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Advanced bioinformatics rapidly 
identifies existing therapeutics for patients 
with coronavirus disease‑2019 (COVID‑19)
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Abstract 

Background:  The recent global pandemic has placed a high priority on identifying drugs to prevent or lessen clini-
cal infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), caused by Coronavirus disease-2019 
(COVID-19).

Methods:  We applied two computational approaches to identify potential therapeutics. First, we sought to identify 
existing FDA approved drugs that could block coronaviruses from entering cells by binding to ACE2 or TMPRSS2 using 
a high-throughput AI-based binding affinity prediction platform. Second, we sought to identify FDA approved drugs 
that could attenuate the gene expression patterns induced by coronaviruses, using our Disease Cancelling Technol-
ogy (DCT) platform.

Results:  Top results for ACE2 binding iincluded several ACE inhibitors, a beta-lactam antibiotic, two antiviral agents 
(Fosamprenavir and Emricasan) and glutathione. The platform also assessed specificity for ACE2 over ACE1, important 
for avoiding counterregulatory effects. Further studies are needed to weigh the benefit of blocking virus entry against 
potential counterregulatory effects and possible protective effects of ACE2. However, the data herein suggest readily 
available drugs that warrant experimental evaluation to assess potential benefit. DCT was run on an animal model 
of SARS-CoV, and ranked compounds by their ability to induce gene expression signals that counteract disease-
associated signals. Top hits included Vitamin E, ruxolitinib, and glutamine. Glutathione and its precursor glutamine 
were highly ranked by two independent methods, suggesting both warrant further investigation for potential benefit 
against SARS-CoV-2.

Conclusions:  While these findings are not yet ready for clinical translation, this report highlights the potential use of 
two bioinformatics technologies to rapidly discover existing therapeutic agents that warrant further investigation for 
established and emerging disease processes.
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Background
Coronaviruses are single-stranded, positive-sense, RNA 
viruses belonging to the Nidovirales order and have been 
divided into four broad groups (i.e., alpha, beta, gamma, 

delta) based initially on serology and later by phyloge-
netic clustering [1]. To date, seven human coronaviruses, 
restricted to the alpha and beta subgroups, have been 
identified with the first infection reported in 1967 and 
thought to be associated with mild, self-limited respira-
tory illness [2]. More recently, coronaviruses have been 
involved in 15–30% of upper respiratory tract infections 
annually with more severe clinical courses in neonates, 
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older individuals and immunosuppressed patients. In 
2002, an outbreak of severe acute respiratory syndrome 
(SARS) in Guangdong China was traced to SARS-CoV, a 
new beta-coronavirus. During this outbreak nearly 8100 
patients were diagnosed with an overall mortality of 9%, 
which increased to 50% in patients over 60 years of age 
[3]. The disease was thought to have originated from 
infected bats and was easily contained as transmission 
appeared to require direct contact with infected indi-
viduals. A distinct group 2c b-coronavirus, genetically 
related to bat coronaviruses, was responsible for another 
outbreak in Saudi Arabia in 2012 and the disease was 
termed Middle East Respiratory Syndrome (MERS). This 
virus was associated with an initial 50% mortality but did 
not spread appreciably outside the region [4]. An out-
break of an unknown respiratory illness in Wuhan China 
was reported in late December of 2019 and the causa-
tive agent was identified as SARS coronavirus (SARS-
CoV-2) and the disease was called coronavirus disease 
2019 (COVID-19) [5]. The disease has rapidly become a 
global pandemic and a major priority has been placed on 
finding drugs that prevent or limit viral propagation and 
infection.

Coronaviruses share a large genome, around 30 kB, 
express large replicase genes encoding non-structural 
proteins involving approximately 20 kB of the genome, 
undergo early transcription of the replicase gene, contain 
a viral envelope, and utilize ribosomal frameshifting for 
non-structural gene expression [6]. The viral genome is 
composed of a 5′-cap structure with a leader sequence 
and untranslated region (UTR) composed of multiple 
stem loop structures needed for RNA replication [7]. The 
3′-end contains an UTR that has RNA structures neces-
sary for viral RNA synthesis as well as a 3′-poly(A) tail 
that mimics mRNA allowing translation of replicase-
encoded non-structural proteins. Transcriptional regu-
latory sequences (TRSs) are found at the 5′-end of most 
structural and accessory genes with most accessory genes 
being non-essential but modulating viral pathogenesis 
[8]. There are four main structural proteins, termed spike 
(S), membrane (M), envelope (E) and nucleocapsid (N). 
The S protein is about 150 kD and is responsible for the 
“spike” on the viral surface and trimeric S protein is used 
for viral attachment to cell entry receptors [9].

The life cycle of human coronaviruses begins with viral 
attachment via the S protein to cell entry receptors, typi-
cally peptidases. The SARS-CoV virus uses the angio-
tensin converting enzyme 2 (ACE2) as the main cellular 
receptor with the membrane serine protease, TMPRSS2, 
acting as an accessory protein to stabilize cell entry and 
cleavage of the S protein following viral fusion with the 
cell membrane [10, 11]. The virus enters and replicates 
within the cytoplasm starting with translation of the 

replicase gene and assembly of a viral replicase complex 
[12]. The complex and non-structural genes act to inhibit 
host cell translation while promoting host mRNA degra-
dation and enhancing viral RNA synthesis and replica-
tion [12]. The process results in genomic and subgenomic 
RNA generated via negative-strand intermediates and 
the S, E, and M structural proteins enter the endoplasmic 
reticulum (ER) and move into the ER-Golgi intermediate 
compartment where viral genomic progeny are encapsi-
dated by the N protein [13]. After assembly virions are 
transported to the cell surface and released by exocytosis. 
In some coronaviruses excess S protein can mediate cell 
fusion with neighboring cells, a process that may allow 
rapid viral transmission without detection by the host 
humoral immune response [14].

To accelerate pharma R&D across targets and disease 
areas, Immuneering developed Disease Cancelling Tech-
nology (DCT) to identify targets and drugs reversing 
disease gene expression and Fluency, a computational 
platform for large scale high throughput in silico screen-
ing. DCT quantifies similarity of genome-wide signatures 
of disease to signatures of drug induced gene expression 
changes using cosine similarity. Uniquely relative to other 
methods, DCT quantifies the per-gene contribution to 
overall disease amplification or cancellation and is not 
biased to any specific targets or pathways. Fluency pre-
dicts quantitative binding affinity purely from sequence. 
Unlike other methods, Fluency is a single universal quan-
titative structure–activity relationship (QSAR) model 
able to accept any molecule and protein sequence as 
input. When trained on the over 2 million IC50 values 
from Chembl, Fluency achieves near experimental level 
binding prediction accuracy as well generating predic-
tions on the binding site. We applied these platforms to 
determine if repurposing of existing drugs may be help-
ful in COVID-19 infection, by: (1) assessing established 
drugs for binding to ACE2 and TMPRSS2, two proteins 
used by the virus to enter cells and (2) Scanning FDA 
approved compounds for transcriptomic disease cancel-
lation of coronavirus associated gene expression changes.

Results
Given that the COVID-19 virus uses angiotensin con-
verting enzyme 2 (ACE2) as the main cellular recep-
tor to enter the cell, we ran two Fluency models with 
ACE2 as the target input. Two different Fluency mod-
els (“model a” and “model b”) were run to predict bind-
ing of ACE2 to all chemicals in the Selleckchem FDA 
approved drug library. Initial ranking by performance 
in model a is shown in Table 1, which included multi-
ple known ACE inhibitors scoring well (Enalaprilat, 
Ramipril, Lisinopril, Monopril, Captopril). Out of 
these drugs, Enalaprilat has the best binding score 
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from model a. Given reports of the possibility of ACE2 
induction being driven by ACE1 inhibition [15] and 
multiple subsequent reports hinting at benefit from 
ACE inhibition [16–19], we were interested to observe 
ACE2 specificity in comparison to ACE1. For top hits, 
the binding of ACE2 and ACE1 was compared by calcu-
lating the difference in predicted binding (ACE2 bind-
ing minus ACE1 binding) using two Fluency models 
(Table  1). According to model a, Brigatinib, Tirofiban 
Hydrochloride, and Aleuritic Acid are top ranked by 
pBind, and Brigatinib is also highest ranked by model 
a as specific for ACE2 over ACE1. Glutathione was 
ranked in 7th place by model a for being more specific 
to ACE2 over ACE1. Next, a consensus ranking using 
the results of both models a and b was used to select 
top ACE2 binders (Table  2). Enalaprilat, Tirofiban 
hydrochloride, and Sotagliflozin showed balanced per-
formance in both models. In order to assess specificity, 
fluency was run on top hits in reverse (predicting bind-
ing of a small molecule to the human proteome). By this 
metric, Ramipril, Piperacillin Sodium and Captopril 

had high ranking for ACE2 (Table  2). The worst score 
by far of top hits considered was R-406.

To explore other potential COVID-19 associated hits, 
we ran both Fluency models with TMPRSS2 as the tar-
get on the Selleckchem FDA approved drug library, and 
ranked hits based on performance in model a. Ombi-
tasvir, Elbasvir, and Capecitabine are the top predicted 
binding hits for TMPRSS2, and Cefotiam Hexetil Hydro-
chloride and Bictegravir are top 10 predicted hits by both 
models (Table 3). Interestingly, chloroquine diphosphate 
was predicted by model b to bind ACE2 with a pBind 
of 7.8 (ranked 290 out of the FDA approved drugs for 
predicted binding) and TMPRSS2 with a pBind of 7.5 
(ranked 210), while hydroxychloroquine sulfate was 
predicted by model b to bind ACE2 with a pBind of 7.9 
(rank 261) and TMPRSS2 with a pBind of 7.22 (rank 307) 
(results not shown).

In order to confirm or deny findings from Fluency, 
we applied a disease cancelling technology approach, 
searching for FDA approved drugs which reverse Coro-
navirus associated gene expression changes. Unlike 

Table 1  Top ranked fluency hits for binding to ACE2, ranked by pBind in model a

For each version of fluency run (models a and b), the predicted binding and rank is reported. A higher “pBind” signifies a higher binding affinity. The difference in 
pBind between ACE2 and ACE is reported in the last two columns, with larger values reflecting increased predicted binding specificity for ACE2 over ACE

Name pBind_a_rank pBind_a pBind_b_rank pBind_b pBind_a_ACE2-
pBind_a_ACE

pBind_b_ACE2-
pBind_b_ACE

Brigatinib 1 8.46 978 6.44 3.99 − 0.33

Tirofiban Hydrochloride 2 8.43 123 8.27 0.64 1.17

Aleuritic Acid 3 8.06 1129 6.25 0.28 − 0.06

Enalaprilat dihydrate 4 7.90 77 8.42 0.02 0.48

Ceritinib 5 7.88 1183 6.19 3.43 0.48

Monopril 6 7.84 233 7.98 0.04 0.56

Trandolapril 7 7.73 113 8.30 − 0.03 0.54

Lisinopril 8 7.72 172 8.15 − 0.29 − 0.02

Benazepril 9 7.61 653 6.89 0.81 − 0.56

Nateglinide 10 7.59 274 7.86 0.67 2.30

Captopril 11 7.54 253 7.91 0.05 0.31

Temocapril HCl 12 7.51 661 6.88 0.61 − 0.35

Benazepril hydrochloride 13 7.51 667 6.87 0.77 − 0.56

LCZ696 14 7.22 944 6.47 0.75 0.88

Fosamprenavir calcium salt 15 7.16 1443 5.95 − 0.30 − 0.02

Thioctic acid 16 6.90 772 6.70 0.96 1.02

Zofenopril calcium 17 6.90 974 6.45 0.76 0.09

Ramipril 18 6.85 155 8.20 − 0.45 0.21

Moexipril HCl 19 6.83 1360 6.02 − 0.04 − 1.12

Perindopril Erbumine 20 6.80 190 8.10 − 0.73 0.47

Edetate Trisodium 21 6.72 1191 6.18 − 0.13 − 0.09

Enalapril maleate 22 6.72 1313 6.07 − 0.38 − 0.58

Valbenazine tosylate 23 6.66 416 7.45 − 0.28 0.36

Glutathione 24 6.65 252 7.91 1.46 0.21

Icotinib 25 6.64 928 6.49 2.22 − 0.30
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Fluency, DCT was applied in a target and pathway agnos-
tic way, capturing the full gene expression change in a 
data driven way. Publicly available gene expression data 
were downloaded from GEO (GSE68820). Healthy mice 
(C57BL/6NJ) were infected with MA15 (mouse ver-
sion of SARS-CoV) [20]. Lung tissue was collected for 
gene expression analysis. A robust differential expres-
sion signal was detected between infected and unin-
fected mice at day 2 (Fig. 1a). Top differentially expressed 
genes included Irf7, Ifnb1, Apod, Ifit3, Lgals9, Tor3a, and 
Usp18. Multiple relevant pathways come up as significant 
(adj.pval < 3E−05) when performing GSEA-pre-ranked 
analysis, including influenza viral RNA transcription and 
replication, lymphocyte network, interferon signaling, 
Jak Stat signaling, and Graft vs Host disease. This disease 
signature was applied to Immuneering’s Disease Cancel-
ling Technology to identify drugs which could potentially 

cancel out MA15 associated gene expression. Out of the 
26,288 drugs tested, glutamine ranked 6th with a DCT 
cancellation score of − 0.0556337 with an adjusted p 
value < 1E−05 (Table  4). Genes changing in the oppo-
site direction between MA15 infection and glutamine 
treatment are plotted in Fig.  1b. Interestingly, Glu-
tamine is a precursor to Glutathione, which was ranked 
highly in Fluency results (Table  1). Thus, two orthogo-
nal approaches (neural networks and cosine distance) 
used on two different data types (binding prediction and 
gene expression) both arrived at the same potential hit 
(Glutamine/Glutathione). 

Discussion
First, we utilized an unbiased AI-based systems algo-
rithm to interrogate 2657 FDA approved or repurpos-
ing drugs for binding to ACE2, the main SARS-CoV-2 

Table 2  Top ranked fluency hits for binding to ACE2, based on a consensus ranking using the results of both models

For each version of fluency run (models a and b), the predicted binding and rank is reported. A higher “pBind” signifies a higher binding affinity. A lower “Reverse 
Fluency” rank signifies a higher predicted specificity to the intended target

Drug Name Highest 
similarity 
to known binder

pBind_a pBind_b pBind_a_rank pBind_b_rank Reverse Fluency 
Rank (out 
of 20,206)

Description

Enalaprilat 0.43 7.90 8.42 4 76 17 (0.084%) ACE inhibitor; antihyper-
tensive drug

Orlistat 0.25 6.11 8.43 42 72 43 (0.21%) Reversible inhibitor of 
lipases; obesity drug

Sotagliflozin 0.39 5.55 8.53 83 36 55 (0.27%) Inhibits sodium–glucose 
co-transporters; type I 
diabetes drug

Tirofiban hydrochloride 0.43 8.43 8.27 1 125 34 (0.17%) Reversible antagonist of 
fibrinogen binding to 
the GP IIb/IIIa receptor; 
blood thinner

Argatroban 0.54 5.99 8.40 45 83 80 (0.40%) Inhibiting thrombin-
catalyzed or induced 
reactions; blood thinner

Piperacillin sodium 0.54 5.51 8.44 88 67 7 (0.035%) Binds to specific penicillin-
binding proteins; 
antibacterial

Ramipril 0.47 6.85 8.20 17 159 3 (0.015%) ACE inhibitor; high blood 
pressure

Lisinopril 0.47 7.72 8.15 7 176 16 (0.08%) ACE inhibitor; high blood 
pressure

Monopril 0.47 7.84 7.98 6 240 174 (0.86%) ACE inhibitor; high blood 
pressure

Captopril 0.37 7.54 7.91 9 262 5 (0.025%) ACE inhibitor; high blood 
pressure

Nateglinide 0.70 7.59 7.86 8 284 69 (0.34%) Interacts with the ATP-
sensitive potassium 
(K + ATP) channel on 
pancreatic beta-cells; 
anti-diabetic

R-406 0.46 8.10 7.16 2 548 3735 (18.5%) Tyrosine-protein kinase 
SYK inhibitor

Emricasan 0.44 7.10 8.07 14 209 250 (1.24%) pan-caspase inhibitor
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human cell entry receptor. The rapid analysis of repur-
posing approved drugs for new indications allows for 
immediate access to potential agents that could be used 
for urgent emerging diseases, such as COVID-19. The 

ability to identify such drugs requires additional biologic 
validation through in  vitro studies confirming recep-
tor blockade and inhibition of SARS-CoV-2 cell entry 
and replication, and in vivo ideally through randomized, 

Table 3  Top ranked fluency hits from both models for binding to TMPRSS2

The “rank” column indicates the ranked position for a given model by binding prediction

Name Target pBind_a_rank pBind_a pBind_b_rank pBind_b

Ombitasvir HCV Protease 1 8.06705761 22 8.22662449

Elbasvir HCV Protease 2 7.96500254 682 6.57036352

Capecitabine DNA/RNA Synthesis 3 7.60813904 322 7.22963095

Daclatasvir Digydrochloride HCV Protease 4 7.49980402 86 7.91011429

Cefotiam Hexetil Hydrochloride Others 5 7.47669792 2 8.66041851

Benzathine penicilline Anti-infection 6 7.45924807 356 7.16500759

Betrixaban factor Xa(fXa) 7 7.42845345 297 7.29581976

ag-120-lvosidenib Dehydrogenase 8 7.36058712 91 7.89741182

Bictegravir Integrase 9 7.32781744 3 8.52594948

Bivalrudin Trifluoroacetate Thrombin 10 7.28658724 123 7.78075266

Apixaban Factor Xa 11 7.27066994 34 8.15546131

Daclatasvir HCV Protease 12 7.18292522 85 7.9114399

Atazanavir sulfate HIV Protease 13 7.11152267 16 8.25314713

Edoxaban Factor Xa 14 7.09891272 237 7.46054792

Betrixaban maleate factor Xa?(fXa) 15 6.96175146 154 7.69741154

Nafamostat mesylate Proteasome 16 6.9585948 166 7.64408255

Cilengitide trifluoroacetate Integrin 17 6.95002556 696 6.55277014

Ledipasvir HCV Protease 18 6.82781458 48 8.08298016

ARN-509 Adrenergic Receptor 19 6.76154852 76 7.95671558

Teicoplanin Anti-infection 20 6.75152779 480 6.89225483

Vorapaxar Protease-activated Receptor 21 6.67341661 152 7.69834948

BIBR-1048 Thrombin 22 6.66217518 87 7.9091177

Camostat Mesilate HCV Protease 23 6.65575886 75 7.96003532

Sulbutiamine Others 24 6.6378665 79 7.95064497

Desmopressin Acetate V2 receptors 25 6.61611748 319 7.23214531

Fig. 1  Glutamine is a top hit for cancelling out Coronavirus associated gene expression. a Gene expression changes associated with 2 days of MA15 
infection expression in mouse pulmonary epithelial cells. X axis is log fold change, Y axis is -log10 p value. b Genes driving Glutamine to be a top hit. 
Each dot is a gene. X axis represents t-statistic of gene expression changes associated with coronavirus model, y axis represents t-statistics of gene 
expression changes associated with glutamine
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controlled clinical trials. During a global pandemic, how-
ever, time may not allow for usual drug development 
processes and repurposing of commonly available drugs 
may be critical. Indeed, anecdotal reports of hydroxy-
chloroquine, azithromycin and anti-IL6 therapies have 
received attention [21, 22]. While hydroxychloroquine 
was predicted to bind to ACE2 by model b, supporting 
the anecdotal reports, we did not detect azithromycin 
or anti-IL-6 agents as these would not be anticipated to 
mediate therapeutic activity through ACE2 modulation. 
Further validation will be needed to determine if unbi-
ased AI-based systems approaches are superior to anec-
dotal observations.

In the binding prediction analysis, multiple known 
drugs were identified as potential ACE2 inhibitors 
(Table  1). Not surprisingly, twelve were ACE inhibitors. 
This adds some confirmation that the unbiased selec-
tion accurately identified drugs with high likelihood of 
receptor binding. ACE inhibitors are agents commonly 
used for the treatment of hypertension and heart failure. 
This family of drugs are based on various peptide com-
positions and were initially selected for binding to ACE1, 
which catalyzes the conversion of angiotensin I to angio-
tensin II, thereby blocking the renin-angiotensin system 
(RAS), lowering systemic blood pressure, increasing 
sodium excretion and increased renal water output. ACE 
inhibitors are not known to bind to ACE2, which lacks 
the carboxypeptidase activity of ACE1, but does contain 
a zinc-binding domain, exhibits metallopeptidase activ-
ity and shares approximately 40% homology with ACE1 
[23, 24]. Our model selected for preferential ACE2 bind-
ing and agents with better predicted binding values were 
prioritized (see Table 1). Early studies largely used angio-
tensin catalysis as the major readout for inhibition and 
whether current ACE inhibitors may block SARS-CoV-2 
binding remains speculative [25]. In addition, due to the 
counter regulatory nature of ACE1 and ACE2 expression, 
it is possible that agents that downregulate ACE1 recep-
tors may increase ACE2 receptor expression and could 
worsen coronavirus infection. Thus, we scanned for bind-
ing of both ACE1 and ACE2 for top hits, and ranked by 
predicted difference in binding. By this metric, Captopril, 

Enalaprilat and Monopril looked likely to inhibit both and 
potentially solicit this undesired feedback effect (Table 1). 
Ramipril is a long-acting ACE inhibitor prodrug that is 
converted to the active metabolite ramiprilat in the liver 
and may be associated with hepatic injury. Likewise, 
monopril is a pro-drug that undergoes transformation in 
the liver to the active metabolite fosinoprilat. In contrast, 
lisinopril is an orally active ACE inhibitor that does not 
undergo metabolic transformation and is excreted in the 
urine and does not bind to other serum proteins but may 
also be associated with hepatic toxicity and these drugs 
need to be used cautiously in patients with underlying 
liver disease. Captopril is a sulfhydryl-containing proline 
analog with potent and specific activity in blocking ACE 
peptidyl-dipeptidase activity. Captopril may also have 
anti-tumor activity through inhibition of tumor angio-
genesis and promotion of anti-tumor immunity [26].

The analysis also identified a drug involved in glucose 
homeostasis and used in patients with diabetes melli-
tus as anti-hyperglycemic agents. Nateglinide (Table  1) 
is a derivative of phenylalanine and acts on beta-islet 
pancreatic cells ATP-sensitive potassium channels and 
stimulates insulin secretion [27]. The drug has been used 
for treatment of type 2 diabetes mellitus. Sotaglifozin 
(Table  2) is an oral inhibitor of the sodium-glucose co-
transporter subtype 1 (SGLT1), expressed in the gastro-
intestinal (GI) tract and SGLT2, expressed in the kidneys 
[28]. To our knowledge, this agent have not been previ-
ously known to bind to ACE or ACE2. Glutathione is 
another interesting agent that was predicted by both 
binding AI and gene expression disease cancellation. It 
is an antioxidant demonstrating improved airway clear-
ance and pulmonary function in cystic fibrosis [29]. Glu-
tathione has also been evaluated as an adjunct in patients 
receiving certain chemotherapy agents following lung 
transplantation, and for management of HIV and Parkin-
son’s disease with mixed results [30].

Fostamatinib (R-406, Table  2) is an oral inhibitor of 
the spleen tyrosine kinase (Syk) that is converted to the 
active metabolite, tamatinib, and has been approved for 
the treatment of chronic immune thrombocytopenic 
purpura and is being evaluated in other autoimmune 

Table 4  Top reversing drugs against the MA15 (Mouse model of SARS-CoV) gene expression signature based on DCT

A more negative DCT is a stronger result

Drug Name Concentration (uM) Time (h) DCT Score p-value Adjusted p-value

vitamin e 10 6 − 0.0744254 < 1.00E−05 < 1.00E−05

chembl2179387 0.04 24 − 0.0620614 < 1.00E−05 < 1.00E−05

ruxolitinib 3 24 − 0.060335 < 1.00E−05 < 1.00E−05

chembl1235119 3 24 − 0.0595284 < 1.00E−05 < 1.00E−05

cinnarizine 0.1 24 − 0.0565905 < 1.00E−05 < 1.00E−05

glutamine 1 6 − 0.0556337 < 1.00E−05 < 1.00E−05
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disorders, such as rheumatoid arthritis [31]. R-406 may 
also mediate signal transduction downstream of classical 
immunoreceptors, including the B-cell receptor explain-
ing why it may be useful in treating autoimmune diseases 
and B cell hematologic malignancies [32]. Emricasan 
(Table  2), also called IDN-6556, is a thiol protease that 
acts as a caspase-3 inhibitor that received orphan g sta-
tus by the U.S. FDA for treatment of liver disease, such 
as chronic hepatitis C, where it functions to protect 
against excessive hepatic cell apoptosis. Emricasan has 
been shown to decrease hepatic aminotransferases in 
patients with hepatitis C and other viral-induced and 
non-viral liver diseases [33]. The drug has also shown 
activity against Zika virus-mediated caspase 3 induction 
and blocked viral infection of neural cells in  vitro [34]. 
The potential antiviral activity of emricasan was identi-
fied in a drug repurposing screen following the Zika 
virus outbreak in 2016 [34]. Fosamprenavir was identified 
(Table 2) and is a protease inhibitor prodrug of amprena-
vir, an anti-retroviral drug approved for the treatment of 
HIV disease. Agents with known antiviral activity against 
RNA viruses are especially interesting for evaluation 
against Coronaviruses.

Orlistat (Table  2) is a carboxyl ester and reversible 
inhibitor of GI lipases [35]. Orlistat was initially isolated 
from Streptomyces toxytricini, a gram-positive bacte-
rium, and blocks hydrolysis and absorption of dietary 
fats and was approved in the U.S. and U.K. for the treat-
ment of obesity. Two of the drugs identified have activity 
as anticoagulants, tirofiban hydrochloride (Table  1) and 
argatroban (Table 2). Tirofiban is a non-peptide tyrosine 
derivative and functions as an antagonist of the puriner-
gic receptor, platelet glycoprotein-IIB/IIA [36]. The drug 
inhibits platelet aggregation and has been used for treat-
ing acute coronary syndrome and is being studied for 
management of ischemic stroke [37]. In contrast, arga-
troban is a small molecule that directly inhibits throm-
bin and is used for management of heparin-induced 
thrombocytopenia [38]. Piperacillin (Table 2) is a broad 
spectrum, semi-synthetic, beta-lactam, ureidopenicillin 
antibiotic derived from ampicillin. Piperacillin is active 
against gram-negative bacteria and was initially used for 
treating Pseudomonas aeruginosa infections and later as 
part of combination antibiotics for more complex infec-
tious indications [39]. In contrast to macrolide antibiotics 
such as azithromycin which inhibit bacterial protein syn-
thesis, piperacillin blocks bacterial wall synthesis. Since 
these are commonly used agents in the management of 
patients with pneumonia, they both merit further studies 
to understand their role in ACE2 modulation and poten-
tial role in management of COVID-19 infection.

To search for potential COVID-19 therapeutic 
approaches in an orthogonal and unbiased way, we 

applied our Disease Cancellation Technology to gene 
expression data from an animal model of SARS-CoV and 
ranked compounds by their ability to induce gene expres-
sion signals that counteract disease-associated signals. By 
this gene expression method, glutamine was a top hit for 
reversing Coronavirus associated changes in gene expres-
sion. Glutathione was highly ranked by Fluency for ACE2 
binding and its precursor glutamine was highly ranked 
by gene expression DCT, suggesting both deserve further 
testing to explore potential benefits against SARS-CoV-2. 
Both glutamine and glutathione have previously demon-
strated antiviral activity against herpes virus (HSV) infec-
tions [40].

Conclusion
In summary, we used a novel AI-based systems approach 
to identify potential drugs currently available that are 
predicted to bind to ACE 2. These agents are readily 
available and could be rapidly assessed both in the labo-
ratory and clinic for activity against SARS-CoV-2 infec-
tion and clinical course of COVID-19 disease. Further 
studies of these agents may provide new clinical strate-
gies for patients with coronavirus diseases. Under normal 
circumstances, we would conduct experimental valida-
tion prior to submitting this report for publication. Given 
the current public health emergency, we are publishing 
this work now in the event that others are set up to more 
quickly validate, assess, and build upon these findings. 
Although validation is still needed, this report highlights 
how AI-based systems may be utilized to rapidly identify 
drugs for repurposing against new and emerging human 
diseases.

Materials and methods
ACE2 (UNIPROT ID: Q9BYF1), ACE1 (UNIPROT ID: 
P12821), and TMPRSS2 (UNIPROT ID: O15393) were 
run separately as the protein target of Immuneering’s 
Fluency query. Fluency is a single universal quantita-
tive structure–activity relationship (QSAR) deep learn-
ing model, which takes protein amino acid sequence and 
small molecule SMILES as input. Fluency was trained on 
experimental binding data from chembl 24 (model a) and 
chembl 25 (model b). Fluency predictions have previously 
been experimentally validated for multiple targets. In this 
case, Fluency was used to predict binding of the Sell-
eckchem FDA approved drug library (https​://www.selle​
ckche​m.com/scree​ning/fda-appro​ved-drug-libra​ry.html) 
separately to ACE2, ACE1, and TMPRSS2. For top hits, 
fluency was run in reverse (predicting binding of a sin-
gle small molecule to 20,206 human proteins) to score 
specificity. Predicted binding scores for ACE1 and ACE2 
were compared for top hits to assess predicted specificity 
for ACE2 over ACE1 in each model (as reflected in the 

https://www.selleckchem.com/screening/fda-approved-drug-library.html
https://www.selleckchem.com/screening/fda-approved-drug-library.html


Page 8 of 9Kim et al. J Transl Med          (2020) 18:257 

“pBind_x_ACE2-pBind_x_ACE” columns). Similarity to 
known binders (reported pChEMBL value greater than 7 
in the ChEMBL database) to ACE2 was computed using 
Tanimoto distance of molecular fingerprints from RDKit 
in Python. Top ranked Fluency hits were filtered by eval-
uating individual rankings from model a and model b, as 
well as the average rank of predictions and the combined 
pBIND scores of both models.

Gene expression data was downloaded from GEO 
(GSE68820). The processed data which was background 
corrected, quantile normalized, and summarized after 
outlier removal by the author was used [20]. For each of 
the time points, differential expression was calculated 
between the MA15 (SARS-CoV) virus infected wild type 
mice lung samples and the mock-inoculated wild type 
mice using the limma R-package version 3.40.6 [41]. 
Immuneering leveraged its previously described [42] and 
validated [43, 44] DCT, and ran the SARS-CoV disease 
signature against the LINCS drug perturbation database 
[45]. Results were filtered for adjusted p-value signifi-
cance and maximal disease cancellation score.
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