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Involvement of glutathione peroxidases 
in the occurrence and development of breast 
cancers
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Abstract 

Glutathione peroxidases (GPxs) belong to a family of enzymes that is important in organisms; these enzymes pro‑
mote hydrogen peroxide metabolism and protect cell membrane structure and function from oxidative damage. 
Based on the establishment and development of the theory of the pathological roles of free radicals, the role of GPxs 
has gradually attracted researchers’ attention, and the involvement of GPxs in the occurrence and development of 
malignant tumors has been shown. On the other hand, the incidence of breast cancer in increasing, and breast cancer 
has become the leading cause of cancer-related death in females worldwide; breast cancer is thought to be related to 
the increased production of reactive oxygen species, indicating the involvement of GPxs in these processes. Therefore, 
this article focused on the molecular mechanism and function of GPxs in the occurrence and development of breast 
cancer to understand their role in breast cancer and to provide a new theoretical basis for the treatment of breast 
cancer.
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Background
Breast cancer has become the most common cancer and 
the leading cause of cancer-related deaths in females 
worldwide, according to a status report on the global 
cancer burden provided by Globocan 2018 [1]. The cur-
rent standard treatment for patients with breast cancer 
includes the combination of surgery, radiation, hormone 
therapy and chemotherapy drugs, such as anthracy-
clines, cyclophosphamide, taxanes and platinum com-
pounds [2, 3]. As a superficial tumor, the causes of death 
in patients with breast cancer are reported to be due to 
cancer metastasis and/or relapse, which are significantly 
associated with the favorable tumor microenvironment 

[4]. However, the mechanisms of the occurrence, devel-
opment, and metastasis of breast cancer are very com-
plicated and overlap, suggesting the necessity of different 
therapies to treat different subtypes of breast cancer. To 
achieve the best treatment effect, it is necessary to adopt 
a customized treatment plan for patients, based on the 
understanding of the pathogenesis of breast cancer [5, 6].

Recent studies have shown that reactive oxygen spe-
cies (ROS) are involved in the molecular mechanisms of 
breast cancer occurrence and development [7–9]; ROS 
can be regulated by glutathione peroxidases (GPxs), 
which are the key enzymes that maintain ROS homeo-
stasis in vivo through the reduction of ROS [10]. There-
fore, based on summaries of the research regarding the 
relationship between breast cancer and GPxs, this article 
focused on the molecular mechanism and function of 
different GPxs and their diverse roles in the occurrence 
and development of breast cancer, further clarifying the 
pathogenesis of breast cancer and providing a potential 
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direction for further studies on the treatment of breast 
cancers.

The GPx family and its members
GPxs are members of a multiple-isozyme family that cat-
alyze the reduction of H2O2 or organic hydroperoxides to 
generate water or corresponding alcohols using reduced 
glutathione (GSH) as an electron donor [11]. Currently, 8 
GPxs (GPx1–GPx8) have been identified in mammalian 
tissues, which exhibit the genetic, structural and dynamic 
differences and perform common and separate functions 
[12] (Fig. 1).

Among these GPxs, 5 selenium-dependent GPx 
isozymes have been identified (Table 1). (1) Classical GPx 
(GPx1) is reported to be expressed in red blood cells and 
liver, lung, and kidney tissues and is located in the cyto-
sol, nucleus, and mitochondria. The antioxidant effects of 
GPx1 are achieved by the direct reduction of hydrogen 
peroxide and lipid hydroperoxides [13]. (2) Gastrointes-
tinal GPx (GPx2) is only found in the cytosol and nucleus 
of the gastrointestinal tract. Because of its specific locali-
zation, GPx2 was the first GPx considered to be a barrier 
to the absorption of hydrogen peroxide [14]. (3) Plasma 
GPx (GPx3) is present in the mitochondria of several 
organs, such as the kidney, lung, epididymis, breast, 
heart, and muscle. As the main antioxidant enzyme in 
plasma, GPx3 is the only extracellular enzyme in the GPx 
family that reduces ROS products during normal metab-
olism or oxidative damage [15]. (4) Phospholipid GPx 

(PHGPx or GPx4) is found in the nucleus, cytosol, and 
mitochondria of various tissues. As an intracellular sele-
nium protein, GPx4 can directly reduce the production 
of peroxide phospholipids in the cell membrane [16]. (5) 
GPx6 is expressed in the olfactory epithelium of humans 
and pigs [17]. However, GPx6 rarely has been studied, 
and its function has not been clearly defined.

Among the three non-selenium glutathione per-
oxidases, GPx5 is secreted from the epididymis and 
is thought to protect sperm from peroxide-mediated 
attacks during maturation. Although the active domain 
of GPx5 lacks selenocysteine, it retains antioxidant prop-
erties [18]. Another non-selenium glutathione peroxi-
dase, GPx7, which lacks GPx activity, has recently been 
described as a novel phospholipid hydroperoxide GPx 
[11, 19–21]; the sequence of GPx7 encodes cysteine in its 
conserved catalytic motifs [22]. As a non-selenocysteine, 
GPx8 is a membrane protein that is detected in the endo-
plasmic reticulum, is present abundantly expressed in the 
lung, and was identified as a novel member of the GPx 
family [23].

In general, both the selenium-containing GPxs and 
non-selenium GPxs are key players in the biological envi-
ronment and the development of human diseases [17]. 
The following section will describe the relationships and 
molecular mechanisms of GPxs in disease development.

ROS are the main molecules involved in the role 
and mechanism of GPxs in the development 
of diseases
ROS, reactive oxygen-containing molecules, are the nor-
mal products of aerobic reactions in humans, such as 
oxidative respiration in mitochondria [24]. ROS are pro-
duced by multiple intrinsic mechanisms, and ROS come 
in a variety of forms, including radical (hydroxyl, super-
oxide, etc.) or non-radical (hydrogen peroxide, singlet 
oxygen, etc.) [25]. The intrinsic level of ROS in the intra-
cellular environment plays an important role in the main-
tenance of cellular homeostasis in vivo; the level of ROS 
can be dramatically increased by external stimuli or inter-
nal stresses and can be toxic to cells [26]. To neutralize 
ROS, systematic biological detoxification processes are 
used to maintain their normal level; for example, N-ace-
tylcysteine (NAC) in preadipocytes reduces adipogenesis 
[27]. In organisms, two systems have been developed to 
neutralize these compounds, including non-enzymatic 
and enzymatic systems. In addition to superoxide dis-
mutases, catalases, and ascorbate peroxidases, GPxs are 
important components of the enzymatic systems and are 
the focus of this article [11] (Table 1). GPxs, which par-
ticipate in the processes of antioxidant protection and 
detoxification, are important enzymes that directly regu-
late ROS levels [28]. The group of GPx enzymes, which Fig. 1  The main distribution of GPxs in human
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play an irreplaceable role in the regulation of ROS home-
ostasis in vivo, has been thought to use GSH as a reduc-
ing agent to catalyze the reduction of H2O2 or organic 
peroxides to generate water or corresponding alcohols, 
respectively [17].

It is accepted that an excessive burden of ROS may 
lead to abnormal cell growth, corresponding changes in 
intracellular homeostasis and damage to important com-
ponents of in the cell when the antioxidant defense and/
or DNA repair mechanisms cannot balance the excess 
oxidants [29]. Oxidative stress, which results from the 
imbalance between the production and neutralization of 
ROS, is also reported to be involved in a large number of 
pathological states, such as Alzheimer’s disease [30], Par-
kinson’s disease [31], atherosclerosis [32], heart failure 
[33], myocardial infarction [34], and hepatic encepha-
lopathy [35]. Importantly, oxidative damage caused by 
the production of ROS has been linked to the etiology of 
different types of human cancer [23, 36].

In the initial stage of carcinogenesis, ROS play a vari-
ety of roles, including mediating the activation of car-
cinogens, causing DNA damage, and interfering with 
responses to DNA damage [37–39]. Low levels of ROS 
can activate host cells in the tumor microenvironment, 
and promote glucose metabolism in tumors to main-
tain the high energy consumption of tumors by induc-
ing mitochondrial autophagy, altering key enzymes and 
genes related glucose metabolism and activating signal 

pathways; these functions suggest a role of ROS as signal-
ing molecules that favor tumorigenesis. However, a high 
level of ROS inhibits the occurrence and development of 
tumors by inducing apoptosis of tumor cells because of 
their toxic effects [40]. Recently, research on tumor treat-
ment strategies has focused on whether the treatment 
that opposes or promotes oxidation exert anti-tumor 
effects. Accumulated evidence suggests that ROS func-
tion as second messengers in the determination of cell 
fate and the modification of various signaling molecules 
[41]. Therefore, the regulation of ROS homeostasis is 
crucial for maintaining the health of humans. The explo-
ration and investigation of GPxs, as key enzymes that 
regulate ROS levels in humans, is of great significance 
to elucidate the relationship between GPxs and diseases, 
including tumors, to further understand the pathogenesis 
of diseases and to prevent ameliorate and even cure these 
diseases.

The diverse roles of GPxs in different kinds of tumors 
have been examined but remain controversial. For exam-
ple, GPx1 has been reported to prevent oxidative DNA 
mutations, which in turn may prevent the development 
of tumors [42], and research shows that overexpression 
of GPx1 can reduce tumor growth, indicating its inhibi-
tory effect in tumorigenesis [43]. However, the expres-
sion of GPx1 has been reported to be down-regulated in 
thyroid cancer [44], colorectal cancer [45, 46], and gas-
tric cancer [47], whereas GPx1 has been demonstrated 

Table 1  The types of GPxs and their proven substrates

MM molecular mass, N.F. not found, N. A. not available

GPxs Types Expressions Locations Oxidizing 
substrates

Reducing 
substrate

Peroxidatic 
residue

References

GPx1 Selenium-dependent Red cells, liver, lung, 
and kidney

Cytosol, nucleus, 
and mitochondria

H2O2, soluble low 
MM hydroper‑
oxides

GSH Sec [17, 83]

GPx2 Selenium-dependent Gastrointestinal 
tract

Cytosol and nucleus N.F. N.F. Sec [118–120]

GPx3 Selenium-dependent Kidney, lung, 
epididymis, 
breast, heart, and 
muscle

Mitochondria H2O2, soluble low 
MM hydroper‑
oxides

GSH, low rate with 
thioredoxin and 
glutaredoxin

Sec [17, 121]

GPx4 Selenium-dependent Various tissues Nucleus, cytosol, 
and mitochondria

H2O2, small 
hydroperoxides, 
hydroperoxides in 
complex lipids

GSH, Dithiothreitol Sec [122–124]

GPx5 Non-Selenium-
dependent

Epididymis Extracellular N.F. N.F. Cys [17, 125]

GPx6 Selenium-dependent 
in human

Olfactory epithe‑
lium

N.A. N.F. N.F. Sec (human)
Cys (rats)

[17, 126]

GPx7 Non-Selenium-
dependent

Preadipocytes N.A. H2O2 GSH, Protein 
disulfide isomer‑
ase

Cys [17, 127, 128]

GPx8 Non-Selenium-
dependent

Lung Endoplasmic 
reticulum

H2O2 GSH Cys [128, 129]
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to play an oncogenic role in kidney cancer [48], pancre-
atic cancer [49], and laryngeal squamous cell carcinoma 
[50]. The abnormal expression of GPx2 was detected in 
different tumors, and GPx2 was up-regulated in colo-
rectal cancer [51, 52] and down-regulated in prostate 
intraepithelial neoplasia [53], suggesting that GPx2 plays 
complex roles in tumorigenesis [23]. Currently, GPx3 is 
considered a new tumor-suppressor gene [23], and its 
hypermethylation, which is associated with the further 
down-regulation of GPx3, was observed in patients with 
Barrett’s esophagus [54], endometrial adenocarcinoma 
[55] and prostate cancer [56]. GPx4 is also considered a 
tumor suppressor because it is down-regulated in tumors 
[23, 43]. Current investigations have demonstrated that 
GPx7 has potential tumor-suppressive effects in gastric 
and esophageal adenocarcinoma [57–59]. Due to limited 
research, the roles of GPx5, GPx6, and GPx8 in tumori-
genesis are still awaiting clarification.

The role of ROS in the occurrence and development 
of breast cancer
The occurrence of breast cancer, the most common 
malignancy in females worldwide, is generally believed 
to be significantly associated with the accumulation of 
genetic damage caused by genetic  alterations, which 
cause uncontrolled cell proliferation and/or abnormal 
programmed cell death, or apoptosis [60]. Excessive 
burden of ROS, failure of clearance mechanisms and 
even lack of antioxidants may lead to the accumulation 
of ROS and to oxidative stress [40], which are associated 
with genetic damage and breast cancer onset [61–65]. 
Sies et  al. systematically reviewed the oxidative stress 
from the perspectives of oxidants and antioxidants, and 
noted that oxidants with vastly different half-lives may 
be observed at the site of generation or be transported to 
distant target sites where they exert oxidant activities in 
cell metabolism [63]. On the other hand, antioxidants can 
protect the cells from incident radiation through special-
ized pigments and control the levels of reactive species 
which otherwise might cause a cascade of reactions and 
lead to the generation of pathological oxidants [63].

Considering the molecular mechanism of ROS in the 
mammary gland, it appears that the oxidative state is 
involved in the initial occurrence and development of 
breast cancer through interference with breast cancer 
stem cells (CSCs) [66]. Malins et al. found that oxidative 
stress changed the redox potential of the breast, lead-
ing to drastic changes in the DNA base lesions, which 
are conducive to oxidative conditions and breast cancer 
formation [64]. Interestingly, a positive feedback loop 
between miR526b/655 and oxidative stress was identified 
in breast cancer, and the loop promotes tumor growth 
and metastasis [67]. Rodrgues et  al. analyzed the lipid 

profile and aquaporin expression under conditions of oxi-
dative stress in different types of breast cancer cells and 
predicted the subsequent metabolic reprogramming of 
cancer cells and adaption to stress and resistance to ther-
apies [68].

The development of drug resistance is a challenge for 
the use of adjuvant therapies in breast cancer patients 
[69], and studies suggest that ROS may play an important 
role in the production of drug-resistant cells [70]. Zhong 
et al. demonstrated that oxidative stress and H2O2 treat-
ment led to a marked increase in senescence-associated 
β-galactosidase activity but only to minimal apoptotic cell 
death in CSCs, suggesting that ROS triggered the induc-
tion of senescence and exhibited therapeutic potential in 
the eradication of drug-resistant CSCs [8]. However, the 
increase in ROSs induced by drugs seems to play a differ-
ent role compared to the role of ROS originally generated 
in malignant tumors. In the treatment of breast cancer, 
anti-estrogen tamoxifen, the drug most often used for the 
long-term treatment of early breast cancer, can induce 
apoptosis in many cells, and this effect may be mediated 
by ROS generation in the mitochondria of breast cancer 
cells [71].

The role of GPxs in breast cancer
As mentioned above, ROS is closely related to the 
molecular mechanism of breast cancer progression, and 
ROS can be directly regulated by GPxs, which eliminate 
organic peroxides at the expense of GSH [10]. The fol-
lowing section will illustrate the relationship between 
different GPxs and breast cancer and their underlying 
molecular mechanisms to provide opportunities for fur-
ther investigation and research and to benefit patients 
with breast cancer (Table 2).

GPx1
The GPx1 gene, which encodes the first identified sele-
noprotein, is located on chromosome 3p21 [72, 73]. 
Previous research has shown that GPx1 is an effective 
antioxidant enzyme that cannot be replaced by any other 
selenoprotein to protect against generalized oxidative 
stress [74–76]. When cancerous cells are generated, the 
expression of GPx1 is abnormal, causing intracellular 
ROS dysfunction [77, 78]. Due to its antioxidant proper-
ties, GPx1 is thought to be highly effective in preventing 
the ROS-mediated initiation of cancer.

In breast cancer, transcription factor AP-2 gamma 
(TFAP2C) is an important transcription factor that regu-
lates estrogen receptor-alpha (ERα) and c-ErbB2/HER2 
(Her2), which are involved in the establishment of the 
gene expression pattern observed in different clinical 
phenotypes of breast cancer [79, 80]. Interestingly, Kulak 
et al. confirmed that TFAP2C regulated GPx1 expression 
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by directly binding to the GPx1 promoter, which contains 
an AP-2 regulatory region, and the methylation of the 
CpG island in the GPx1 promoter region prevented the 
binding of TFAP2C by encompassing the AP-2 regula-
tory region [81]. As expected, compared to those healthy 
control subjects, the tissues of breast cancer patients 
exhibit significantly increased lipid peroxidation, which 
is dependent on functional polymorphism of GPx1 [82]. 
However, compared to that in non-malignant tissues, 
the expression level of GPx1 in tumor tissues was signifi-
cantly decreased by 7.4% [83].

The controversial expression pattern of GPx1 in breast 
cancers requires further investigation to determine its 
molecular functions. Artificial overexpression of GPx1 
showed an increased capacity to rescue breast cancer 
cells from the cell cycle arrest caused by hyperoxic stress, 
indicating the involvement of both peroxide-derived free 
radicals and nonperoxide-derived species during the del-
eterious process [84]. Gouaze et al. found that increased 
GPx1 levels significantly increased the resistance of 
breast cancer T47D cells to doxorubicin partially by 
interfering with the activation of the sphingomyelin-cer-
amide pathway [85]. Although such research is limited, 
the overexpression of GPx1 in breast cancer is thought 
to promote the occurrence and development of breast 
cancer.

Hence, due to the controversial evidence, exploring 
the molecular regulation of GPx1 expression and activity 
is very important for understanding the mechanisms of 
cancers. Frequent loss of heterozygosity (LOH) on chro-
mosome 3p in lung tumors was associated with low GPx1 
enzyme activities, which may affect the prognosis of lung 
cancer patients [86]. Moscow et al. first reported a poly-
morphism in GPx1, namely, a substitution at codon 198 
of either proline (Pro) or leucine (Leu), Pro198Leu (SNP: 
1050450), in lung cancer [87]. In a Macedonian popula-
tion, the GPx1 Pro198Leu genotype showed an overall 
protective effect on prostate cancer risk, and erythrocyte 
GPx1 activities were significantly decreased in prostate 
cancer patients compared with controls [73]. Similarly, 
in breast cancer, LOH at this locus occurred in approxi-
mately 36% of breast cancer tissues, and GPx1 with a 
leucine-containing allele exhibited lower GPx1 activities 
in response to stimulation than GPx1 a proline-contain-
ing allele [88]. Ravn-Haren et al. showed similar results, 
namely, that Pro198Leu-associated GPx1 activities were 
decreased in breast cancer but were associated with 
increased breast cancer risk among Danish females [89]. 
In addition to the Leu198Leu genotype in the GPx1 gene, 
the Ala16Ala genotype in the manganese superoxide dis-
mutase (MnSOD) gene, the most significant enzyme that 
protects against ROS in the human body [90], was also 

Table 2  The expression, function and potential mechanism of GPxs in breast cancers

GPxs Location Main findings in breast cancers References

GPx1 3p21.31 TFAP2C regulates GPx1 promoter through an AP-2 regulatory region [81]

GPx1 polymorphism in modifying stress response [82]

Decreased GPx1 expression [83]

Loss of heterozygosity and allelic differences of GPx1 [88]

Pro198Leu-associated decreased GPx1 activity with high breast cancer risk [89, 92]

The Leu198Leu genotype of GPx-1 [91]

Regulate the sensitivity to doxorubicin [93]

GPx2 14q23.3 Upregulated in breast cancer cells [19]

Overexpression in rat breast cancer [98]

Highly regulated by retinoic acid [94]

GPx3 5q33.1 Downregulated in aggressive phenotype of breast cancer [103]

An independent predictive marker for local recurrence of early-stage invasive cancer 
patients

[104]

GPx4 19p13.3 Downregulated in breast cancer cells [19]

Predict poor prognosis of invasive ductal breast carcinoma [106]

Impaired GPx4 expression in peripheral blood monocytes as a biomarker for increased 
breast cancer risk

[111]

GPx5 6p22.1 Downregulated in breast cancer cells [19]

GPx6 6p22.1 Downregulated in breast cancer cells [19]

GPx7 1p32.3 Downregulated in breast cancer cells [19]

GPx8 5q11.2 Not available
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associated with an increased risk of breast cancer [91]. It 
is suggested that Leu carriers with the Pro198Leu GPx1 
allele had a 1.9-fold increased risk of non-ductal breast 
cancer and a 2.6-fold increased risk of developing grade 3 
ductal tumors [92]. These results indicated that the Pro-
198Leu polymorphism in GPx1 and the associated LOH 
are factors of significance in breast cancer development.

Regarding treatment strategies, it is suggested that the 
marked decrease in GPx1 expression may be the major 
mechanism of tumor sensitization to anthracyclines [93] 
and that GPx1 can partially inhibit doxorubicin-induced 
cell death-related signaling in breast cancer by interfering 
with the activation of the sphingomyelin-ceramide path-
way [85]; these findings suggest that tumor regression in 
response to chemotherapy was correlated with the inhi-
bition of GPx1 activity and confirmed the role of GPx1 in 
the occurrence and development of breast cancer (Fig. 2).

GPx2
The selenium-dependent glutathione peroxidase GPx-GI 
encoded by GPx2 is highly expressed in gastrointesti-
nal epithelial cells and occasionally in breast tissue [94]. 
In addition to normal tissues, it has been reported that 
GPx2 is upregulated in a variety of tumor cells [76, 95] 
and is associated with tumor cell proliferation and poor 
prognosis of patients [96, 97].

In breast cancer, GPx2 is commonly overexpressed in 
the mammary carcinomas of mouse models of breast 
cancer induced by carcinogens, which is consistent 

with its up-regulation in human breast cancer [19]. As 
expected, the inhibition of GPx2 expression by siRNA led 
to significant growth inhibition in both rat and human 
breast cancer cell lines [19, 98]. Chu et  al. confirmed 
that in MCF-7 cells, which a low aggressive breast can-
cer cell line, the expression of GPx2 can be substantially 
up-regulated by retinoic acid [94]. Due to its potential 
function in the occurrence and development of breast 
cancer, GPx2 is suggested as a potential target for the 
prevention and treatment of breast cancer. However, the 
current research on the relationship between GPx2 and 
breast cancer is limited and there are still many gaps in 
the research regarding its regulatory mechanisms.

GPx3
As mentioned above, elevated levels of ROS play a crucial 
role in the progression of breast cancer [99]. As the only 
extracellular enzyme in the GPx family, GPx3 is an essen-
tial enzyme that is responsible for removing ROS prod-
ucts during normal metabolism or oxidative damage in 
healthy tissues [76]. Lee et al. observed a high frequency 
of promoter hypermethylation and progressive loss of 
GPx3 expression in Barrett’s esophagus and its associ-
ated lesions, and these authors also confirmed the known 
function of GPx3 as a potent antioxidant [54]. In human 
thyroid cancer, GPx3 is frequently methylated, and the 
expression of GPx3 is regulated by methylation of the 
promoter region, and this methylation is related to tumor 
size and lymph node metastasis through the inhibition 

Fig. 2  The reported function and mechanism of GPx1. TFAP2C transcription factor AP-2 gamma, AP-2 AP-2 regulatory region, LOH loss of 
heterozygosity, Dox doxorubicin
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of Wnt/β-catenin signaling [100]. The methylation of the 
GPx3 promoter was also observed in hepatocellular car-
cinoma (HCC) tissue [101] and gastric carcinoma [102], 
possibly leading to subsequent carcinogenesis and cancer 
cell progression. These findings suggest that epigenetic 
inactivation and regulation of the GPx3 pathway may be 
critical in the development and progression of different 
types of cancers.

Consistently, the GPx3 levels were reported to be 
down-regulated in aggressive inflammatory breast cancer 
(IBC) carcinoma tissues compared to non-IBC tissues, 
and this down-regulation was associated with hyper-
methylation of the GPx3 promoter [103]. In addition, a 
low level of GPx3 is an independent predictive marker of 
the local recurrence of early-stage invasive breast cancer 
in patients undergoing breast-conserving surgery and 
radiotherapy, regardless of the patient’s clinicopatho-
logical parameters [104]; this observation suggests that 
inactivation of the GPx3 gene by hypermethylation of the 
promoter may contribute to breast cancer progression.

GPx4
GPx4 was discovered in 1982 by Ursini et al. [105], and 
GPx4 is the only known enzyme able to reduce lipid 
peroxides bound to cell membranes [106, 107]. In con-
trast to other GPxs, GPx4 is the only one that reduces 
the hydroperoxides of lipoproteins and complex lipids, 
such as cholesterol, cholesterol esters, and phospholipids 
[108], to protect mitochondrial ATP generation from oxi-
dative damage [109]. Recently, GPx4 was predicted to be 
a specific target for new pharmacological therapies aimed 
at activating or inhibiting cell death in cancer or degen-
erative diseases [110].

Interestingly, GPx4 expression was down-regulated in 
breast cancer cells compared with normal breast cells 
[19]. A recent study showed a strong negative correla-
tion between breast tumor grade progression and GPx4 
expression in breast cancer tissues, and its downregula-
tion may be related to the poor prognosis of patients with 
invasive ductal carcinoma of the breast [106]. In addition, 
impaired GPx4 expression in peripheral blood mono-
cytes was shown to be a biomarker of increased risk of 
breast cancer [111]. However, the specific mechanism 
of GPx4 in the occurrence of breast cancer has not been 
elucidated and requires further study.

Other GPxs
As studies of the functions of GPx5, GPx6 and GPx7 in 
the development of breast cancer are limited, it is diffi-
cult to determine their underlying mechanisms. Rusolo 
et  al. systemically examined the expression of GPxs in 
breast cancer cell lines and found that GPx5 and GPx7 
were down-regulated in the human breast cancer MCF-7 

and MDA-MB-231 cell lines and GPx6 was also down-
regulated in MDA-MB-231cells compared with healthy 
breast MCF-10A cells [19]. However, relevant research 
on their roles in breast cancer and the regulatory mecha-
nisms are still lacking and needs to be supplemented. The 
expression pattern and function of GPx8 in breast cancer 
have not been reported.

Therapeutic implications
Based on the role of ROS in breast cancer, several rea-
gents have been reported to be potential therapeutic 
methods for patients with breast cancer. Methanolic 
extract of corn silk, which induces apoptosis in breast 
cancer cells was proposed to be a novel anti-tumor agent 
that acts by increasing ROS production and decreasing 
GSH levels in a dose-dependent manner [112]. De et al. 
reported the therapeutic potential of another natural 
quinazoline derivative that promoted oxidative stress and 
increased ROS production [113]. George et al. proposed 
Rubus bioactive compounds as another reagent to induce 
apoptotic cell death in human breast cancer cells [114]. In 
triple-negative breast cancer (TNBC) cells treated with 
isorhamnetin (IH) and chloroquine (CQ), ROS induced 
Drp1-dependent mitochondrial fission and apoptosis by 
mediating the activation and mitochondrial translocation 
of CaMKII; this study suggested IH as a novel chemo-
therapeutic agent [115].

As an important group of antioxidative enzymes, the 
normal levels of GPxs help to control the level of reac-
tive species. The identification of ways to improve the 
expression of GPxs in malignant tumors, especially in 
breast cancers, is further research direction. However, 
to date, the methods used to increase GPx expres-
sion are mainly the artificial over-expression of GPxs 
through transfections or infections. After confirming 
the clinical significance and potential therapeutic role 
of GPx3 in tumor recurrence after liver transplantation 
[116], Qi et al. constructed and verified a delivery sys-
tem by composed of mesenchymal stem cells derived 
from human induced pluripotent stem cells (hiPSC-
MSCs) to increase the expression level of GPx3 in vivo 
[117]. The engineered hiPSC-MSCs successfully deliv-
ered GPx3 to the liver and ameliorated hepatic injury 
by inhibiting hepatic senescence [117]; this result pro-
vides potential therapeutic strategies and prospects 
for breast cancer treatment. Based on the review of 
key role of ROS in the occurrence and development of 
breast cancer, it is inspired that the changed expres-
sion level of GPxs may achieve the therapeutic pur-
pose after determining its clinical significance in breast 
cancer. For example, the inactivation of GPx3 may 
contribute to the progression of breast cancer [103, 
104]. So the delivery of GPx3 to breast tumor tissues 
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through hiPSC-MSCs or other methods may promote 
its expression, and reduce the influence of ROS on the 
progression of breast cancer accordingly, finally achieve 
the goal of treating breast cancer. Although there is no 
corresponding research report at present, this method 
undoubtedly provides a new idea and strategy for the 
treatment of breast cancer.

Conclusion
Breast cancer is a serious threat to the health of women 
around the world, and the mechanism of its occurrence 
and treatment is of great significance. The identification 
of the relationship between GPxs and breast cancer is 
valuable for the discovery of potential therapeutic tar-
gets for breast cancer. A greater understanding of the 
pathogenesis of breast cancer will increase the chances 
of identifying a cure. At present, there has been substan-
tial research on the relationship between GPxs and breast 
cancer, but the research is still very limited. This review 
provides a systematic and clear summary of the relation-
ship between GPxs and breast cancer to elucidate the 
role of GPxs in the pathogenesis of breast cancer and to 
provide a clear direction. There is a large gap waiting to 
be filled by subsequent researchers to yield better thera-
peutic targets and methods to cure breast cancer, and 
the role of GPxs in breast cancer should be studied as an 
extremely important issue. Additional studies of GPxs 
in breast cancer may 1 day lead to a cure for this disease 
that is so devastating to women’s lives and health.
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