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Abstract 

Background and objectives: In hepatocellular carcinoma (HCC) patients, microvascular invasion (MVI) is associated 
with worse outcomes regardless of treatment. No single reliable preoperative factor exists to predict MVI. The aim of 
the work described here was to develop a new MVI− based mRNA biomarker to differentiate between high and low 
risk patients.

Methods: Using The Cancer Genome Atlas (TCGA) database, we collected data from 315 HCC patients, including 
mRNA expression and complete clinical data. We generated a seven-mRNA signature to predict patient outcomes. 
The mRNA signature was validated using the GSE36376 cohort. Finally, we tested the formula in our own 53 HCC 
patients using qPCR for the seven mRNAs and analyzing the computed tomography (CT) features.

Results: This seven‐mRNA signature significantly correlated with length of recurrence-free survival (RFS) and overall 
survival (OS) for both the training and validation groups. RFS and OS were briefer in high risk versus low risk patients. 
A Kaplan–Meier analysis also indicated that survival time was significantly shortened in the high risk group versus the 
low risk group. Time-dependent receiver operating characteristic analysis demonstrated good predictive performance 
for the seven-mRNA signature. The mRNA signature also acts as an independent factor according to a Multivariate 
analysis. Our results are consistent with the seven-mRNA formula risk score.

Conclusion: Our research showed a novel seven-mRNA biomarker based on MVI predicting RFS and OS in HCC 
patients. This mRNA signature can stratify patients into subgroups based on their risk of recurrence to help guide 
individualized treatment and precision management in HCC.
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Background
Liver cancer, a highly aggressive form of cancer, is a lead-
ing cause of cancer-related deaths worldwide, includ-
ing China [1]. Hepatocellular carcinoma (HCC) makes 
up 90% of liver cancer cases. Although developments in 
medical oncology and surgery have revolutionized the 
treatment of HCC, the prognosis remains poor, with 
high recurrence. Recurrence occurs in a quarter of HCC 
patients after liver transplantation and in more than 

two-thirds of patients after hepatic resection within 5 
years post-remission [2]. Currently, no approved treat-
ment reduces the risk of recurrence, progression, or 
death. Thus, methods that can predict patient progno-
sis are urgently needed, so that effective therapeutic and 
management strategies can be designed for distinct sub-
sets of HCC patients.

The high recurrence of HCC is partly due to micro-
vascular invasion (MVI). MVI is characterized by tumor 
emboli in vessels, including veins, capillaries, and lym-
phatic spaces. Tumor cell dissemination is associated 
with poor outcomes. All the evidence and diagnosis of 
MVI is post-surgery, based on the histopathology of the 
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specimen. Thus, prior to surgery, very little is known 
about the diagnosis.

The prognostic scoring systems currently available 
to predict survival in HCC patients before resection or 
transplantation involve variables such as the tumor size 
and number, serum alpha-fetoprotein (AFP), and under-
lying liver disease [3–6]. These scoring systems make 
use of clinical information or international criterion, 
while ignoring the underlying conditions and inter-
nal changes. Patients who develop HCC usually have 
inflammation associated with fibrotic and cirrhotic liv-
ers, which is often accompanied by widespread lympho-
cyte infiltration in patients with chronic hepatitis. Thus, 
the surrounding tissue microenvironment likely has an 
important influence on HCC metastatic tendency. These 
scoring systems may help us understand MVI but the 
prognostic value of these systems is limited. Other sys-
tems incorporate morphology features to the advanced 
examinations, which is an improvement [7]. These sys-
tems also make use of qualified image analysis or Radi-
onics to determine which patients have a higher risk for 
recurrence. With the advancement of microarray and 
high-throughput technology, several studies have shown 
a significant relationship between gene expression pro-
files and signatures with survival and outcome of cancer 
patients, including HCC [8, 9]. Several research groups 
have focused on relating gene expression to imaging. 
The results of these studies offer more clues for predict-
ing MVI, but are not very clinically applicable. Therefore, 
more research is needed to improve and highlight the 
function of biomarkers.

The aim of this study was to establish the differential 
mRNA expression in MVI + HCC patients compared to 
MVI− patients. This differential mRNA expression pat-
tern can help physicians make more accurate diagnoses. 
Better diagnoses can lead to optimization of medical 
resources, such as limited organ supplies for transplanta-
tion, and improved treatment for the individual.

Materials and methods
Patients
After approval of the study by the Institutional Ethical 
Committee of the First Affiliated Hospital of Zhengzhou 
University, China, 53 patients were enrolled and writ-
ten informed consent was obtained for all patients. Liver 
cancer samples were collected from untreated patients 
between September 2017 and April 2018. A three-phase 
contrast-enhanced computed tomography examination 
was conducted in all patients. Under double-blind con-
ditions, two hepatobiliary radiologists with more than 10 
years’ experience reviewed and analyzed the CT image 
features independently. Discrepancies about image fea-
tures were resolved by consensus review.

Data research
Level 3 data from The Cancer Genome Atlas (TCGA) for 
315 patients with HCC were procured from the Cancer 
Genomics Browser from University of California Santa 
Cruz, including mRNA expression profiles and clinical 
information associated with these samples. Patients who 
satisfied the following criteria were used for the model 
development: (a) histologic diagnosis of HCC; (b) avail-
able microvascular invasion information, mRNA expres-
sion data, and comprehensive clinic pathological and 
follow-up information; and (c) recurrence-free survival 
(RFS) between 30 and 3000 days. Publicly available data 
were collected from TCGA. Thus, further authorization 
by the institutional ethics committee was unnecessary. 
GSE36376 was procured from Gene Expression Omnibus 
(GEO) for the validation group.

Construction of a risk‑score formula
Using the TCGA training set, a univariate Cox propor-
tional regression model comparing MVI+ and MVI− 
groups differential gene expression was used to identify 
potential mRNAs. The relationship of these identified 
mRNAs to RFS was then analyzed. A good method for 
regression analysis of high-dimensional data, the least 
absolute shrinkage and selection operator (LASSO) Cox 
regression algorithm, was implemented for the iden-
tification of prognostic genes. In addition, the log2 fold 
change and average expression levels were utilized for 
ranking potential candidates. A linear combination of 
selected genes weighted by their respective coefficients 
was designed to develop a patient risk score formula. Risk 
score = (expr Gene1 * coif Gene1) + (expr Gene2 * coif 
Gene2) + … + (expr Gene5 * coif Gene5).

Identical Ƀ-values were tested in the validation set. 
Survival curves of the risk scores were generated in the 
training and validation sets with a Kaplan–Meier sur-
vival analysis and a two-tailed log-rank test. Prognostic 
performance was determined using y calculated from the 
area under the curve (AUC) from the time-dependent 
receiver operating characteristic (ROC) analysis. Risk 
score accuracy for predicting RFS at 1, 3, and 5 years was 
determined. The independence of the predictive mRNA 
signature was determined using a multivariable Cox pro-
portional hazards regression analysis, where the depend-
ent variable was RFS and the mRNA signature and other 
clinical factors were covariables.

Statistical analysis
R language (Version 3.3.3) was utilized for all statisti-
cal analyses. The ‘survminer’, ‘survival’, and ‘survival 
ROC’ packages were utilized for the creation of survival 
curves and ROC curves. Differences in clinic pathological 
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features were assessed with the Student’s t test or Chi 
squared test. Statistical tests were two-tailed. P less than 
0.05 was considered significant.

Results
Determining the prognostic mRNA signature 
in the discovery group
The model was constructed from the TCGA data of 315 
HCC patients. Of the 315 patients, 209 were MVI− and 
106 MVI+. The mRNA expression data were compared. 
The logFC value was > 0.5, P < 0.01. A total of 341 differ-
ent genes were differentially expressed (Fig.  1a). A uni-
variable Cox proportional hazards regression analysis of 
the mRNA profiling data from the discovery group was 
conducted resulting in 59 mRNAs with P-values less 
than 0.05. A LASSO Cox regression model was utilized 
to identify the most prognostic genes. We obtained two 
constitute one is one standard error (SE) of the minimum 
criteria and minimum criteria [10]. Based on the simpli-
fied criteria, the lse model was used (Fig. 1b, c), resulting 

in 12 candidate genes. Genes were further filtered with 
a stepwise regression using a multivariable Cox propor-
tional hazards regression model. Seven genes (IM2A, 
STAG3, ADH1C, NEIL3, GULP1, PPAP2C, CKMT1B) 
were identified. Correlations among the seven genes in 
the TCGA cohorts were evaluated using a heatmap. The 
risk score was calculated using the expression levels of 
the seven genes and the corresponding Coif. The result-
ing risk-score formula was: risk score = + (CKMT1B*−0
.15788) + (PPAP2C*−0.06074) + (GULP1*0.111848) +  (N
EIL3*0.114841)) + (ADH1C *−0.10131)) + (STAG3*−0.1
9945) + (ITM2A*−0.3719).

Patients in the training cohort were categorized as high 
risk or low risk based on the optimum cutoff(−4.52432). 
The training cohort consisted of 87 high risk patients 
with 54 recurrences and 184 low risk patients with 53 
recurrences. High risk patients had worse outcomes 
compared to low risk patients (P < 0.0001; Fig.  2a), as 
determined by the Kaplan–Meier analysis. Notably, if 
the mRNA expression value was weighted by a negative 

Fig. 1 The different mRNA expression between MVI+ and MVI− in TCGA discovery group. a Univariate Cox regression analysis shows 341 genes 
significantly related to RFS. b A tenfold cross-validation for tuning parameter selection in the LASSO model. c The LASSO coefficient profiles for the 
associated genes
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coefficient in this formula, the gene was protective with 
low risk for recurrence; a positive coefficient signified 
that the gene was harmful to the prognosis. In the discov-
ery group, patients with low risk scores had a longer RFS 
time (median 572  days) compared to high risk patients 
(median 239 days). According to the heat map, the pro-
tective five mRNAs were increased in the low risk group, 
while the other two genes (NEIL3, GULP1) were down-
regulated (Fig. 2b). Thus, the risk-score formula stratified 
the HCC patients based on the RFS.

The prognostic performance of the seven mRNA sig-
nature was assessed with a time-dependent ROC curve 
analysis. AUC values for the RNA signature were 0.782, 
0.793, and 0.749 for predicting recurrence in the TCGA 
set at 1, 3, and 5 years (Additional file  1: Figure S1). AUC 
values exceeded 0.7 [11], indicating that our selection 

mRNA formula was suitable for predicting recurrence in 
HCC patients.

Prognostic value of the seven mRNA formula 
in the validation groups
To validate the seven mRNA risk score formula, we used 
GSE36376 containing 401 patients. Similar to the discov-
ery group, high risk patients had shorter recurrence times 
and worse outcomes than low risk patients (P = 0.00024). 
There were 97 high risk patients with 61 recurrences, 
whereas there were 304 low risk patients with 184 recur-
rences. The RFS time in low risk patients was longer 
compared to high risk patients (Fig.  2c, d). In addition, 
the five protective mRNAs increased in low risk patients; 
the opposite occurred in high risk patients. These results 
are consistent with the data from the discovery group. 

Fig. 2 Kaplan–Meier analysis of RFS of the formula in different groups. a Risk formula analysis in the TCGA set: The recurrence time in high and low 
risk groups were applied using the Kaplan–Meier analysis. b The distribution of the risk formula, patients’ status, and the expression heat map for the 
discovery set. c Risk formula analysis in the GEO set: Recurrence time in high and low risk groups based on the Kaplan–Meier analysis. d Distribution 
of the risk formula, patients’ status, and the expression heat map for the discovery set. e Risk formula analysis in the 53 patient set: Recurrence time 
in high and low risk groups based on the Kaplan–Meier analysis. f The distribution of the risk formula, patients’ status, and the expression heat map 
for the discovery set
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Thus, these seven mRNAs are risk factors for recurrence 
in HCC patients, supporting the risk prediction model.

The relationship between risk scores and clinical 
pathological factors
We conducted a set of predefined stratified analyses to 
identify whether the seven mRNAs have an independ-
ent predictive ability in the discovery and validation sets 
separately. A Cox multivariate regression analysis was 
performed with clinical characteristics, including age, 
gender, tumor stage, and WHO grade. The RFS probabili-
ties for high and low risk groups, visualized with Kaplan–
Meier plots (Additional file 1: Figure S2  and Figure S3), 
indicate that the mRNA signature is an independent fac-
tor for predicting RFS in HCC patients, both in the dis-
covery and validated sets (Table 1).

Evaluation of the formula with our 53 patient set
Fifty-three fresh liver cancer tissues were collected from 
patients (Table  2) without any treatment. Total mRNA 
was isolated using TRIzol reagent (Invitrogen, Waltham, 
MA). A PrimeScript RT Reagent Kit was used for reverse 
transcription of the isolated RNA (Takara Bio, Otsu, 
Shiga, Japan). Gene expression levels were quantified 
using qRT-PCR. In the 53 HCC patients, RFS was shorter 
in the 19 high risk patients versus the 34 low risk patients. 
In the high risk group, 18 patients had recurrences, 

while 15 low risk patients had recurrences. The low 
risk patients had longer RFS than high risk patients 
(617.5 days VS 413 days). In this patient group, the seven 
mRNA formula differentiated the high risk from low risk 
HCC patients, with respect to RFS (Fig. 2e, f ).

Imaging examination is widely used for assessing 
tumors. Therefore, for our patient group, we evaluated 
the association between imaging features and the mRNA 
signature. In previous research, we found that tumor 
dimension, non-smooth tumor margins, peritumoral 
enhancement, and TTPVI have the best ability to predict 
MVI in HCC [12]. Non-smooth tumor margins, peritu-
moral enhancement, and TTPVI are related to tumor 
size [13]. Therefore, we did not collect information about 
tumor size. After comparing the CT images, we found 
more “worrisome” features in high risk patients versus 
low risk patients (Fig.  3). Patients had high similarities 
between the imaging features and the mRNA formula 
(Fig. 4). In other words, the mRNA formula was consist-
ent with our radiology consensus.

Cancer-related death is the most important index for 
patients. Thus, we assessed the association of risk score 
with overall survival (OS) time. Data from the discovery 
group indicated that patients with low risk scores had 
longer OS times than patients with high risk scores. Mor-
tality rate in high risk patients was significantly elevated 
compared to low risk patients (Fig.  5), indicating that 

Table 1 Multivariable Cox regression analysis of RFS in HCC patients in the discovery, validation and our patient set

Charcateristic Multivariable analysis

Coef HR Lower 95 Upper 95 z P value

Discovery set (n = 271)

 Risk sore 1.0001 2.7186 2.1975 3.3633 9.2118 3.21E−20

 Age_ ≥ 65/, < 65 0.2566 1.2925 0.8791 1.9005 1.3048 0.1919

 Gender − 0.0778 0.9251 0.6121 1.398 − 0.3694 0.7118

 Neoplasm-histologic-grade − 0.1161 0.8903 0.6956 1.1394 − 0.9228 0.3561

 Pathologic_M 0.066 1.0683 0.863 1.3224 0.6071 0.5437

 Pathologic_N 0.1106 1.117 0.911 1.3695 1.0639 0.2873

 Pathologic_T 0.0183 1.0185 0.8327 1.2457 0.1785 0.8583

 Pathologic_stage 0.0231 1.0234 0.8378 1.2501 0.2268 0.8205

Validation set (n = 401)

 Riskscore 0.96 2.6117 1.5394 4.4308 3.5597 0.0004

 Age − 0.1479 0.8625 0.6456 1.1523 − 1.0007 0.317

 Gender − 0.1514 0.8595 0.6312 1.1703 − 0.9615 0.3363

 AJCC_T_stage 0.69193 1.9976 1.7208 2.3189 9.0928 9.66E−20

Our sets (n = 53)

 Risk.socre 1.4865 4.4217 2.0409 9.5799 3.7685 0.0002

 TNM.stag1ng − 0.1199 0.887 0.5506 1.429 − 0.4929 0.6221

 Gender 0.6561 1.9273 0.6694 5.5486 1.2161 0.2239

 Age 0.0031 1.0031 0.407 2.4722 0.0067 0.9946
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the seven-mRNA formula might play an important role 
in identifying patients with more risk of recurrence and 
worse outcomes. This formula showed the same effect in 
our 53 patient set. When patients were stratified accord-
ing to tumor grade, the seven-mRNA formula could pre-
dict the recurrence based on the risks. In other words, 
the formula has the ability to divide the HCC patients 
with respect to OS and RFS based on the MVI.

Discussion
Although diagnosis and management of HCC have 
advanced, the median patient survival time is less than 
8 months; HCC is still a highly malignant cancer [14]. 
Even if patients choose curative treatment, such as sur-
gical resection, liver transplantation, and local ablation, 
the frequent recurrence impedes successful outcome. For 
personalized patient management and elucidation of the 
biological features of recurrence, the development of a 

feasible and reliable signature that can predict high risk 
of recurrence is necessary. In our study, we developed 
and validated an mRNA formula which predicts recur-
rence. This is the first research based on mRNA to pre-
dict recurrence.

A risk score formula that can estimate HCC recurrence 
and prognosis has value in guiding the management of 
HCC. A risk score may help doctors identify candidates 
for liver transplantation and guide the design of clini-
cal therapies. For example, patients who have high risk 
scores may not be the best candidates for liver transplan-
tation compared to low risk patients, but may be candi-
dates for more aggressive treatments.

Cancer gene expression can reveal the etiology, prog-
nosis, and treatment response [15, 16]. With gene 
sequencing advancements, a large number of messenger 
RNAs (mRNA) have been explored in relation to can-
cer. Our study revealed that a seven mRNA signature 
(ITM2A, STAG3, ADH1C, NEIL3, GULP1, PPAP2C, 
CKMT1B) is associated with HCC recurrence. Patients 
with high mRNA signature based risk scores have shorter 
recurrence and OS times. The mRNAs in the predictive 
seven mRNA risk score shown below were also reported 
in other cancers. Risk score = + (CKMT1B*−0.15788) 
+ ( P PA P 2 C *− 0 . 0 6 0 7 4 ) )  +  ( G U L P 1 * 0 . 1 1 1 8 4 8 ) 
+(NEIL3*0.114841)) + (ADH1C *−0.10131)) + (STAG3
*−0.19945) + (ITM2A *−0.3719). CKMT1B is involved 
in breast cancer. However, in contrast to our study, high 
CKMT1B expression was associated with poor outcomes 
[17–20]. CKMT1B encodes for a protein responsible for 
transferring high energy phosphate from mitochondria 
to cytosolic creatine. Thus, the upregulated expression 
of CKMT1B may result in more energy for the grow-
ing tumor tissue. This gene is also a porin of the mito-
chondrial membrane pore and impacts apoptosis. More 
research is necessary to elucidate the role of CKMT1B 
in HCC. PPAP2C belongs to the phosphatidic acid phos-
phatase enzyme family responsible for regulating dephos-
phorylation of lipid phosphates [21, 22]. This gene is 
overexpressed in many cancers, including ovarian carci-
noma, lung cancer, and bladder, prostate cancers, as well 
as sarcomas. PPAP2C can regulate cell proliferation and 
may be an anticancer drug. This is consistent with our 
finding that this PPAP2C plays a protective role in HCC 
patients. GULP1 expression is significantly decreased 
in cancer tissue versus normal tissues and highly hyper-
methylated. Consistent with our data, GULP1 expres-
sion is associated with outcomes in ovarian cancer 
patients [23, 24]. Elevated expression of NEIL3 occurs in 
many human cancer cell types and tissues and is associ-
ated with primary malignant melanomas and metastasis 
[25–27]. NEIL3 may be a latent tumor suppressor gene 
for hepatocellular carcinoma [28]. This is consistent 

Table 2 Clinical characteristics of  patients in  the  53 
patients set

TTPVI = two-trait predictor of venous invasion: Internal arteries and hypodense 
halos

Demographics

Gender

 Male 45

 Female 8

Age

 Median (range) 50 (28–77)

Risk factors

 HBV+ 30

 HCV+ 8

 Alcohol 6

 Others 9

TNM stage

 I 15

 II 22

 IIIA 10

 IIIB 5

 IIIC 1

 MVI+ 28

 MVI− 25

Tumor features

 Nonsmooth tumor margin 32 + 21−
 Irregular circumferential peritumoral enhancement 23 + 30−
 TTPVI 34 + 19−

Events

 Recurrence 33

 Noreurrence 20

Deaths

 Median follow up(days) 784 (63–1865)

 RFS time(days) 454 (63–1597)
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with our risk formula. The ADH1C gene has two alleles 
(ADH1C*1 and ADH1C*2), which code for the γ1 and γ2 
enzyme subunits with different in  vitro kinetic proper-
ties. ADH1C is associated with susceptibility to oral can-
cer, and may have anti-oncogenic, proapoptotic effects. 
In addition, ADHIC may be involved in rapid metabo-
lism of ethanol and accumulation of acetaldehyde in 

tissue, resulting in increased cancer risk. We found that 
ADH1C may be protective in HCC. HCC is often associ-
ated with alcohol consumption; thus, ADH1C may have 
the same mechanism in HCC patients [29–31]. STAG3 
has a tumor suppression function in ovarian cancer. This 
is consistent with our finding. STAG3 is also associated 
with lymphoma, and colorectal and testicular cancers 

Fig. 3 The CT features between the high and low risk group in the 53 patients set: The red column displays the high risk group, while the green 
column displays the low risk group. a The nonsmooth tumor margins, b the peritumoral enhancement, and c TTPVI

Fig. 4 Computed tomography scan revealed the patients with different RFS. a peritumoral enhancement: recurrence 3.2 months, external portion 
enhancing in the arterial phase (arrows). b nonsmooth tumor margin positive: recurrence 4.5 months, focal extranodular extension (arrows) in the 
venous phase. c The two-trait algorithm predictive of MVI (TTPVI) positive: recurrence 2.8 months, blue arrows show internal artery and lower image 
means noncontinuous hypoattenuating halos
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[32, 33]. ITM2A is GATA3-related gene and has been 
reported as a downstream target in T-cell lymphoma. 
ITM2A also acts as a tumor suppressor of ovarian cancer 
via G2/M cell cycle arrest. According to our study, this 
gene is also protective in HCC [34–36].

This seven-mRNA risk formula was validated in three 
independent cohorts, including our fifty-three HCC 
patient set. Because imaging examination is popular in 
the clinical practice, we also compared our finding and 
the accepted MVI imaging feature; the results from this 
comparison are consistent concerning recurrence and 
OS. All the results showed that this mRNA signature is 
worthy to apply in clinical practice.

Fig. 5 Kaplan–Meier analysis of OS of the formula in different groups and stages. a Risk formula analysis in the TCGA set: The OS time in high and 
low risk groups based on the Kaplan–Meier analysis, b Kaplan–Meier curves obtained for TCGA set patient stages I and II. c Kaplan–Meier curves 
obtained for TCGA set patient stages III and IV. d Risk formula analysis in the GEO set: The OS time in high and low risk groups based on the Kaplan–
Meier analysis. e Kaplan–Meier curves obtained for GEO set patient stages I and II. f Kaplan–Meier curves obtained for GEO set patient stages III and 
IV. g Risk formula analysis in the 53 patient set: The OS time in high and low risk groups based on the Kaplan-Meier analysis, h Kaplan–Meier curves 
obtained for 53 patient stages I and II, i Kaplan–Meier curves obtained for 53 patient stages III and IV
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Conclusion
This seven-mRNA risk formula is an independent fac-
tor from other clinical traits for micro-vessel invasion. 
Therefore, the mRNA risk formula can be a predictor 
of HCC recurrence. In summary, our finding has tre-
mendous value in the diagnosis and treatment in HCC 
patients, especially in predicting the recurrence of MVI.
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