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Presence of a 34‑gene signature 
is a favorable prognostic marker in squamous 
non‑small cell lung carcinoma
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Abstract 

Background:  The tumor immune microenvironment is a heterogeneous entity. Gene expression analysis allows us to 
perform comprehensive immunoprofiling and may assist in dissecting the different components of the immune infil-
trate. As gene expression analysis also provides information regarding tumor cells, differences in interactions between 
the immune system and specific tumor characteristics can also be explored. This study aims to gain further insights in 
the composition of the tumor immune infiltrate and to correlate these components to histology and overall survival 
in non-small cell lung cancer (NSCLC).

Methods:  Archival tissues from 530 early stage, resected NSCLC patients with annotated tumor and patient charac-
teristics were analyzed using the NanoString nCounter Analysis system.

Results:  Unsupervised clustering of the samples was mainly driven by the overall level of inflammation, which was 
not correlated with survival in this patient set. Adenocarcinoma (AD) showed a significantly higher degree of immune 
infiltration compared to squamous cell carcinoma (SCC). A 34-gene signature, which did not correlate with the overall 
level of immune infiltration, was identified and showed an OS benefit in SCC. Strikingly, this benefit was not observed 
in AD. This difference in OS in SCC specifically was confirmed in two independent NSCLC cohorts. The highest correla-
tion between expression of the 34-gene signature and specific immune cell populations was observed for NK cells, 
but although a plausible mechanism for NK cell intervention in tumor growth could be established in SCC over AD, 
this could not be translated back to immunohistochemistry, which showed that NK cell infiltration is scarce irrespec-
tive of histology.

Conclusions:  These findings suggest that the ability of immune cell infiltration and the interaction between tumor 
and immune cells may be different between AD and SCC histology and that a subgroup of SCC tumors seems more 
susceptible to Natural Killer cell recognition and killing, whereas this may not occur in AD tumors. A highly sensitive 
technique like NanoString was able to detect this subgroup based on a 34-gene signature, but further research will be 
needed to assist in explaining the biological rationale of such low-level expression signatures.
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Background
In the last decades, it has become increasingly evident 
that the host immune system has an elaborate interac-
tion with tumor cells. The tumor microenvironment 
involves a whole range of immune cells together with a 
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wide spectrum of soluble chemokines and cytokines that 
regulate the infiltrating capacity and the effectiveness of 
the immune response [1, 2]. The tumor immune micro-
environment is a heterogeneous entity, although tumors 
are often broadly classified as inflamed or ‘hot’ vs. non-
inflamed or ‘cold’. Typically, inflamed or ‘hot’ tumors 
show an abundance of tumor-infiltrating lymphocytes 
(TILs), IFNγ-producing CD8+ T cells and high expres-
sion of the inhibitory immune checkpoint programmed 
death-ligand 1 (PD-L1) suggesting a pre-existing anti-
tumor immune response. In contrast, non-inflamed or 
‘cold’ tumors contain hardly any TILs and rarely express 
PD-L1 [3, 4]. As this is a practical approach, in reality, 
only a small fraction of tumors seems obviously cold or 
clearly hot, and the level of inflammation seems more 
like a spectrum.

Aside from TILs, numerous other immunosuppressive 
and immunostimulatory mechanisms play a role in the 
interaction of the immune system with tumor cells. Gene 
expression analysis allows us to perform comprehensive 
immunoprofiling and may assist in dissecting the differ-
ent components of the immune infiltrate. Investigating 
patterns of the separate components could lead to a bet-
ter understanding of the complex tumor-immune inter-
action. This is relevant as presence of inflammatory cells 
has shown prognostic benefit in non-small cell lung can-
cer (NSCLC) and other solid tumors probably as repre-
sentation of the immunostimulatory mechanism at work 
[5, 6]. On the other hand, myeloid-derived suppressor 
cells and T regulator cells have an immunosuppressive 
effect on cytotoxic T cells and have been associated with 
detrimental effects on the anti-tumor immune response 
[7]. As gene expression analysis also provides information 
regarding tumor cells, differences in interactions between 
the immune system and specific tumor characteristics 
can also be explored. Ultimately, this knowledge may lead 
towards a better understanding how the immune compo-
sition can be influenced for the patients’ benefit.

This study aims to gain further insights in the com-
position of the tumor immune infiltrate by nCounter 
(Nanostring) gene expression analysis and to correlate 
these components to histology and OS in a large cohort 
of previously untreated, resected early stage NSCLC 
samples.

Methods
Sample collection and patient cohort
The cohort included 641 formalin-fixed, paraffin-embed-
ded (FFPE) NSCLC samples derived from lung resec-
tions performed between 1990 and 2013 at one of four 
Dutch medical centers. Clinical data about gender, smok-
ing status, neo-adjuvant and adjuvant treatment, age at 
resection, type of resection, tumor stage, progression 

free survival (PFS) and overall survival (OS) were col-
lected. No data on treatment after relapse of disease was 
available. All tumors were histopathologically classified 
according the 2015 WHO classification system. TNM 
classification was redefined for resections that were done 
before 2010 according to the 7th lung cancer TNM clas-
sification and staging system [8]. Prior to analysis, the 
samples were de-identified. The Translational Research 
Board of the Netherlands Cancer Institute-Antoni van 
Leeuwenhoek hospital (NKI-AVL) approved the use of 
patient material in this study.

Mutation analysis and immunohistochemistry staining
Details on mutational analysis and immunohistochemi-
cal (IHC) staining for PD-L1 expression and CD8 infil-
tration was previously reported [9]. Double staining 
CD3 (yellow) followed by CD56 (purple) of whole slide 
sections prepared from FFPE resection specimens was 
performed on a Discovery Ultra autostainer. Slides were 
deparaffinised in the instrument and heat-induced anti-
gen retrieval was carried out using Cell Conditioning 1 
(CC1, Ventana Medical Systems) for 32 min at 95 °C. The 
CD3 was detected in the first sequence using clone SP7 
(1/100 dilution, 32 min at 37 °C, ThermoScientific). CD3 
bound antibody was visualized using Anti-Rabbit NP 
(Ventana Medical systems) for 12 min at 37 °C followed 
by Anti-NP AP (Ventana Medical systems) for 12  min 
at 37  °C, followed by the Discovery Yellow detection kit 
(Ventana Medical Systems). In the second sequence of 
the double staining procedure CD56 was detected using 
clone MRQ-42 (1:2000 dilution, 32  min at 37  °C, Cell 
Marque). CD56 was visualized using Anti-Rabbit HQ 
(Ventana Medical systems) for 12 min at 37 °C followed 
by Anti-HQ HRP (Ventana Medical systems) for 12 min 
at 37 °C, followed by the Discovery Purple Detection Kit 
(Ventana Medical Systems). Slides were counterstained 
with Hematoxylin and Bluing Reagent (Ventana Medical 
Systems).

Nanostring analysis
Gene expression analysis was performed using the 
NanoString nCounter Analysis system (NanoString) on 
80–200 ng RNA extracted from FFPE tissue samples. An 
input of 5*5 μm slides was used. The most tumor-dense 
area and tumor percentage was assessed by a patholo-
gist on the Hematoxylin and Eosin (H&E) staining and 
scraped off using a surgical blade. The RNA was isolated 
using the Roche “High pure RNA paraffin kit” (cat. No. 
3270289001) following manufacturers protocol. A cus-
tomized gene panel (version 0.3), including 531 targets 
including multiple genes of immunologic function and 
cancer biology and including 4 housekeeping genes was 
applied (Additional file  1). For 573 adequate RNA was 
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available for NanoString analysis. To assess the quality of 
these samples, levels of expression for positive controls 
and negative controls were retrieved for each sample 
(Additional file 2). For 18 samples (3.1%) the expression 
levels were too low and an additional 25 samples (4.4%) 
failed the NanoString QC, leaving 530 samples for further 
analysis, consisting of 275 adenocarcinomas (AD), 235 
squamous cell carcinomas (SCC) and 20 large cell car-
cinomas not otherwise specified (NSCLC NOS) (Addi-
tional file 3).

Gene expression and statistical analysis
All data analysis was performed in R (version 3.4.3) using 
CRAN and Bioconductor packages (Huber, Nature meth-
ods 2015). Differential gene expression between AD and 
SCC was assessed with Limma [10]. Heatmaps were 
generated with a custom version of ‘heatmap.2’ from 
the gplots package (https​://CRAN.R-proje​ct.org/packa​
ge=gplot​s). Kaplan–Meier plots were generated using 
the ‘survival’ package (https​://CRAN.R-proje​ct.org/packa​
ge=survi​val).

Validation cohorts
Normalized and clinical data were downloaded for two 
NSCLC datasets (GSE8894 and GSE14814) from NCBI’s 
GEO database [11, 12]. Z-scores were calculated by cen-
tering and scaling the expression data. Expression of 
the 34-gene signature was computed using the average 
expression (z-score) of the 34 genes for each sample. To 
define the ‘34-gene signature high’ and ‘34-gene signature 
low’ groups for survival analysis the same percentages as 
in the Nanostring nCounter discovery dataset were used.

RNA sequence read count data of lung squamous cell 
tumor samples (LUSC) from The Cancer Genome Atlas 
(TCGA) database were downloaded using TCGAbiolinks 
[13]. Stage I and II samples that were defined as ‘Pri-
mary solid Tumor’ were selected. Statistical analysis of 
the differential expression of genes was performed using 
DESeq2 [14].

Correlation of gene signature to immune cell types
To correlate expression of the 34-gene signature with 
specific immune cell types Microenvironment Cell 
Population (MCP)-counter was used [15]. To plot the 
MCP-counter output samples were ordered according 
to the expression of the 34-gene signature. Correlations 
between the 34-gene signature and MCP-counter out-
put was calculated using the ‘Pearson’ correlation.

Results
Gene expression analysis
In a cohort of 641 NSCLC archival tissue samples ade-
quate RNA could be isolated from 573 samples and 
these were sent for nCounter (Nanostring) analysis. 
Gene expression results were obtained for 530 (92.5%) 
samples. Despite the large range in age of the FFPE 
blocks, no association was observed between age of the 
FFPE blocks or hospital of origin with the QC results. 
All 530 samples were included in an unsupervised 
clustering analysis (Fig.  1a). Clear differences between 
the two main histological subtypes AD and SCC were 
observed (cluster 1). Differential gene expression 
analysis between AD and SCC showed the largest fold 
change for KRT5, KRT14, KRT17 and TP63 (Fig.  1b). 
These genes are known to be highly expressed in SCC 
and KRT5 and p63 IHC are important markers in diag-
nostics of lung cancer. Interestingly, TTF1—the most 
important diagnostic IHC marker for lung AD—was 
not able to differentiate between histological subtypes 
on the nCounter platform. Gene expression of TTF1 
was higher compared to the negative controls, but at an 
overall low expression and variance (Fig.  1c), suggest-
ing that protein expression of TTF1 as the most impor-
tant marker for adenocarcinoma of the lung may not be 
represented by high RNA levels. These findings show 
that the NanoString nCounter platform can be used to 
robustly perform gene expression analysis, even on old 
FFPE samples (> 20 years).

Fig. 1  Gene expression patterns in NSCLC. a Heatmap and clustering of all NSCLC samples (n = 530) and all genes analyzed using nCounter 
(NanoString). Top bar indicates the histology as assessed by pathology: green represents AD, yellow SCC and orange NSCLC NOS. Bar right of the 
heatmap show the correlation of each gene with the percentage of tumor cells (assessment by pathologist). Red indicates a positive correlation, 
blue a negative correlation. Grey boxes indicate the identified clusters that do not correlate with tumor cell percentages. b Volcano plot with 
the logfold change on the x-axis and FDR (−log10) on the y-axis. The 4 genes with the highest fold change are indicated. c Top 4 genes that 
best differentiate SCC from AD and TTF-1 expression that does not differentiate. Top bar indicates the histology as assessed by pathology: green 
represents AD, yellow SCC and orange NSCLC NOS. d Immune response genes show a negative correlation with the percentage of tumor cells in a 
sample as assessed by pathology. e Cell cycle related genes show a positive correlation with the percentage of tumor cells in a sample as assessed 
by pathology (cluster 2). f Immune response genes show a positive correlation with the percentage of CD8+ T cells in a sample as assessed by 
pathology

(See figure on next page.)

https://CRAN.R-project.org/package%3dgplots
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Immune infiltration is anti‑correlated with cell cycle related 
genes
Besides differences between histological subtype, the 
unsupervised clustering of the samples was mainly driven 
by the overall level of inflammation; the inflamed or 
‘hot’ samples vs. the non-inflamed or ‘cold’ samples. The 
expression of a subset of genes was negatively correlated 
with genes involved in inflammation (cluster 2). Gene 
Ontology analysis showed that the genes in cluster 2 
were highly enriched for cell cycle related genes (Fig. 1a, 
Additional file 1). As tumor cells tend to proliferate faster 
compared to stromal and/or most immune cells, this 
negative correlation between proliferation represented by 
cell cycle gene expression and the level of inflammation 
within samples might suggest a relation with the number 
of cancer cells and the number of immune cells within 
that same sample. Indeed, the percentage of tumor cells, 
based on H&E staining by a pathologist, correlated posi-
tively with the expression for cell cycle genes (R = 0.47) 
and correlated negatively with the expression of immune 
related genes in our cohort (R = − 0.57, Fig.  1d–e). 
Apparently, this occurs even though RNA from tumor 
samples was extracted from tumor-enriched areas des-
ignated on the H&E slide by a pathologist in order to 
increase tumor purity. In addition, these results suggest 
that not only the number of tumor cells, but also the 
number of immune cells is represented in the NanoString 
data and therefore allows for a quantitative measurement 
of the immune infiltration in these tumor samples. This 
was confirmed by an increasing expression of immune 
related genes per increasing number of CD8+ T cells in 
the tumor-enriched areas (Fig. 1f ).

Inflammation according to histological subtype
As a proxy to measure the level of ‘active’ inflammation in 
each sample as opposed to the quantified immune infil-
tration in general, we calculated the average expression 
of genes that are known to be involved in the response 
to immune signals (the ‘immune response genes’ as indi-
cated by NanoString), available in the dataset (Additional 
file  1). Next, we divided the cohort by histological sub-
type and tested for each sample whether the average 
expression of immune response genes was above the 
mean (‘hot’) or below the mean (‘cold’) of the dataset. 

The distribution of samples above the mean was 62% 
for AD versus only 37% for SCC histology (Fig.  2a, b). 
Based on our previous finding that the level of inflamma-
tion is negatively correlated with tumor cell percentage, 
a comparison between histologies was performed and 
confirmed our previous result for the ‘immune response 
gene’ expression as well: tumor cell percentage is signifi-
cantly higher in SCC (p < 0.001, Fig. 2c, d). These findings 
suggest that the ability of immune cell infiltration and/or 
the interaction between tumor and immune cells may be 
different between AD and SCC histology.

Associations between the level of inflammation and OS 
benefit has been contradictory for NSCLC in the past. 
No differences in survival were observed between ‘hot’ 
and ‘cold’ tumors in stage I/II samples for neither histolo-
gies in our cohort (p = 0.19 and 0.29, Fig. 2g).

Expression of a 34‑gene signature is a prognostic marker 
in SCC
In addition to the genes that correlated with immune 
infiltration, histology (cluster 1), and proliferation (clus-
ter 2), the unsupervised clustering of all samples using 
all genes revealed a third cluster of genes (cluster 3, 
Figs. 1and 3a). As opposed to the expression of the other 
immune genes, expression of cluster 3 did not correlate 
with tumor cell percentage. The expression of the 34-gene 
signature showed no association with PD-L1 expression 
and CD8 infiltration (Additional file 4). To check whether 
there is any clinical relevance in the expression of this set 
of genes, we performed a survival analysis on the stage I/
II samples, both for AD and SCC samples separately. In 
AD samples, no OS benefit was seen between 34-gene 
signature high (top 1/3) samples and 34-gene signature 
low (bottom 2/3) samples (p = 0.42, Fig. 3b). In contrast, 
a clear OS benefit was observed in SCC between 34-gene 
signature high (top 1/3) and low (bottom 2/3) samples 
(p = 0.012, Fig. 3c).

To validate these findings, we downloaded gene expres-
sion and associated clinical data from two publicly avail-
able NSCLC datasets [11, 12]. Since the expression 
levels of the genes that comprise the 34-gene signature 
were generally low, gene expression measured by RNA 
sequencing failed to provide accurate read count esti-
mates for the 34-gene signature as tested in the TCGA 

(See figure on next page.)
Fig. 2  Expression of immune response genes do not provide a survival difference in NSCLC. a Heatmap of immune response genes for AD and 
SCC ordered according to the average expression of the genes. Top bar indicates the histology as assessed by pathology: green represents AD, 
yellow SCC. b Waterfall plot of average expression of immune response related genes, both for AD (left panel) and SCC (right panel). Samples above 
the average are ‘hot’ tumors (red), the samples below ‘cold’ (blue). c Box plot for expression of the immune response related genes per histology. 
***p < 0.001. d Box plot for expression of CD8A per histology. ***p < 0.001. e Box plot for mean tumor cell percentages per histology. ***p < 0.001. f 
Bar graph of each tumor cell percentage group for both AD (green) and SCC (yellow) samples. g Kaplan–Meier plots with the probability of survival 
of ‘hot’ versus ‘cold’ tumors in stage I/II tumors, both for AD and SCC
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NSCLC dataset (Additional file  2). Therefore, we were 
confined to methods with a high sensitivity for gene 
measurement. Microarray data showed similar sensitivity 
as our nCounter NanoString panel together with positive 
correlations between the genes of the 34-gene signature 
(Additional file 2), providing independent datasets to val-
idate our findings.

In concordance with our large cohort of NSCLC sam-
ples, survival analysis on a dataset of 61 AD and 72 SCC 
samples (GSE8894) showed benefit in recurrence free 
survival (RFS) between samples with high expression 
(top 1/3) of the 34-gene signature and low expression 
(bottom 2/3) in SCC (p = 0.032), but not in AD (p = 0.47, 
Fig. 3d). In the second dataset with 71 AD and 52 SCC 
samples (GSE14814), survival analysis showed improved 
OS for the samples with high 34-gene signature expres-
sion in SCC albeit not significant (p = 0.21). However, in 
AD the samples with high expression of the 34-gene sig-
nature showed a significant lower OS (p = 0.033, Fig. 3d).

Together, these datasets recurrently show a survival 
benefit in stage I/II SCC patients with high expression 
of the identified 34-gene expression signature. This, in 
contrast to AD patients where high expression of the 
34-gene signature is either not or negatively correlated 
with survival.

The 34‑gene expression signature correlates with NK cell 
related gene expression
Interestingly, there was no difference in the level of 
expression of the 34-gene signature between AD and SCC 
histology (p = 0.53, Fig. 3e). However, high expression of 
the 34-gene signature was only related to improved sur-
vival in SCC, suggests a difference in interaction between 
tumor and immune cells between the two histological 
subtypes.

To investigate the origin of this beneficial prognos-
tic signal in SCC, we correlated the expression of our 
34-gene signature with the presence of specific immune 
cell populations within the samples. Therefore, we 
applied MCP-counter on our datasets of 530 samples 
[15]. The highest correlation between expression of the 
34-gene signature and specific immune cell populations 
was observed for Natural Killer (NK) cells (R = 0.73, 
Fig. 4a). These finding were corroborated in the two inde-
pendent datasets with again the highest correlation of the 

NK cell population (GSE8894, R = 0.80 and GSE14814, 
R = 0.89, Fig. 4b and Additional file 5).

Although the expression level was comparable between 
histologies, but high expression of the 34-gene signature 
was only related to improved survival in SCC, this may 
suggest a difference in interaction between tumor and 
immune cells between the two histological subtypes. To 
further test whether the improved survival in SCC, but 
not in AD, even though expression level of the 34-gene 
signature was similar in both histologies, could indeed be 
explained by differences in the interface between tumor 
cells and immune microenvironment between both his-
tologies, we analyzed the dataset for cell surface genes 
and compared their expression between AD and SCC 
samples (Fig.  4c). Interestingly, one of the cell surface 
genes highly expressed in SCC but not in AD is ULBP2 
(FDR < 0.001, Fig.  4d), a marker for NK cell killing. 
Higher expression of ULBP2 in SCC was also observed 
in our validation datasets (GSE8894; FDR < 0.001 and 
GSE14814; FDR < 0.001, Fig. 4d). Also, high expression of 
ULBP2 was associated with lower expression of HLA-C, 
one of the genes encoding for major histocompatibility 
complex (MHC) class I molecules. Furthermore, expres-
sion of HLA-C was significantly lower in SCC compared 
to AD (Fig. 4e).

To further explore the possible role of NK cell killing in 
regard to the OS benefit in signature-high SCC opposed 
to signature-high AD, a double-staining of CD56 and 
CD3 was performed in a selection of samples. Signa-
ture-high and signature-low in both AD and SCC sam-
ples were evaluated. Overall, the infiltration of CD56+/
CD3− cells was scarce in SCC and only somewhat more 
frequent in AD, both irrespective of the expression level 
of the 34-gene signature. This difference between AD and 
SCC presumably matches the previously mentioned dif-
ference in tumor cell percentage and amount of immune 
infiltrate between histologies, which is overall more pro-
nounced in AD vs. SCC (Fig.  4f ). These findings might 
suggest that a subgroup of SCC tumors seems more sus-
ceptible to NK cell recognition and killing, whereas this 
may not occur in AD tumors.

Discussion
In our study, we performed gene expression analysis 
on a large cohort of early stage resected NSCLC sam-
ples. Unsupervised clustering of the samples was mainly 

Fig. 3  Gene expression cluster 3 is predictive of response in SCC but not in AD. a Zoom-in of cluster 3 of the heatmap from Fig. 1a. Samples are 
ordered on the average expression of the genes per subtype. b Kaplan–Meier plots of AD samples divided into high (top 1/3) and low (bottom 
2/3) expression of the 34-gene signature. c Kaplan–Meier plot of SCC samples divided into high (top 1/3) and low (bottom 2/3) expression of the 
34-gene signature. d Same analysis as in b and c in two independent validation sets (GSE8894 and GSE14814). e Boxplot of the expression level of 
the 34-gene signature in AD and SCC samples (p = 0.534)

(See figure on next page.)
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driven by the overall level of inflammation, which was 
not correlated with survival in this patient set. Expres-
sion of a 34-gene signature did not correlate with the 
general inflammation level. This signature provided an 
OS benefit in SCC, but not in AD. This finding was vali-
dated in two independent NSCLC cohorts. The signature 
showed the strongest association with NK cells based on 
gene expression profiling, but this could not be validated 
by IHC, which showed that NK cell infiltration is scarce 
irrespective of histology.

The expression level of the 34-gene signature was com-
parable in both histological subtypes, but had a different 
effect on OS. This histology-dependent OS benefit may 
suggest a difference in the interaction of the immune sys-
tem between AD and SCC NSCLC. To understand the 
biological foundation of the 34-gene signature, the selec-
tion of genes in the signature was compared to the gene 
profiles of eight immune cell populations as established 
by the MCP-counter method [15]. Our gene signature 
showed the strongest correlation with the gene profile of 
NK cells. NK cells have the unique property to revert to 
cell-killing induced without presentation of tumor spe-
cific antigens [16]. Production and release of granules, 
like perforin and granzyme B, cause lyses of the targeted 
cell [17]. Inhibition of NK cells occurs through activa-
tion of killer cell immunoglobulin-like receptors (KIRs) 
by recognition of MHC class I molecules on surround-
ing cells and thereby providing protection against auto-
immunity. One mechanism of tumor immune escape is 
downregulation of MHC class I on tumor cells in order 
to evade T cell recognition and killing [18]. However, 
this may render them vulnerable to NK cell attack. To 
strengthen the rationale for annotating our signature as 
possessing NK cell features, we sought for differences 
between the two histological subtypes in expression of 
tumor-related genes (as opposed to immune-related 
genes for which our NanoString panel was enriched). 
In our cohort, SCC samples showed a significant higher 
expression of the NK activation marker ULBP2 and lower 
expression of the MHC class I gene HLA-C compared to 
AD samples. This may suggest that tumor growth in SCC 
may be possible because of the tumor immune escape 
mechanism of evasions of T cell recognition, but that NK 
cell killing may successfully prevent this escape, eventu-
ally leading to improved OS. McGranahan et al. recently 

found that loss of heterozygosity of HLA (HLA LOH) 
seemed to be correlated to prior immune activation 
and to a higher mutational burden in treatment-naïve, 
resected NSCLC [19]. Even though McGranahan et  al. 
also found a higher overall level of inflammation in AD 
compared to SCC samples, SCC more often showed HLA 
LOH and this was associated with a higher expression of 
two different NK cell signatures from RNA sequencing 
data.

Unfortunately, there is no clearly validated method for 
establishing NK cell infiltration by IHC [20]. Because NK 
cells were defined as CD56+/CD3− in the MCP-counter 
method, we performed a double-staining with CD56 and 
CD3 on a selection of samples in this cohort, but very few 
infiltrating NK cells in either histology were seen [15]. It 
has been described that even at a low ratio NK cells are 
able to kill tumor cells due to their specific cytotoxic 
abilities [21]. As the presence of NK cells in the tumor 
microenvironment is scarce, it may be difficult to study 
the role of the innate immune system and NK cells in 
particular regarding tumor cell attack [22, 23]. Further-
more, by performing only a double-staining with CD56 
and CD3 acquiring a differentiating signal from addi-
tional subtypes of NK cells could have been missed; nor is 
it possible to establish the activity-level of these specific 
NK cells. Infiltration of tumors by NK cells has been pre-
viously linked to favorable outcome, although there are 
limited studies performed in NSCLC [24]. Villegas et al. 
found improved OS in early-stage SCC NSCLC when 
more NK cells were present in the tumor as assessed by 
CD57 staining [25].

However, the NanoString nCounter system used in 
this study and the microarray-based techniques used 
in both validation cohorts provide a higher sensitivity 
compared to standard RNA sequencing. This technique 
therefor allows discovery of immune gene expression 
that is present in very low abundance within the tumor 
microenvironment. Indeed, expression of most genes in 
the 34-gene signature was low, which precludes accurate 
measurement of the 34-gene signature in RNA sequenc-
ing data sets like TCGA and therefor precludes valida-
tion of the prognostic ability of the signature in these 
available cohorts. Backman et  al. found no correlation 
between IHC of the NK cell marker NKp46 and expres-
sion of the corresponding gene NCR1 measured by RNA 

(See figure on next page.)
Fig. 4  Allocation of the signature. a Heatmap of immune cell populations ordered according to expression of the 34-gene signature (cluster 3). b 
Correlation of the NK cell population as measured using MCP-counter in the two independent validation cohorts. Samples are ordered according 
to the 34-gene expression signature. c Volcano plot with the log-fold change on the x-axis and FDR (−log10) on the y-axis in AD and SCC for cell 
surface genes. d Boxplot for expression of ULBP2 in AD vs. SCC in our dataset and the two independent validation sets. ***p < 0.001. e Boxplot for 
expression of HLA-C in AD vs. SCC and boxplot with the expression of HLA-C in ULBP2 high vs ULBP2 low samples. *p < 0.05, ***p < 0.001. f Examples 
of a CD56+/CD3− NK cell in a 34-gene signature high SCC sample (a) and in a 34-gene signature low AD sample (b)
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sequencing in early-stage NSCLC, which they ascribed to 
low abundance of NK cells as well [26]. They also noticed 
that the expression of NK cell genes was not associated 
with the overall level of inflammation. This NK-enriched 
subgroup had low expression of T cell markers, low 
T cell activation and a low tumor mutational burden. 
Interestingly, the prognosis of this subgroup was similar 
to the inflamed subgroup, suggesting that not neoanti-
gen-driven T cell recruitment, but a different (immune) 
mechanism of containing tumor growth may be respon-
sible. Unlike our findings, this OS benefit was irrespec-
tive of histology.

Unfortunately, we were unable to provide solid evi-
dence for the annotation of the 34-signature. The signa-
ture seemed to have NK cell like features, but although 
a plausible mechanism for NK cell intervention in tumor 
growth could be established in SCC over AD, this could 
not be translated back to IHC or RNA sequencing data. 
Unfortunately, exploration of additional pathways or 
gene sets associated with the 34-gene signature was 
not possible due to the relatively small number of genes 
in our NanoString panel, which was highly enriched 
for immune genes specifically, and no additional RNA 
sequencing data of this cohort was available. Previ-
ous NK cell signatures were based on RNA sequencing, 
sorted cell or single cell RNA sequencing. Due to the low 
expression level of most genes in the 34-gene signature 
a formal comparison between signatures that use differ-
ent techniques seems futile. Maybe single cell sequenc-
ing using NanoString or microarray-based techniques 
may solve the remaining questions regarding the under-
lying mechanisms of scarce immune cells in the tumor 
microenvironment.

Conclusion
In conclusion, this study identified a subgroup of squa-
mous NSCLC with an OS benefit that seemed not related 
to infiltration of immune cells in general, suggesting that 
a different (immune) mechanism of containing tumor 
growth may be responsible. A highly sensitive technique 
like NanoString was able to detect this subgroup based 
on a 34-gene signature, but further research will be 
needed to assist in explaining the biological rationale of 
such low-level expression signatures.
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