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Abstract 

Background:  Lung cancer is one of the most common carcinomas in the world, and lung adenocarcinoma (LUAD) is 
the most lethal and most common subtype of lung cancer. Cigarette smoking is the most leading risk factor of lung 
cancer, but it is still unclear how normal lung cells become cancerous in cigarette smokers. This study aims to identify 
potential smoking-related biomarkers associated with the progression and prognosis of LUAD, as well as their regula-
tion mechanism using an in vitro carcinogenesis model and bioinformatics analysis.

Results:  Based on the integration analysis of four Gene Expression Omnibus (GEO) datasets and our mRNA sequenc-
ing analysis, 2 up-regulated and 11 down-regulated genes were identified in both S30 cells and LUAD. By analyzing 
the LUAD dataset in The Cancer Gene Analysis (TCGA) database, 3 of the 13 genes, viz., glycophorin C (GYPC), NME/
NM23 nucleoside diphosphate kinase 1 (NME1) and slit guidance ligand 2 (SLIT2), were found to be significantly 
correlated with LUAD patients’ smoking history. The expression levels of GYPC, NME1 and SLIT2 in S30 cells and lung 
cancer cell lines were validated by quantitative PCR, immunofluorescence, and western blot assays. Besides, these 
three genes are associated with tumor invasion depth, and elevated expression of NME1 was correlated with lymph 
node metastasis. The enrichment analysis suggested that these genes were highly correlated to tumorigenesis and 
metastasis-related biological processes and pathways. Moreover, the increased expression levels of GYPC and SLIT2, 
as well as decreased expression of NME1 were associated with a favorable prognosis in LUAD patients. Furthermore, 
based on the multi-omics data in the TCGA database, these genes were found to be regulated by DNA methylation.

Conclusion:  In conclusion, our observations indicated that the differential expression of GYPC, NME1 and SLIT2 may 
be regulated by DNA methylation, and they are associated with cigarette smoke-induced LUAD, as well as serve as 
prognostic factors in LUAD patients.
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Background
Lung cancer is one of the most common carcinomas in 
the world. In 2018, the number of patients newly diag-
nosed with lung cancer across the globe was 2.09 million, 
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and around 1.76 million patients will die from the disease 
[1]. Although early diagnosis and treatment of lung can-
cer have made significant progress, the 5-year relative 
overall survival (OS) is less than 20% [2]. Lung adeno-
carcinoma (LUAD) is the most common subtype of non-
small cell lung cancer (NSCLC), and NSCLC accounts for 
approximately 85% of all lung cancer cases [3]. There is 
a significant and positive correlation between cigarette 
smoke and lung cancer, and the risk of developing lung 
cancer in smokers is nearly 10 times higher than that in 
non-smokers [4, 5]. Nonetheless, it is still unclear how 
normal lung cells become cancerous in cigarette smokers.

The development of high-throughput sequencing tech-
nology has made it possible to identify changes in sin-
gle bases within the coding sequences of specific genes 
during lung tumorigenesis. There are plenty of publicly 
available cancer multi-omic data that we can obtain free 
from The Cancer Gene Atlas (TCGA; http://cance​rgeno​
me.nih.gov/) and Gene Expression Omnibus (GEO, 
http://www.ncbi.nlm.nih.gov/geo/). A meticulous and 
thorough analysis of these data can identify genes and 
signaling pathways crucial to lung cancer, which will help 
for a better understanding of the mechanisms of cancer 
occurrence and development.

Based on the gene expression profiles, recent studies 
have identified several genes associated with lung can-
cer. Spira et al observed that CYP1B1, NEK2 and CENPF 
were significantly correlated with LUAD [6]. Liu et al sug-
gested that EPHA4, FGFR2, and EGFR may be strongly 
associated with the development and progression of 
smoking-related LUAD [7]. Landi et al demonstrated that 
elevated mRNA levels of NEK2 and TTK have the poten-
tial to increase the risk of mortality from smoking-related 
LUAD [8]. Also, numerous genomic and transcriptional 
alterations in LUAD appeared to be associated with 
the patient’s smoking history [9]. However, there is still 
a shortage of reliable biomarkers for smoking-related 
LUAD.

In this study, we aimed to identify novel biomarkers 
for LUAD in smokers. The workflow of our study is pre-
sented in Fig.  1. An in  vitro carcinogenesis model was 
established by exposing BEAS-2B cells to cigarette smoke 
continuously for 30 passages (S30). In the present study, 
candidate genes were obtained by integrative analysis of 
differentially expressed genes (DEGs) according to data-
bases and our mRNA sequencing data. Among these, the 
smoking-related genes observed in S30 cells and LUAD 
were further validated by quantitative PCR (qPCR), 
immunofluorescence assays (IF), and western blotting 
(WB), and analyzed for a possible association with can-
cer-related pathways and prognosis. Furthermore, the 
multi-omics data in the TCGA database were used to 
explore the regulatory mechanisms of these three genes.

Results
Differentially expressed genes in S30 cells and GEO 
datasets
Based on the high throughput analysis, a total of 753 dif-
ferentially expressed genes (DEGs) were identified in cig-
arette smoke-induced transformed cells (S30) compared 
with unexposed BEAS-2B cells, including 273 up-regu-
lated and 480 down-regulated genes (Fig. 2a, b). Besides, 
DEGs in LUAD tissues were screened out from four GEO 
datasets by differential expression analysis (Fig.  2c–f). 
Based on the integration analysis, 209 down-regulated 
genes and 25 up-regulated genes were identified in the 
GEO datasets (Fig. 2g and Additional file 1: Table S2). A 
total of 11 down-regulated and 2 up-regulated smoking-
related genes were identified by taking the intersection 
of the DEGs extracted from S30 cells and GEO datasets 
(Fig. 2f ).

Identification of smoking‑related genes in lung cancer
Further analysis indicated that 7 of the 13 genes are asso-
ciated with smoking history (p < 0.05) (Additional file 1: 
Table  S3). Notably, the NME1 expression level in cur-
rent smokers and reformed smoker for ≤ 15 years was 
significantly higher compared to life-long non-smokers 
(p  <  0.01). Conversely, the expression levels of SLIT2 
and GYPC in current smokers were markedly lower than 
those in life-long non-smokers (p  <  0.01) (Table  1). As 
illustrated in Fig. 3, these findings were further validated 
in two GEO datasets (GSE13213 and GSE41271) with a 
smoking history.

Validation of mRNA and protein expression in S30 cells 
and lung cancer cell lines
The mRNA expression levels of GYPC and SLIT2 were 
found to be dependent on smoke-exposure time and were 
significantly down-regulated in S30 cells (Fig. 4a, c). On 
the other hand, the NME1 expression level was signifi-
cantly up-regulated in S30 cells (Fig. 4b). Compared with 
normal BEAS-2B cells, the expression levels of GYPC 
and SLIT2 in four human lung adenocarcinoma cell lines 
(PC9, A549, H1975 and H1299) were up-regulated, while 
NME1 expression was down-regulated (Fig. 4d). The pro-
tein expression levels of GYPC, NME1 and SLIT2 were 
further validated. Immunofluorescence staining showed 
that NME1 protein expression was increased in S30 cells 
compared with normal BEAS-2B cells, while GYPC and 
SLIT2 expression was decreased (Fig.  4e–g). Western 
Blot analysis further confirmed the downregulation of 
GYPC and SLIT2 and the upregulation of NME1in ciga-
rette smoke-exposed S30 cells compared with unexposed 
BEAS-2B cells (Fig. 4h).

http://cancergenome.nih.gov/
http://cancergenome.nih.gov/
http://www.ncbi.nlm.nih.gov/geo/
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Fig. 1  Workflow for identification of smoking-related genes in malignant transformation cells and LUAD. LUAD lung adenocarcinoma
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Fig. 2  Identification of smoking-related genes in lung cancer. a A volcano plot was generated to visualize the distribution of DEGs. b Counts of 
upregulated or downregulated mRNAs. Volcano plots were generated to visualize the distribution of DEGs between LUAD tissues and adjacent 
normal tissues from different study cohorts, including GSE27262 (c), GSE19804 (d), GSE19188 (e) and GSE76760 (f). The X-axis of volcano plot 
indicates the fold change (FC, log-scaled), whereas the Y-axis shows the p-values (log-scaled). Each dot represents a different gene, and the red/
green color of the dots categorizes the up-regulated/down-regulated genes under the filtering condition. g Heatmap of DEGs derived from 
integrated analysis. Each column represents one dataset and each row represents one gene; the gradual color ranged from green to red represents 
the changing process from down-regulation to up-regulation. h Venn diagram showing the overlap of identified DEGs from GEO datasets and 
cigarette smoke-induced malignant-transformation-cell model
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Association of mRNA expression with pathological 
characteristics
We further investigated the association between the 
expression levels of the three genes (NME1, SLIT2 and 
GYPC) and pathological features (Table  2). For inva-
sion depth, the expression levels of GYPC and SLIT2 
were significantly decreased in LUAD tissues at the T2 
stage compared with T1 stage tissues, while the expres-
sion level of NME1 significantly increased. When lymph 
node metastasis was considered, the mRNA expression 
level of NME1 was greater in N1 and N2 vs. N0. Besides, 
the mRNA expression level of NME1 was upregulated in 
TNM stage III vs. stage I. It is worth mentioning that the 
expression levels of GYPC and NME1 were significantly 
different between males and females, and NME1 and 
SLIT2 were substantially different between elder patients 
( ≥ 60 years old) and patients aged less than 60 years old.

Gene Ontology enrichment analysis
Based on the UALCAN online tool, a total of 1182, 1771 
and 1822 genes significantly correlated with GYPC, 
NME1 and SLIT2 were extracted respectively. Gene 
ontology enrichment analysis was performed to demon-
strate the potential biological functions of these related 
genes using DAVID. The results showed that these three 
genes were functionally associated with several critical 
biological processes. For GYPC, the genes co-expressed 
with it were remarkably enriched in apoptotic signal-
ing pathway and extracellular matrix organization, as 
well as cell adhesion Fig. 5a). When NME1 was consid-
ered, the related genes were found to be enriched in cell 
proliferation, DNA repair and cell cycle, as well as Wnt 
signaling pathway Fig. 5d). Besides, the genes correlated 
with SLIT2 were significantly associated with extracel-
lular matrix organization, JAK-STAT cascade, and cell 
adhesion Fig. 5g). In addition, GSEA enrichment analysis 
confirmed the three genes signatures, including calcium 
mediated signaling and regulation of cell-cell adhesion 
for GYPC Fig. 5b, c), RNA catabolic process and regula-
tion of cell cycle phase transition for NME1 Fig. 5e, f ), as 
well as cell matrix adhesion and TGF-β receptor signaling 
pathway for SLIT2 Fig. 5h, i).

KEGG pathway enrichment analysis
To better illustrate the functional role of these three 
genes in lung cancer, KEGG pathway analysis was per-
formed for the related genes using DAVID online tool. 
The results showed that these three genes were involved 
in multiple pathways in lung cancer. When consider-
ing GYPC, the related genes were involved in JAK-
STAT, PI3K-Akt, and Ras/Rap1 signaling pathways, 
as well as focal adhesion and cell adhesion molecules 

(Fig.  6a). Besides, genes related to NME1 were found 
to be enriched in base excision repair, mismatch repair, 
and cell cycle (Fig. 6d). Similarly, the SLIT2 related genes 
were significantly associated with TGF-β receptor, VEGF, 
MAPK and JAK-STAT signaling pathways, as well as lung 
small lung cancer and focal adhesion (Fig.  6g). The fur-
ther GSEA enrichment confirmed these pathway signa-
tures of GYPC (Fig. 6b, c), NME1 (Fig. 6e, f ), and SLIT2 
(Fig. 6h, i).

Survival analysis
A total of 7 data cohorts, including 1221 LUAD patients, 
were used to establish univariate Cox models. The uni-
variate Cox model analyses of TCGA dataset suggested 
that higher GYPC expression has a favorite prognosis 
(HR  <  1, p  <  0.05) (Fig.  7a); The analysis in GSE13213 
and GSE30219 datasets revealed that higher NME1 
expression was a risk factor for LUAD patients prognosis 
(HR  <  1, p  <  0.05) (Fig.  7b). In addition, the analysis in 
GSE13213 and GSE41271 indicated that increased SLIT2 
expression is associated with a better prognosis (HR < 1, 
p < 0.05) (Fig. 7c). The KM survival analysis is consistent 
with the univariate Cox analysis (Fig. 8).

Gene dysregulation is mediated by methylation and gene 
amplification in lung cancer
To understand possible regulation mechanisms of dys-
regulation of these three genes, we analyzed the public 
multi-omics datasets in the TCGA database. Based on 
the UALCAN online tool, the promoter regions of GYPC 
and SLIT2 were found hyper-methylated significantly, 
as well as the NME1 promoter was hypo-methylated 
(Fig. 9a–c). Also, further person correlation analysis sug-
gested that these three genes mRNA expression levels 
were remarkedly negatively correlated with promoter 
methylation levels (r = − 0.455, − 0.208 and − 0.263, all 
p < 0.001, Fig.  9d–f). Besides, the up-regulated NME1 
expression was found significantly positively associated 
with increased gene amplification (r = 0.349, p < 0.001, 
Fig.  10b, e). Unexpectedly, the expression of GYPC was 
found negatively correlated to gene amplification (r = 
−0.147, p < 0.001, Fig. 10a, d). However, there is no sig-
nificant correlation between SLIT2 expression and gene 
amplification (r = −0.010, p = 0.822, (Fig. 10c, f ).

Discussion
Cigarette smoking is the primary risk factor for lung can-
cer development, and it is a significant contributor to 
the morbidity and mortality of LUAD patients [10, 11]. 
Recent studies have shown that histologically similar lung 
tumors have different molecular mechanisms of carcino-
genesis because of different smoking status [12]. Thus, 
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the mechanism of lung cancer in smokers and non-smok-
ers needs to be assessed differently.

With the rapid development of sequencing and data 
analysis technologies, some essential genes related to 
LUAD have been identified through bioinformatics analy-
sis. For example, SPP1 has been identified as a prognostic 
biomarker in four LUAD datasets in the GEO database, 
which was also validated by the TCGA database [13]. Fan 
et al suggested 12 significant biomarkers that could dis-
tinguish lung cancer patients with different risks from 
the GEO database [14]. Gan et al identified the aberrantly 
expressed miR-375 gene involved in LUAD through the 
comparison of miRNA expression profiles in cancer-
ous tissues based on the analysis and validation from 
TCGA and GEO datasets and published studies[15]. In 
the present study, three smoking-related signature genes, 
namely GYPC, NME1 and SLIT2, were identified by an 
integrated analysis on the LUAD datasets in the GEO 
database and the high throughput sequencing data of cig-
arette smoke-induced malignant transformed BEAS-2B 
cells. In particular, NME1 was reported increased by cig-
arette smoking in oral squamous cell carcinoma (OSCC) 
[16], and the lower expression of SLIT2 were found in the 
lungs of cigarette smoke-induced emphysema mice [17].

Glycophorin C (GYPC) is an integral membrane glyco-
protein. A recent study suggested GYPC can be used as 
a biomarker of breast cancer [18]. Increased GYPC gene 
expression was also reported to correlate with a worse 
outcome in childhood acute lymphoblastic leukemia 
[19]. However, there is limited evidence for the function 
of GYPC in the majority of solid tumors, especially in 
lung cancer. Our present study suggested that increased 
expression of GYPC was associated with a favorable out-
come in LUAD patients. GSEA enrichment analysis indi-
cated that GYPC was significantly associated with the 
JAK/STAT and cell adhesion signaling pathways which 
are essential to lung cancer progression and migration.

The NME/NM23 nucleoside diphosphate kinase 1 
(NM23-H1, NME1) is a metastasis-associated gene the 
expression of which was correlated with various tumors. 
The expression level of NME1 was found to be inversely 
proportional to the metastasis potential of several can-
cers, including breast cancer [20], gastric cancer [21], 
melanoma [22] and colon adenocarcinoma [23]. These 
results indicate that NME1 may act as a metastasis sup-
pressor in these tumors. More importantly, elevated 
expression of NME1 has a better prognosis outcome in 
patients with breast cancer [24] and melanoma [25]. 
Instead, higher NME1 expression was significantly asso-
ciated with poor prognosis in patients with neuroblas-
toma [26] and osteosarcoma [27], as well as cervical 
cancer [28]. In this study, increased mRNA expression 
of NME1 was found to be related to LUAD invasion 

depth and lymph node metastasis. It is noteworthy that 
decreased expression of NME1 was associated with an 
improved prognosis in LUAD patients. Studies have 
shown that lymphatic metastasis is directly associated 
with distant recurrence and poor overall survival (OS) 
in non-small cell lung cancer patients [29]. We further 
found that NME1 was involved in the cell cycle pathway, 
and the defect of cell cycle regulation has been reported 
to contribute to uncontrolled cancer cell proliferation 
[30]. Thus, we suggested that NME1 plays a different role 
in LUAD than many other cancers, and it may serve as a 
potential biomarker for LUAD.

SLIT2, a secreted glycoprotein of the SLIT family 
[31], is involved in the epithelial-mesenchymal transi-
tion (EMT) process [32], which permits cancer cells to 
acquire migratory, invasive, and stem-like properties [33]. 
The knockdown of the SLIT2 gene promoted the growth 
of gastric cancer cells and metastasis through activation 
of the AKT/β-catenin-mediated signaling pathway [34]. 
Another study demonstrated that decreased expres-
sion of SLIT2 is associated with a poor prognosis and 
brain-specific metastasis in breast cancer patients [35]. 
The results in the present study showed that SLIT2 was 
down-regulated in cigarette smoke-exposed cells and 
LUAD, and increased expression of SLIT2 was associated 
with a better outcome in LUAD patients. Furthermore, 
SLIT2 was significantly enriched in the TGF-β signal-
ing and focal adhesion pathways by enrichment analysis. 
Since both signaling pathways contribute to EMT activa-
tion, we suggested that SLIT2 might serve as a potential 
tumor metastasis indicator.

The study of epigenetics provides an important clue 
for understanding the genesis and development of lung 
cancer [36]. Recent studies suggested that during the 
genesis of lung cancer, the promoter methylation lev-
els of genes associated with multiple cellular func-
tions are increased [37]. Our analysis determined that 
these genes expression levels were significantly nega-
tively correlated with the promoter methylation status, 
which indicated that they may be gnomically regulated 
by DNA methylation. Besides, we analyzed the correla-
tion between gene expression levels and copy numbers, 
which is another regulation mechanism at genome level. 
Copy number variation (CNV) is generally considered 
to be any genomic alteration greater than 50 base pairs 
in length [38], and it has been shown to play an essential 
role in human cancer. The loss of tumor suppressor genes 
and the gain of proto-oncogenes can contribute to can-
cer development [39, 40]. In this study, only NME1 was 
found to have a significant positive correlation among 
expression and copy numbers, indicating that NME1 was 
regulated not only by promoter methylation, but by copy 
numbers.
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Conclusions
In conclusion, our results indicated that GYPC, NME1 
and SLIT2 may play a vital role in the development of 
smoking-related LUAD, which will be helpful in pre-
dicting the prognosis of LUAD patients. Mechanically, 
these three genes may be regulated by DNA methylation. 
Further in  vitro and in  vivo studies are needed to gain 
insights into the underlying molecular mechanisms of 
these three genes in LUAD.

Methods
BEAS‑2B cell culture and cigarette smoke exposure
Human bronchial epithelial cells (BEAS-2B) and human 
LUAD cell lines (PC9, A549, H1975 and H1299) were 
purchased from the American Type Culture Collection 
(ATCC, USA). They were maintained in basal LHC-8 
nutrient medium (Thermo Fisher Scientific, Waltham, 
MA, USA) or Dulbecco’s Modified Eagle Medium 
(DMEM, Invitrogen, MA, USA) in an incubator main-
taining at 37  °C and humidified atmosphere of 5% CO2 . 
The in vitro model for malignant transformation was 
established by exposing BEAS-2B cells to cigarette smoke 
continuously for 5, 10, 20 and 30 passages (S5, S10, S20 
and S30, separately), and this has been described in detail 
previously [41, 42].

RNA isolation and high‑throughput sequencing
Total RNA was isolated from normal BEAS-2B and S30 
cells with TRIzol RNA isolation reagent (Invitrogen, MA, 
USA) according to the manufacturer’s protocol. Three 
biological replicates per group were used for mRNA 
sequencing analysis. A total of 1.5 µ g RNA per sam-
ple was used as input material for the RNA library con-
struction. The mRNA sequencing procedure has been 
described in detail in our previous article, and the raw 
data has been deposited in the Sequence Read Archive 
(SRA) database (https​://trace​.ncbi.nlm.nih.gov/Trace​s/
sra/) with identifier SRP181756 [43]. Genes were com-
puted by summing the fragments per kilo-base of exon 
per million fragments mapped (FPKM) of transcripts in 
each gene group.

Human database extraction
Four datasets, GSE27262 [44], GSE19188 [45], GSE76760 
[46] and GSE19804 [47], were downloaded from the 
Gene Expression Omnibus (GEO) database for differen-
tial expression analysis (Additional file  1: Table  S1). All 
datasets met the following two criteria: (1) tissue sam-
ples obtained from human LUAD and adjacent normal 
tissues; and (2) each set included at least 50 samples. 
An additional six other datasets with survival informa-
tion were downloaded for survival analysis (Additional 

file 1: Table S1). In these datasets, only LUAD and nor-
mal samples were retrieved and analyzed. The RNA-seq 
by the expected maximization (RSEM) data and the cor-
responding clinical information of LUAD in The Can-
cer Gene Atlas (TCGA) database were obtained from 
Xena (https​://xena.ucsc.edu). The RSEM gene expres-
sion measurements for LUAD cases were transformed by 
using log2 (RSEM + 1).

Differential expression and integration analysis
For our RNA sequencing data, differential expression 
analysis of normal BEAS-2B and S30 cells was per-
formed using the “DESeq2” R package [48]. For GEO and 
TCGA datasets, the “Limma” package was subsequently 
employed for identifying differentially expressed genes 
(DEGs) in each dataset [49]. |log2FC| > 1 and a p-value 
< 0.05 were considered statistically significant for the 
DEGs. Gene integration for the DEGs identified from 
the four datasets was conducted using another R package 
“RobustRankAggreg” [50]. The expression levels of inte-
grated genes in four GEO datasets were visualized with 
the R package “pheatmap” (https​://cran.r-proje​ct.org/
web/packa​ges/pheat​map/index​.html). Furthermore, a 
Venn diagram was generated by the “VennDiagram” R 
package (https​://cran.r-proje​ct.org/web/packa​ges/VennD​
iagra​m/index​.html) to visualize the genes with the con-
sistent change in S30 cells and LUAD samples.

Real‑time quantitative PCR
The total RNA of cells (including Beas-2B, S5, S10, S20 
and S30 cells, as well as 4 LUAD cell lines) was isolated 
using TRIzol reagent (Invitrogen, MA, USA) according 
to the manufacturer’s protocol. A total amount of 1.5 µ g 
of total RNA from each sample was reversely transcribed 
into complementary DNA (cDNA) using Revert Aid First 
Strand Complementary DNA Synthesis Kit (Thermo 
Fisher Scientific, Waltham, MA, USA) according to the 
manufacturer’s instructions. Quantitative PCR (qPCR) 
was performed using NovoScript®SYBR Two-Step qRT-
PCR Kit (novoprotein, China) on QuantStudioTM 6 Flex 
qRT-PCR system (Applied Biosystems, Foster City, CA, 
USA). GAPDH was used as a reference. The primer pairs 
used for qPCR in this study were listed in Table 3.

Immunofluorescence analysis
The S30 and unexposed BEAS-2B cells were fixed in PBS 
containing 4.0% paraformaldehyde without methanol. 
The cells were washed and permeabilized with 0.2% Tri-
ton X-100 and blocked with 5% goat serum for 1 hour at 
room temperature. Diluted antibodies for human NME1 
(11086-2-AP, Proteintech, Chicago, IL, USA), SLIT2 
(20217-1-AP, Proteintech, Chicago, IL, USA) or GYPC 
(ab108619, Abcam, Cambridge, MA, USA) were added 

https://trace.ncbi.nlm.nih.gov/Traces/sra/
https://trace.ncbi.nlm.nih.gov/Traces/sra/
https://xena.ucsc.edu
https://cran.r-project.org/web/packages/pheatmap/index.html
https://cran.r-project.org/web/packages/pheatmap/index.html
https://cran.r-project.org/web/packages/VennDiagram/index.html
https://cran.r-project.org/web/packages/VennDiagram/index.html
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drop by drop and the slides were kept in a wet box at 4 °C 
overnight. Following incubated with FITC-conjugated 
goat anti-rabbit IgG for 1 hour at room temperature, the 

slides were washed, and the nuclei were counter-stained 
with 4,6-diamidino-2-phenylindole (DAPI). Photo-
graphs were taken and visualized using an FV1200MPE 

Fig. 3  Validation of the association between mRNA expressions with smoking history in GEO datasets. a GYPC, NME and SLIT2 expression levels 
were significantly different in smokers vs. non-smokers in GSE13213 dataset. b NME and SLIT2 expression levels were significantly different in 
smokers vs. non-smokers in GSE41271 dataset. b The three genes expression levels showed no significantly different in smokers vs. non-smokers in 
GSE41271 dataset

Table 1  Association of mRNA expression with LUAD patient tobacco smoking history in the TCGA database

1 = Lifelong Non-smokers (less than 100 cigarettes smoked in Lifetime), 2 = Current smokers (includes daily smokers and non-daily smokers or occasional smokers), 
3 = Current reformed smokers for >15 years (greater than 15 years), 4 = Current reformed smokers for ≤ 15 years (less than or equal to 15 years). Data represented 
are Mean ± SD, n depend on how many valid LUAD samples with corresponding factors. SD indicates standard deviation. *p < 0.05, versus Lifelong Non-smokers; 
**p < 0.01, versus Current smokers; #p < 0.05, versus Lifelong Non-smokers; ##p < 0.01, versus Current smokers

Smoking history Cases GYPC NME1 SLIT2
(N) (log2(RSEM+1)) (log2(RSEM+1)) (log2(RSEM+1))

1 75 8.64  ±  0.93 10.64  ±  0.98 7.85  ±  1.43

2 119 8.20  ±  1.00** 11.06  ±  0.70** 7.17  ±  1.53**

3 135 8.39  ±  0.82 10.62  ±  0.91## 7.69  ±  1.50##

4 168 8.47  ±  0.92# 10.99  ±  0.80** 7.54  ±  1.55#

(See figure on next page.)
Fig. 4  Validation of mRNA and protein expression levels of the three genes. The mRNA expression levels of GYPC (a), NME1 (b) and SLIT2 (c) in 
cigarette smoke-exposed cells. 2B, normal BEAS-2B cells serve as a control. S5 to S30, BEAS-2B cells exposed to cigarette smoke for different 
passages. d Heatmap of GYPC, NME1 and SLIT2 in BEAS-2B and four LUAD cell lines. Each column represents one cell line, and each row 
represents one gene; the gradual color ranged from blue to red represents the changing process from down-regulation to up-regulation. e 
Immunofluorescence staining of GYPC. f Immunofluorescence staining of NME1. g Immunofluorescence staining of SLIT2. h Western blotting 
results. S5 to S30, BEAS-2B cells exposed to cigarette smoke for different passages.*p < 0.05, versus normal BEAS-2B cells; **p < 0.01, versus normal 
BEAS-2B cells
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multiphoton laser scanning microscope (FV1200, 
OLYMPUS, Japan). The acquisition parameters were held 
constant for all the experiments.

Western blot analysis
Total protein was extracted with RIPA buffer, and 20 μg 
of extracted total proteins were separated on SDS-PAGE 
gel and transferred onto a PVDF membrane (Millipore, 
Billerica, MA). After blocking with 5% bovine serum 
album (BSA, solarbio, China), the membrane was incu-
bated at 4 °C overnight with various primary antibodies, 
including NME1, SLIT2 and GYPC. The HRP-labeled 
secondary antibody was used according to the host spe-
cies of the primary antibody. Western blots were devel-
oped using electrochemiluminescence (ECL) substrate 
and visualized using the GeneTools GBox (Syngene, 
Frederick, MD, USA) system. The intensity of each 
spot was quantified using NIH ImageJ software (NIH, 
Bethesda, MD, USA).

Analysis of patient smoking and pathological features
The mRNA expression levels of integrated genes in LUAD 
patients with different smoking histories were examined 
to identify the genes related to smoking. All samples in 
the TCGA LUAD and GEO datasets were divided into 
different groups according to the patient’s clinical fea-
tures, including gender, age and invasion depth, as well 
as the status of lymph node metastasis, distant metastasis 
and tumor-node-metastasis (TNM) stage to find an asso-
ciation with mRNA expression levels.

Enrichment analysis
To investigate the potential biological function of these 
three smoking-related genes, genes related to them were 
extracted from UALCAN (http://ualca​n.path.uab.edu/
index​.html) with the Pearson coefficient ≥ 0.3 [51]. Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway enrichment analysis were 
performed using the DAVID online tool (https​://david​

Table 2  Association of mRNA expression levels of GYPC, NME1 and SLIT2 with the pathological features

Note: The data was presented as in log2(x+1) transformed RSEM normalized count. LUAD, lung adenocarcinoma; TCGA: The Cancer Gene Atlas; TNM: tumor-node-
metastasis; stage RSEM: RNA seq by expectation-maximization. * p<0.05, versus the first group of the corresponding feature. ** p<0.01, versus the first group of the 
corresponding feature

Factor Case GYPC NME1 SLIT2

Gender

 Male 238 8.31 ± 0.91 10.95 ± 0.86 7.44 ± 1.57

 Female 277 8.52 ± 0.94* 10.80 ± 0.84* 7.63 ± 1.47

Age

 < 60 136 8.37 ± 0.99 11.00 ± 0.78 7.32 ± 1.61

 ≥60 360 8.45 ± 0.91 10.82 ± 0.88* 7.63 ± 1.48*

Invasion depth

 T1 169 8.63 ± 0.77 10.67 ± 0.88 7.89 ± 1.31

 T2 277 8.32 ± 0.99** 10.96 ± 0.76** 7.35 ± 1.57**

 T3 47 8.38 ± 0.92 10.97 ± 1.11 7.35 ± 1.69*

 T4 19 7.99 ± 0.87** 11.07 ± 0.98 7.34 ± 1.29

Lymph node metastasis

 N0 331 8.43 ± 0.95 10.78 ± 0.85 7.58 ± 1.55

 N1 96 8.43 ± 0.89 11.04  ±  0.85** 7.34 ± 1.46

 N2 74 8.27 ± 0.85 11.10 ± 0.81** 7.47 ± 1.44

 N3 2 8.46 ± 0.19 11.04 ± 1.07 6.76 ± 0.46

Distant metastasis

 M0 346 8.43 ± 0.92 10.95 ± 0.85 7.50 ± 1.48

 M1 25 8.06 ± 0.88 10.96 ± 0.91 7.66 ± 1.70

TNM stage

 I 275 8.46 ± 0.92 7.60 ± 1.49 10.78 ± 0.82

 II 122 8.47 ± 0.99 7.47 ± 1.59 10.87 ± 0.85

 III 84 8.30 ± 0.83 7.36 ± 1.41** 11.12 ± 0.89

 IV 26 8.17 ± 1.02 7.78 ± 1.78 10.92 ± 0.91

http://ualcan.path.uab.edu/index.html
http://ualcan.path.uab.edu/index.html
https://david.ncifcrf.gov/
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.ncifc​rf.gov/). Besides, the gene set enrichment analysis 
(GSEA, http://softw​are.broad​insti​tute.org/gsea/index​
.jsp)[52] was used to verify the biological processes and 
KEGG pathways related to these genes. For the GSEA 
parameters, “1000”, “gene_set”, “weighted”, and “Pear-
son” were selected as “Number of permutations”, “Per-
mutation type”, “Enrichment statistic”, and “Metric for 
ranking genes”, respectively.

Survival analysis
The univariate Cox regression models were used to 
calculate the hazard ratios (HRs) and the 95% confi-
dence intervals (CIs) based on GYPC, NME1 and SLIT2 
expression levels in LUAD patients in six GEO datasets 
(GSE13213, GSE26939, GSE30219, GSE41271, GSE42127 
and GSE14814) and the TCGA LUAD dataset. The Cox 
analysis was performed using the “survival” (https​://

Fig. 5  The GO enrichment results of GYPC, NME1 and SLIT2. aThe bubble chart shows the GO terms related to GYPC; GSEA used to validate 
the gene signatures of GYPC, including (b) calcium mediated signaling and c regulation of cell-cell adhesion. d The bubble chart shows the GO 
terms related to NME1; GSEA used to validate the gene signatures of NME1, including e RNA catabolic process and f regulation of cell cycle phase 
transition. g The bubble chart shows the GO terms related to SLIT2; GSEA used to validate the gene signatures of SLIT2, including (H) cell matrix 
adhesion and i TGF-β receptor signaling pathway

https://david.ncifcrf.gov/
http://software.broadinstitute.org/gsea/index.jsp
http://software.broadinstitute.org/gsea/index.jsp
https://cran.r-project.org/web/packages/survival/index.html
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cran.r-proje​ct.org/web/packa​ges/survi​val/index​.html) 
package, and the “survminer” (https​://githu​b.com/kassa​
mbara​/survm​iner) package was used to generate Kaplan-
Meier (KM) survival curves. All LUAD patients were 
divided into high and low expression groups according to 
the median values of mRNA expression level.

Copy number and methylation analysis
To further understand the regulatory mechanisms of 
these three genes, we used the multi-omics data in the 
TCGA database for further correlation analysis. The 
promoter methylation levels of these three genes in 
TCGA LUAD dataset were performed using UALCAN 

. Besides, the methylation and copy number variation 
(CNV) data in the TCGA LUAD dataset was obtained 
from LinkedOmics (http://www.linke​domic​s.orglo​gin.
php), and Pearson coefficient was calculated to dem-
onstrate the relationship between them and mRNA 
expression levels.

Statistical analysis
In this study, heat map, survival, and differential expres-
sion analyses were performed with the R software pack-
ages. Experimental data were analyzed using GraphPad 
Prism 7 (GraphPad Software Inc., La Jolla, CA, USA). 

Fig. 6  The KEGG enrichment results of GYPC, NME1 and SLIT2. aThe bubble chart shows the KEGG pathways related to GYPC; GSEA used to validate 
the gene signatures of GYPC, including b JAK-STAT signaling pathway and c cell molecular adhesion. d The bubble chart shows the KEGG pathways 
related to NME1; GSEA used to validate the gene signatures of NME1, including e cell cycle and f base excision repair. g The bubble chart shows the 
GO terms related to SLIT2; GSEA used to validate the gene signatures of SLIT2, including h focal adhesion and i TGF-β signaling pathway

https://cran.r-project.org/web/packages/survival/index.html
https://github.com/kassambara/survminer
https://github.com/kassambara/survminer
http://www.linkedomics.orglogin.php
http://www.linkedomics.orglogin.php
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Fig. 7  Forest plots based on univariate survival analysis in patients with LUAD. Univariate COX results of GYPC (a), NME1 (b) and SLIT2 (c) in patients 
with LUAD. LUAD lung adenocarcinoma, HR hazard ratio, CI confidence interval, TCGA​ The Cancer Genome Atlas

Fig. 8  Kaplan–Meier survival analysis of LUAD patients by GYPC, NME1 and SLIT2 expression in different datasets. a Kaplan–Meier survival curve of 
overall survival (OS) based on GYPC expression in TCGA-LUAD dataset; b Kaplan–Meier survival curve of OS based on NME1 expression in GSE13213 
dataset; c Kaplan–Meier survival curve of OS based on NME1 expression in GSE30219 dataset; d Kaplan–Meier survival curve of OS based on SLIT2 
expression in GSE13213 dataset; e Kaplan–Meier survival curve of OS based on SLIT2 expression in GSE41271 dataset
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Fig. 9  Correlation analysis between promoter methylation and mRNA expression levels in lung cancer. The promoter methylation levels of these 
three genes obtained from UALCAN online tool, including GYPC (a), NME1 (b), and SLIT2 (c). Pearson correlation analysis shows a significant positive 
correlation between gene expression and promoter methylation levels in LUAD, including GYPC (d), NME1 (e), and SLIT2 (f), the red line represents 
linear regression of data

Fig. 10  Correlation analysis between gene copy numbers and mRNA expression levels in lung cancer. Gene expression levels of GYPC (a), NME1 
(b), and SLIT2 (c) in LUAD tissues with different amplification states. Pearson correlation analysis shows a significant positive correlation between 
gene expression levels and copy numbers in LUAD, including GYPC (d), NME1 (e), and SLIT2 (f), the red line represents linear regression of data
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Data were reported as the mean ± standard deviation 
(SD) of three independent experiments. Data were ana-
lyzed using Student’s t-test to compare between two 
groups. p-values < 0.05 were considered significant.
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org/10.1186/s1296​7-020-02474​-x.
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