 
gender, lymphatic invasion, venous invasion and immu-
nity (high, median and low) (Fig. 3a, b, Additional file 3: 
Figure S3). Except the grey module which contained non-
clustering genes, the brown module was the most cor-
related module of immunity (r = 0.18, P = 1e-04, Fig. 3c). 
There were 212 genes in the brown module (Additional 
file 4: Table S1). The brown module was also correlated 

with T (r = 0.099, P = 0.04), N (r = 0.13, P = 0.007), 
stage (r = 0.099, P = 0.04) and venous invasion (r = 0.11, 
P = 0.03). In the module-trait analysis, 8 genes with GS 
value > 0.3 and MM value > 0.8 were defined as hub genes: 
CCDC69, CLMP, FAM110B, FAM129A, GUCY1B3, 
PALLD, PLEKHO1 and STY11. The GS values and MM 
values of 8 hub genes were shown in Additional file  5: 
Table S2. These hub genes were selected for further anal-
ysis. We validated the correlation between the relative 
infiltrating level of immune cells and the expression level 
of hub genes by the TIMER database (Additional file  6: 
Figure S4). The result demonstrated that the expression of 

Fig. 2 GSVA and analysis of immune cell infiltration, HAL genes and checkpoint genes expression in 3 immune subgroups. a, b The heatmap was 
used to visualize these biological processes, and yellow represented activated pathways and blue represented inhibited pathways. The colon cancer 
cohorts were used as sample annotations. A: Immunity-L vs Immunity-M, B: Immunity-M vs Immunity-H. c The tumor purity of samples from 3 
immune subgroups (*P < 0.05, **P < 0.01, ***P < 0.001). d The fractions of 11 types of infiltrating immune cells in samples from 3 immune subgroups. 
e The RNA expression levels of HLA genes in samples from 3 immune subgroups. f, i The RNA expression levels of checkpoint-related genes (CTLA4, 
IDO1, LAG3 and PDCD1) in samples from 3 immune subgroups
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Fig. 3 Detection and validation of immunity-related module by WGCNA. a The cluster was based on the transcriptome data from TCGA. The color 
intensity represents the clinical phenotypes (fustat, TNM classification, stage, age, gender, lymphatic invasion, venous invasion and immunity). b 
Heat‐map of the correlation between gene modules and the clinical phenotypes of colon cancer. The brown module was the most correlated 
module with immunity. c The correlation analysis between membership (MM) in brown module and gene significance (GS) for immunity. d, e 
Bubble chart of GO and KEGG results of brown module
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8 hub genes have negative correlation with tumor purity 
and their expression level were positively correlated with 
the infiltration of CD4 T cells, macrophages, neutrophils 
and dendritic cells. To investigate the underlying mecha-
nism of the immunity-related module, we performed GO 
and KEGG analysis (Fig. 3d, e). In GO analysis, GO terms 
such as biological regulation, anatomical structure devel-
opment and plasma membrane bounded cell projection 
were enriched in the brown module. In KEGG pathway 
analysis, cGMP-PKG, calcium and cAMP signaling path-
ways are also enriched with the brown module.

Prognosis value and underlying mechanism of hub genes
Using transcriptome data from TCGA, we noticed that 
7 of 8 hub genes are differentially expressed in colon 
cancer tissue and normal solid tissue (Fig.  4a–h). And 
all of them have lower expression level in cancer tis-
sues. We validated the protein expression of these hub 
genes based on IHC samples provided by the Human 
protein Atlas database. Compared to normal tissues, 
6 of 8 hub genes were over-expressed in tumor tissues 

(Fig. 5a–f ). Clinical information analysis indicated that 
PALLD was correlated with venous invasion (P = 0.047, 
Fig. 4i), PLEKHO1 was correlated with lymphatic inva-
sion (P = 0.019, Fig. 4j) and SYT11 was correlated with 
lymph node metastasis (P = 0.048, Fig.  4k). We anno-
tated 8 hub-genes in Fig. 6a and used Metascape data-
base to explore the function of these hub-genes (Fig. 6b, 
c). These genes were related to negative regulation of 
leukocyte activation and immune effector process, 
positive regulation of JAK-STAT signaling pathway, 
leukocyte apoptosis and granulocyte migration. Then 
we performed GSEA to explore the underlying mecha-
nism of hub genes by assessing the enrichment of can-
cer hallmark gene sets (Additional file 7: Figure S5). The 
high-expression of most hub genes were enriched with 
epithelial mesenchymal transition, IL2-STAT signal-
ing, IL6-JAK-STAT3 signaling, inflammatory response 
and KRAS signaling. Interestingly, these hallmarks are 
recognized to be related with immune reaction, pro-
gression of cancer and immunotherapy in some extent. 
In addition, the down-expression of these genes were 

Fig. 4 Mann–Whitney test of 8 hub genes expression in different types of samples. a–h Expression level of 8 hub genes in normal tissue and tumor 
tissue. i, j The expression levels of hub genes are different in clinical subgroups. PALLD was correlated with venous invasion (P = 0.047), PLEKHO1 
was correlated with lymphatic invasion (P = 0.019) and SYT11 was correlated with lymph node metastasis (P = 0.048)
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enriched with MYC target, which was also an impor-
tant oncogene target in cancer development.

TMB landscape in colon cancer and its correlation 
with immunity
The TMB of samples from 3 immune subgroups were 
compared by Mann–Whitney test, indicating that tumors 
with higher immunity have higher TMB (Fig.  7a). The 
MSI status (proportion of MSI-H and MSI-L/MSS) were 
compared among 3 immune subgroups by Chi-square 
test (Fig.  7b). The exclusive and coincident associations 
across mutated genes were shown in Fig. 7c. These muta-
tions were further classified into different categories: mis-
sense mutation, delectation, nonsense mutation, splice 
site, insertion, translation start site and nonstop muta-
tion (Fig.  7d). For variant types, single nucleotide poly-
morphism (SNP) had a higher frequency than insertion 
or deletion (Fig.  7e), and C > T was the most common 
single nucleotide variants (SNV) (Fig.  7f ). Besides, we 
counted the number of altered bases in each sample and 
showed mutation types in box plot (Fig. 7g–h). Finally, we 

exhibited the top 10 mutated genes in colon cancer with 
ranked percentages, including TTN (47%), APC (75%), 
MUC16 (27%), SYNE1 (29%), TP53 (55%), KRAS (43%), 
FAT4 (23%), RYR2 (21%), PIK3CA (28%) and ZFHX4 
(21%) (Fig.  7i). Muation information of each sample in 
3 immune subgroups (low immunity: n = 119, median 
immunity: n = 179, high immunity: n = 88) was exhibited 
in waterfall plot (Fig. 8a–c). We founded that the propor-
tion of samples with specific mutated genes was different 
among 3 immune subtypes, which may provide sugges-
tion for clinical application of immunotherapy.

Discussion
For colon cancer, patients with same clinical phenotypes 
can have different prognosis. As the relationship between 
chronic inflammation and colon cancer had been well 
demonstrated, more and more people began to study 
the role of immunity in cancer progression and consid-
ered it as one possible prognostic factor. In this study, we 
depicted the immune landscape of colon cancer using 
transcriptome and clinical information downloaded 

Fig. 5 The expressional differences of hub gene levels between colon cancer tissues and the para-cancer normal solid tissues in the Human Protein 
Atlas database
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from the TCGA database. The colon cancer samples 
were clustered into three clusters (low immunity, median 
immunity and high immunity). The patients in the 
median-immunity cluster had the best prognosis com-
pared with patients in the low-immunity and high-immu-
nity clusters. Patrick Danaher et  al. established a tumor 
inflammation signature based on 30 types of cancers and 
found that high immunity was related to better prog-
nosis in skin cutaneous melanoma and sarcoma, while 
low immunity was related to better prognosis in pan-
creatic adenocarcinoma and lower grade glioma. These 
findings were different from ours, which demonstrated 
heterogeneity in immune landscape among different can-
cers. Generally, cytotoxic T cell (CD8 + T cell) immune 

response is considered to have anti-tumor effects by IFN-
γ, TNF-α and IL17. As a result, increased T cell infiltra-
tion in tumor tissue may lead to an anti-tumor effect in 
the high-immunity group. But in our study, the patients 
in the median immunity cluster had the best progno-
sis compared with patients in the low immunity and 
high immunity clusters. Robert D. et  al. concluded that 
the immunity mainly plays three roles in anti-tumor 
effects: prevents the establishment of inflammatory, 
protects the host from viral infection, kills tumor cells 
in specific tissue. However, cytokines such as IL-12 and 
interferon-γ (IFN-γ) can contribute to the construction 
of immunoediting and immune escape [35]. Convinc-
ingly, immunity can also provide the selective pressure 

Fig. 6 Functional analysis of hub genes. a The annotation of hub genes using Uniport database. b Protein–Protein interaction network of genes 
which were directly related to hub genes. A sport represented a gene and the color of spots represented which pathway this gene was involved in. 
C The enrichment statistical significance of GO-terms and KEGG pathways
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that accelerates the proliferation of tumor cells which 
have gained immune-evasive mutations [36]. Our TMB 
analysis showed that the high immunity cluster had the 
highest mutational burden which also provide evidence 
for the establishment of immune-evasive mutations and 
further immune escape. So, it is arbitrary to conclude 
that patient with higher immunity can have better prog-
nosis. This finding could explain that patients who keep 
an equilibrium between immune elimination and immu-
noediting may have better prognosis.

By using WGCNA, we obtained 8 hub genes which 
occupied important positions in the immune mecha-
nism of colon cancer. These hub genes had lower 

transcriptional expression levels in tumor tissue than 
normal tissue. In addition, by analyzing transcriptome 
data from TCGA, the RNA translational levels of seven 
hub genes have statistical difference in tumor and nor-
mal tissues. FAM110B has been proved to have an essen-
tial role in multiple cancer hallmarks and progression 
of many types of cancer such as prostate cancer [37]. 
FAM129 can affect invasion and proliferation by regu-
lating autophagy, unfolded protein response and FAK 
signaling pathway [38]. The differential expression of 
GUCY1B3 has also been detected in breast cancer and 
ovarian cancer and though to inhibit tumor angiogen-
esis [39]. Ma et  al. reported that long noncoding RNA 

Fig. 7 The landscape of frequently mutated genes in colon cancer. a The TMB of samples from 3 immune subgroups (*P < 0.05, **P < 0.01, 
***P < 0.001). b The Chi-square test of MSI status in 3 immune subgroups. c The coincident and exclusive associations across mutated genes. d 
Classification and frequency of mutation types. e Frequency of variant types. f Frequency of SNV classes. g, h tumor mutation burden in specific 
samples; i the top 10 mutated genes in colon cancer
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DUXAP8 can promote tumor progression by silencing 
PLEKHO1, revealing the anti-tumor effect of PLEKHO1 
expression [40]. In GO and KEGG analysis, we noticed 
that immunity-related module had strong correlation 
with anatomical structure development and plasma 
membrane bounded cell projection. CLMP has been 
known as a new component of epithelial tight junctions, 
which support the function of hub genes in tumor cell 
metastasis [41]. And the result from Metascape database 
also proved that 8 hub-genes can have negative regula-
tion on immune system. In further study, we need to per-
form deeper exploration in mechanisms and biofunctions 
of these hub genes, as their relationships with colon can-
cer have been seldomly reported.

The result of GSEA and TMB analysis indicated that 
high immunity was correlated with KRAS signaling path-
way and high frequency of KRAS gene mutation. The 
expression levels of HLA genes and checkpoint genes 
(PD1/PDL1, CTLA4, IDO1 and LAG3) are higher in high 
immunity subgroup than median and low immunity sub-
groups, which convinced that our classification strategy 
were capable to provide support for immunotherapy. It 
has been reported that KRAS mutations could predict the 
resistance to epidermal growth factor receptor (EGFR) 
inhibitors such as cetuximab [42]. The prognostic value 
of KRAS mutations may be influenced by many factors, 
including primary tumor site, tumor stage, and adjuvant 
treatment received [21, 43]. Besides, stage 2 colon can-
cer patients with KRAS mutation were also reported to 
have increased risk of recurrence which was not affected 
by adjuvant chemotherapy. In the TMB analysis, classical 
tumor-related genes APC, TTN and TP53 also showed 
high mutational frequency among 3 immune subgroups. 
It is convinced that either polyposis or nonpolyposis 
syndromes can contribute to the genetic vulnerability to 

colon cancer, which is associated with mutation or loss of 
APC gene and several DNA mismatch repair genes [44, 
45]. Xingyu Cheng et  al. suggested that TTN and TP53 
double mutation may participate in tumorigenesis by 
regulating downstream pathways with the participation 
of other co-expressed genes on the signaling network 
[46]]. In the future, it is of great significance to apply 
highly mutated genes and their correlated signaling path-
ways to searching for new targets for immunotherapy.

Conclusion
In this study, we divided patients from the TCGA cohort 
into three immune subgroups (high, median and low 
immunity) by applying unsupervised consensus cluster-
ing analysis. Three groups were different in survival out-
come, stage, metastasis, lymph node metastasis, immune 
cell infiltration and expression levels of HLA and check-
point genes. Then we performed WGCNA and got 8 
hub genes (CCDC69, CLMP, FAM110B, FAM129A, 
GUCY1B3, PALLD, PLEKHO1 and STY11), which were 
in the module correlated with immune capacity. In func-
tional analysis, we found that immunity was related 
to signaling pathways, such as inflammatory response 
and KRAS signaling pathway. Finally, we indicated that 
immunity was positively correlated with TMB and the 
mutational frequency of genes were significantly different 
among 3 immune subgroups.

Supplementary information
Supplementary information accompanies this paper at https ://doi.
org/10.1186/s1296 7-020-02491 -w.

Additional file 1: Figure S1. Survival analysis of colon cancer samples 
in different clinical subgroups. (A‑H) Comparation of overall survival rate 
of 3 immune subgroups in different clinical subgroups (venous invasion, 
female, male, lymphatic invasion, M1, N1+N2, stage3+stage4, T1+T2). 

Fig. 8 Frequently mutated genes in 3 immune subgroups. a–c Waterfall plots display the frequently mutated genes in 3 immune subgroups of 
colon cancer. The left panel shows the genes ordered by their mutation frequencies. The right panel presents different mutation types
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In all of these subgroups, there were no statistical differences among 3 
immune subgroups in survival rate.

Additional file 2: Figure S2. Correlation between immunity and clinical 
phenotypes. The Chi-square test was performed to analyze the correla-
tion between immunity (low, median and high) and clinical phenotypes 
(fustat, TNM classification, stage, age, gender, lymphatic invasion, venous 
invasion and immunity). We found that immunity was correlated with 
fustat, stage, M and N (* P<0.05, ** P<0.01, *** P<0.001).

Additional file 3: Figure S3. WGCNA analysis of colon cancer based on 
TCGA transcriptome data. (A) Hierarchical cluster analysis was performed 
to detect co-expression modules with corresponding colors. (B‑C) Soft-
thresholding power analysis was used to obtain the scale-free fit index of 
network topology.

Additional file 4: Table S1 The list of genes in the brown module.

Additional file 5: Table S2 The GS and MM values of hub genes.

Additional file 6: Figure S4 Validating the correlation between hub 
genes and immune cell infiltration. (A‑H) We use the TIMER database to 
validate the correlation between the expression level of hub genes and 
the infiltration level of B cells, CD8+ cells, CD4+ cells, macrophages, neu-
trophils and dendritic cells in colon cancer tissues. The coefficient values 
and P values were calculated by Spearman coefficient.

Additional file 7: Figure S5 GSEA of hub genes. (A‑H) The high-expres-
sion of most hub genes were enriched with epithelial mesenchymal tran-
sition, IL2-STAT signaling, IL6-JAK-STAT3 signaling, inflammatory response 
and KRAS signaling. The down-expression of these genes were enriched 
with MYC target V1 and V2.
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