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Abstract 

Background: Post-transcriptional methylation modifications, including 5-methylcytosine (m5C) modification, are 
closely related to the tumorigenesis of cancers. However, the mRNA profile of m5C modification in hepatocellular 
carcinoma (HCC) is unknown.

Methods: Methylated RNA immunoprecipitation sequencing was performed to identify m5C peaks on mRNA of 
human HCC tissues and adjacent tissues, and differences in m5C between the two groups were analyzed. In addition, 
we conducted a bioinformatics analysis to predict the function of specific methylated transcripts.

Results: We found that there was a noticeable difference in m5C between HCC and paired non-tumor tissues, sug-
gesting that m5C could play a role in the pathogenesis of HCC. In addition, analyses of gene ontology and the Kyoto 
Encyclopedia of Genes and Genomes showed that the unique distribution pattern of mRNA m5C in HCC was associ-
ated with a wide range of cellular functions.

Conclusions: Our results revealed different distribution patterns of m5C in HCC and adjacent tissues and provided 
new insights into a novel function of m5C RNA methylation of mRNA in HCC progression.
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Background
Hepatocellular carcinoma (HCC) is one of the most 
widespread cancers, and it has an extremely poor prog-
nosis, contributing to nearly 662,000 deaths per annum 
[1, 2]. The incidence rate of HCC is ranked sixth-high-
est of the cancerous tumors globally, and the number 
of deaths caused by HCC is ranked third-highest of the 
tumor-related deaths [3]. Despite marked progress in 

treatment, due to its late diagnosis, high metastasis, and 
high recurrence rate, the lethal rate of hepatocellular 
carcinoma remains high [4–7]. In addition to the widely 
used alpha-fetoprotein (AFP), protein induced by vitamin 
K absence or antagonist-II (PIVKA-II), and third elec-
trophoretic form of lentil lectin-reactive AFP (AFPL3) 
tumor markers for HCC, some miRNAs and new bio-
markers, such as heat shock protein 90-α (Hsp90α) and 
a metabolite biomarker, have been discovered recently, 
and have shown high performance in the diagnosis of 
HCC [8–11]. Nevertheless, the early diagnosis of hepa-
tocellular carcinoma still requires further investigation. 
Personalized immunotherapy based on immunophe-
notyping has become a research hotspot in recent years 
[6, 12], but the stability and effectiveness of this model is 
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still uncertain. Therefore, a deeper understanding of the 
pathogenesis of HCC and the identification of new bio-
markers are essential for early diagnosis and developing 
new therapeutic targets of HCC.

Epigenetic dysregulation plays a critical role in the initi-
ation and progression of cancer, and post-transcriptional 
modifications, such as RNA methylation, have attracted 
the attention of many researchers [13]. With advances in 
high-throughput technologies, such as m5C-RNA immu-
noprecipitation (IP), researchers have been able to char-
acterize RNA methylation sites in-depth [14]. Increasing 
evidence has shown that N6-methyladenosine (m6A), 
which is the most prevalent internal mRNA modifica-
tion, is related to mRNA metabolism, such as regulating 
mRNA stability and splicing [15–19]. In addition, related 
studies have shown the potential molecular mechanism 
in cancer, including HCC. Li et al. found that inhibiting 
the generation of YTHDTF2, which is an m6A reader 
protein, blocked anti-miR-145-enhanced proliferation, 
suggesting that miR-145 suppresses the proliferation of 
HCC cells by regulating m6A reading [20, 21]. 5-methyl-
cytosine (m5C), which is another post-transcriptional 
RNA modification, has been identified in stable and 
highly abundant tRNAs, rRNAs, and mRNAs [22–24]. In 
addition, NSUN2 has been identified as a methyltrans-
ferase, while ALYREF and YBX1 have been identified as 
an m5C reader [25]. Studies have shown that m5C modi-
fication is necessary for the stable and efficient translation 
of tRNA and plays an important role in rRNA processing, 
structuring, and translation [26–29]. This modification 
has conservative, tissue-specific, and dynamic character-
istics in mammalian transcriptomes [25]. Thus, a study 
on mice demonstrated that m5C is primarily enriched 
near the translation initiation codon of the embryonic 
stem cells and brain of mice [20]. However, this feature 
has not been found in Arabidopsis [30], and the distribu-
tion characteristics of m5C could be different for differ-
ent cell types. Chen et  al. [31] demonstrated that m5C 
can promote the pathogenesis of bladder cancer by sta-
bilizing mRNAs. However, the quantity, distribution, and 
functions of m5C in HCC are still unclear.

We performed a m5C-specific analysis and in-depth 
bioinformatics analysis of m5C in mRNA in human 
HCC and paired adjacent non-tumor tissues. The results 
showed marked differences in the amount and distri-
bution of m5C between HCC and adjacent tissues: the 
number of m5C methylation peaks in HCC was much 
more than that in paired adjacent non-tumor tissues, and 
the difference in distribution was wide and involved all 
chromosomes. Bioinformatics analysis showed that the 
two groups, with different methylation, could cause dif-
ferent changes in cell function. Our findings suggest a 
possible association between HCC and m5C in mRNA 
and predict possible functional changes caused by this 
difference in m5C.

Materials and methods
RNA extraction and fragmentation
Each pair of HCC tissues and paired adjacent non-tumor 
tissues were obtained from the First Affiliated Hospital 
of Zhengzhou University. We collected six groups of bio-
logical replicates (Table  1). Subsequently, we extracted 
total RNA using TRIzol reagent (Invitrogen Corporation, 
CA, USA) following the manufacturer’s instructions. A 
Ribo-Zero rRNA Removal Kit (Illumina, Inc., CA, USA) 
was used to reduce the rRNA content. The quality of 
RNA was evaluated using its OD260/OD280 ratio, which 
is a measure of the nucleotide to protein ratio based on 
optical density measured using spectrophotometry. 
The purity of RNA with an OD260/OD280 value range 
of 1.8–2.1 was considered acceptable, and the RNA 
extracted from all samples met this standard.

Library construction and sequencing
Methylated RNA immunoprecipitation sequencing 
(MeRIP-seq) was performed based on a previously 
reported procedure [32]. Total RNA was lysed into 100 
base pair fragments using a GenSeqTM m5C RNA IP 
Kit (GenSeq Inc, China), and m5C immunoprecipita-
tion was performed followed by RNA-seq library gen-
eration using a  NEBNext® Ultra II Directional RNA 
Library Prep Kit (New England Biolabs, Inc, USA). 

Table 1 Clinical characteristics of HCC patients

Age Gender AFP (ng/mg) Stage (BCLC) Tumor size (cm) Tumor metastasis HBsAG HBcAb

47 Male 2.19 A1 7*5.5*4 Right lobe of liver – +
45 Male 614.1 A1 3.8*3.3*2.7 No + +
60 Male 4602 A2 6*5.3*3.5 No + +
49 Male 191.7 A1 3.5*2.5*2 No + +
78 Male 2.83 A3 4.5*4*2 No + +
45 Male 1.69 A2 2.5*2*2 No + +



Page 3 of 11Zhang et al. J Transl Med          (2020) 18:245  

A BioAnalyzer 2100 system (Agilent Technologies, 
Inc, USA) was used to evaluate the cDNA library, and 
library sequencing was performed using an Illumina 
Hiseq instrument with 150 bp paired-end reads.

Identification and analysis of 5‑methylcytosine peaks
Quality control of the paired-end reads was performed 
using a quality standard of the probability of an incor-
rect base call at 1 in 1000 (Q30) in Illumina HiSeq 4000 
Sequencer: a Q30 > 80% indicated good sequencing 
quality (Table 2). After conducting quality control, the 
3′ adaptors were trimmed and low-quality reads were 
removed using Cutadapt software (v1.9.3), and high-
quality clean reads were harvested. Clean reads of input 
libraries were aligned to a reference genome (GRCh38.
gencode. v32) using STAR software [33] and mRNA 
peaks were identified using DCC software [34]. Next, 
clean reads of all libraries were aligned to the reference 
genome using Hisat2 software (v2.0.4) [35]. Then, the 
m5C peaks on the mRNA were identified using MACS 
software [36]. In addition, differentially methylated 
peaks were identified using DiffReps software [37]: m5C 
peaks with a fold change > 2 or < 0.5 (P value ≤ 0.00001) 
in HCC were considered to be up-regulated methyla-
tion or down-regulated methylation. Peaks identified 
using both software and the section of m5C that over-
lapped with the exon of the protein-coding genes were 
selected using scripts developed in-house for further 
annotation.

Statistical analysis
The m5C peaks on the mRNA of the six samples in the 
HCC group were combined to obtain the m5C peaks 
of the HCC group, and the adjacent tissue group was 
treated in the same way. Bedtools software was used 
to find common peaks between the two groups. The 
sequence of methylated peaks, which was 50 bp on each 
side of the apex, was scanned using Dreme software [38] 
to find meaningful motif. The E-values for the motifs 
were calculated as the enrichment P-value times the 
number of candidate motifs tested, and the enrichment 
P-value was calculated using Fisher’s Exact Test for the 
enrichment of the motif in the positive sequences. The 
lower the E-value of the motif, the higher its credibility. 
Subsequently, the methylation fold enrichment (FE) of 
each mRNA of the six pairs of samples was acquired and 
subjected to log2 conversion. The logFE value was used 
for clustering in the heatmap.2 software package. In addi-
tion, we counted the mRNA region where the m5C peak 
was located in each sample according to published meth-
ods [39] and plotted the results as a pie chart.

Transcriptome sequencing analysis
High-quality reads were mapped onto the genome 
(human gencode v32) using hisat2 software (v2.0.4) [35]. 
Then, HTSeq software (v0.9.1) was used to obtain gene-
level raw counts as mRNA expression profiles [40]. Edge 
R software (v3.16.5) was used to normalize the data and 
calculate the fold change and P-value between the two 
groups of samples to screen for differentially expressed 
mRNA [41]. Subsequently, the expression levels of these 
mRNAs were normalized to obtain logCPM and the 
average values for the two groups were calculated. A scat-
terplot of differential expression of methylated genes was 
draw combining the methylation degree of these genes.

Bioinformatics analysis
The Gene Ontology (GO) project, which is a structured, 
controlled vocabulary developed for annotating genes 
and gene products [42], contains three parts: biological 
processes (BP), molecular functions (MF), and cellular 
components (CC). Differentially methylated genes were 
used to perform GO functional analysis (http://www.
geneo ntolo gy.org) to annotate and speculate on the func-
tion of these differentially methylated genes. Gene terms 
with a P-value < 0.05 were considered statistically signifi-
cant. Meanwhile, pathway analysis using the Kyoto Ency-
clopedia of Genes and Genomes (KEGG) (https ://david 
.ncifc rf.gov/)was conducted with differentially methyl-
ated genes to annotate and speculate pathways in which 
they could be involved. The pathways with P-values < 0.05 
were considered significantly enriched. In addition, we 

Table 2 The Q30 of simples

Patient ID Sample Q30 Sample Q30

1 HCC IP 92.39% HCC input 92.91%

2 HCC IP 92.86% HCC input 94.25%

3 HCC IP 93.04% HCC input 94.49%

4 HCC IP 93.28% HCC input 94.03%

5 HCC IP 93.26% HCC input 91.90%

6 HCC IP 92.17% HCC input 94.04%

1 Paired non-tumor IP 91.86% Paired non-tumor 
input

93.04%

2 Paired non-tumor IP 91.77% Paired non-tumor 
input

92.96%

3 Paired non-tumor IP 91.55% Paired non-tumor 
input

93.81%

4 Paired non-tumor IP 90.36% Paired non-tumor 
input

94.10%

5 Paired non-tumor IP 91.16% Paired non-tumor 
input

89.47%

6 Paired non-tumor IP 90.86% paired non-tumor 
input

92.47%

http://www.geneontology.org
http://www.geneontology.org
https://david.ncifcrf.gov/)was
https://david.ncifcrf.gov/)was
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used the enrichment intensity fold change value of the 
two groups of samples in the MeRIP-seq experiment to 
rank all the coded genes with signals, and we used the 
PreRanked mode of gene set enrichment analysis (GSEA) 
to determine the over-representation and under-rep-
resentation of all genes in a gene set to observe the dif-
ferences in the gene sets between the two groups. We 
selected FDR < 0.25 as the screening criterion. We also 
analyzed other GSEA pathways, with a primary focus 
on TGF-beta signaling, hedgehog signaling pathway, 
axon guidance, regulation of actin cytoskeleton, and the 
arrhythmogenic right ventricular cardiomyopathy arc. 
All processes are described in Fig. 1.

Results
General features of 5‑methylcytosine methylation 
in human HCC and adjacent tissues
In general, we found 18,324 clean methylation peaks in 
HCC tissues and 12,406 clean methylation peaks in adja-
cent tissues. We mapped up to 10,200 annotated genes of 
HCC tissues and 7689 annotated genes of adjacent tis-
sues. Of 18,324 methylation peaks, only 7671 appeared 
in HCC, while only 1753 of 12,406 methylation peaks 
appeared in adjacent tissues. (Figure  2a, b). There were 
noticeable differences in the number of m5C peaks and 
differentially methylated m5C peaks. Moreover, for the 
methylation peaks that only appeared in HCC or adjacent 
tissues, the number of up-methylated peaks per gene in 
HCC tissues (2.48 peaks/gene) was smaller than that in 

adjacent tissues (3.00 peaks/gene), and both of them were 
markedly higher than the methylated peaks that were 
present in both samples (1.50 peaks/gene).

When the distribution of mRNA m5C peaks on the 
chromosomes was analyzed using circos software, it was 
found that the number and distribution of m5C peaks 
on each chromosome were different between HCC and 
adjacent tissues, with the difference on chromosome one 
being the most obvious (Fig. 2c). In addition, compared 
with the sex chromosomes, the autosomes in both groups 
were more methylated.

Cluster analysis
The results of the methylation heatmap and cluster 
analyses showed that clustering of methylation differ-
ences could clearly distinguish the HCC group from the 
adjacent tissues group: there were relative consistencies 
within the groups and marked differences between the 
groups (Fig. 2d). Overall, the degree of methylation in the 
HCC tissues was higher than in the adjacent tissues. In 
total, 3126 methylation peaks in HCC were identified as 
up-regulated methylation, and 1103 methylation peaks 
were detected as down-regulated methylation (Tables  3 
and 4).

Motif analysis
Among the motifs measured in the HCC tissues, 
CUWCM (M = C/A) was the most common and reliable: 
it was the most likely conserved methylation site motif, 

Fig. 1 Flowchart of the study
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Fig. 2 Overview of mRNA 5-methylcytosine (m5C) in hepatocellular carcinoma (HCC) and adjacent tissues. a Venn diagram of m5C peaks in HCC 
and adjacent tissues. b Venn diagram of m5C genes in HCC and adjacent tissues. c Visualization of m5C at the chromosome level in HCC and 
adjacent tissues. d Cluster analysis of m5C in HCC and adjacent tissues. The color represents the size of the logfold enrichment (FE) value: the closer 
the color is to red, the larger the logFE value

Table 3 Top ten up-methylated peaks

Chromosome TxStart TxEnd Gene name Fold change

17 44,802,641 44,803,000 GJC1 166.3

20 20,368,103 20,368,560 INSM1 107.8

8 87,871,361 87,871,880 DCAF4L2 105.5

1 27,395,481 27,395,814 GPR3 53.6

8 2,001,041 2,001,420 KBTBD11 49.958333

6 130,438,081 130,438,480 TMEM200A 46.512195

11 109,427,881 109,428,300 C11orf87 41.321429

1 14,924,221 14,924,540 KAZN 40.7

X 37,728,401 37,728,740 XK 39.196721

9 16,416,641 16,417,340 BNC2 38.307692

Table 4 Top ten down-methylated peaks

Chromosome TxStart TxEnd Gene name Fold change

11 75,083,541 75,084,020 OR2AT4 139.3

11 48,325,401 48,325,840 OR4C3 134.4

10 17,137,441 17,137,840 TRDMT1 123.9

11 4,490,301 4,490,760 OR52K1 113.9

11 102,713,021 102,713,457 MMP8 109.1

8 53,225,801 53,226,240 OPRK1 108.9

14 62,109,501 62,109,960 SYT16 101.4

X 50,367,561 50,368,020 DGKK 93.3

11 5,069,601 5,070,240 OR52E1 92.6

Y 5,740,441 5,740,880 PCDH11Y 92.5
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with an E-value of 4.6e-059 (Fig.  3a, b). The motif with 
the lowest E-value in the adjacent tissue was CUWCV, 
with an E-value of 4.4e-067 (V = C/A/G) (Fig.  3a, b). 
These two motifs were only slightly different at the last 
base.

Analysis of sources of mRNA methylation in hepatocellular 
carcinoma and adjacent tissues
The results of the analysis of the source of methylation 
peaks showed that m5C was distributed in all regions of 
the mRNA (Fig.  3c, d), which is consistent with previ-
ous research results [15, 43, 44], and the distribution in 
HCC was similar to that in the adjacent tissues (Fig. 3c, 
d). Specifically, m5C is mostly distributed near the stop 
codon and least distributed at 5′UTR in both groups, 
which could be related to the length of each region on the 
mRNA. Compared with adjacent tissues, m5C in HCC 
was more distributed at both the 3′UTR (HCC: 11.1%, 
adjacent tissues: 8.5%) and 5′UTR (HCC: 7.6%, adjacent 
tissues: 4.9%) and less distributed near the stop codon 
(HCC: 36.6%, adjacent tissues: 42.6%).

Statistical analysis of the number of peaks on each mRNA
When we counted the number of m5C peaks on each 
mRNA in the two groups, we found that most of the 
methylated mRNAs (56.1%) in the HCC tissues had only 
one m5C peak, while this index in adjacent tissues was 
significantly higher (64.7%, p < 0.0001; Fig.  3e). In addi-
tion, the number of mRNAs with two or more m5C peaks 
on one mRNA was higher in HCC tissue than in adjacent 
tissues (p < 0.0001).

Effect of methylation on transcriptional expression
Consistent with the above results, the joint analysis of 
the methylation and transcriptome data showed that 
there were more up-regulated methylated mRNAs in the 
HCC group (Fig. 3f ). Among the mRNAs that were up-
methylated in HCC, 125 mRNAs were up-regulated, and 
38 mRNAs were down-regulated. Among the mRNAs 
that were up-methylated in adjacent tissues, a total of 47 
mRNAs were up-regulated, and 48 mRNAs were down-
regulated. mRNAs with higher degrees of methylation 

Fig. 3 The characteristics of m5C peaks and the joint analysis of methylation and transcriptome. a Motif with minimum E-value of m5C in the 
hepatocellular carcinoma (HCC) group. b Motif with minimum E-value of m5C in the adjacent tissues group. These two motifs are only slightly 
different at the last base. c, d Pie chart of m5C peaks in different regions of mRNA. e The number of m5C peaks in HCC and adjacent tissues on each 
mRNA. Most mRNAs have only one methylation peak. f Scatter plot of the relationship between gene expression level and methylation level. The 
Y-axis and X-axis represent the expression levels of mRNAs in HCC and paired non-tumor tissues, red dots represent mRNAs with a high methylation 
level, blue dots represent low methylation horizontal mRNAs, and gray represents no significant difference
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tended to have higher expression levels in the HCC 
group, while this trend was not evident in the adjacent 
tissues. Moreover, we found that some mRNAs that are 
rarely expressed in adjacent tissues were highly expressed 
and hypermethylated in HCC tissues.

Bioinformatics analysis
The GO analysis of BP found that the genes with up-
methylated m5C sites in HCC tissues were significantly 

enriched in system development, multicellular organis-
mal development, and anatomical structure development 
(Fig.  4a), while the genes with down-methylated m5C 
were significantly enriched in the detection of chemi-
cal stimuli involved in the sensory perception of smell 
(Fig.  4d). The GO analysis of MF found that the genes 
with up-methylated m5C in HCC tissues were mainly 
related to sequence − specific DNA binding and nucleic 
acid binding transcription factor activity (Fig. 4b), while 

Fig. 4 Gene ontology analyses of hepatocellular carcinoma (HCC) and adjacent tissues. a biological processes (BP), b molecular functions (MF), and 
d cell component (CC) in the HCC group. c biological processes, e, molecular functions, and f cell component in the adjacent tissues group. We 
have listed the 10 most significant terms in each figure



Page 8 of 11Zhang et al. J Transl Med          (2020) 18:245 

the genes with down-methylated m5C were primar-
ily related to olfactory receptor activity and G − protein 
coupled receptor activity (Fig. 4e). The GO analysis of CC 
found that the genes with up-methylated m5C in HCC 
tissues were primarily enriched in the synapse, intrinsic, 
and integral components of plasma membrane (Fig. 4c), 
which was the same as the genes with up-methylated 
m5C in adjacent cancer tissues (Fig. 4f ). The KEGG anal-
ysis results showed that the mRNAs with up-methylation 
in HCC tissues were primarily involved in the neuroac-
tive ligand − receptor interaction, calcium signaling path-
way, and cAMP signaling pathway (Fig. 5a). The mRNAs 
with down-methylated m5C were significantly enriched 
in olfactory transduction, neuroactive ligand − receptor 
interaction, and nicotine addiction (Fig. 5b).

Gene set enrichment analysis
We identified 144 gene sets that were up-regulated and 
five that were down-regulated in HCC tissues compared 
with the adjacent tissues. In addition, we identified a 
particularly down-regulated gene set, KEGG N-glycan 

biosynthesis (Fig.  5c). When we analyzed other GSEA 
pathways, focusing on TGF-beta signaling, hedgehog 
signaling pathway, axon guidance, regulation of actin 
cytoskeleton, and arrhythmogenic right ventricular car-
diomyopathy arc (all p values < 0.05) we found that these 
pathways are related to the pathogenesis and invasiveness 
of HCC (Fig. 5d–h) [45–47].

Discussion
As a post-transcriptional modification, RNA methyla-
tion has gradually been shown to be involved in many 
cellular functions and cancers. Studies have shown that 
multiple types of RNA methylation (m5C and m2G) 
can stabilize RNA fragments in sperm and thus con-
tribute to the identity of sperm RNA as an epigenetic 
information carrier [48–50]. Research by Li et  al. [21, 
51] proved that m6A RNA were effective in 33 differ-
ent types of cancer, including HCC. For example, they 
found that increased methylation of m6A mRNA is a 
carcinogenic mechanism of hepatoblastoma (HB). In 
addition, METTL3 significantly up-regulates HB and 

Fig. 5 Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and gene set enrichment analysis (GSEA) of differentially methylated genes 
in hepatocellular carcinoma (HCC) and adjacent tissues. a Pathway analysis of up-methylated genes in the HCC group. b Pathway analysis of 
up-methylated genes in the adjacent tissues group. We have listed the 10 most significant terms on each figure. c Down-regulated pathway in the 
GESA. d–h up-regulated pathways in the GESA
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promotes the development of HB, and CTNNB1 has 
been identified as a regulatory factor for METTL3 to 
guide m6A to modify HB. As a novel methylation, m5C 
has been confirmed to play a critical role in regulating 
RNA nucleation [25], intergenerational transmission 
of acquired phenotypes [52], and stabilizing mRNAs 
to promote the proliferation of bladder cancer [31]. To 
date, the distribution and function of m5C in hepato-
cellular carcinoma have not been studied.

We sequenced m5C peaks of mRNA in HCC and 
adjacent tissues using MeRIP-seq and analyzed the dif-
ferences between the two groups. We identified tens of 
thousands of m5C peaks in mRNAs and observed signifi-
cant differences between the two groups. The degree of 
methylation of mRNA in HCC was significantly higher 
than in adjacent tissues. In addition, the number of 
mRNAs mapped using methylation peaks in HCC was 
markedly higher than in adjacent tissues, which indicates 
that the role of m5C in HCC tissues is more extensive 
than in adjacent tissues. This finding was also supported 
by the cluster analysis, in which we found that the two 
groups can be clearly distinguished by FE of m5C. The 
FE of m5C in HCC was significantly higher than that in 
adjacent tissues, especially for some specific mRNAs. 
As the function of m5C is not completely clear, we can 
only make some suggestions: m5C could play a role in 
promoting the pathogenesis of HCC through its similar 
mechanism in bladder cancer, i.e., by stabilizing these 
mRNAs. The motif analysis also showed that the most 
credible motif in the two groups was very similar, indicat-
ing that the differences in m5C in the two groups could 
be due to differences in the number of methylases rather 
than the category of methylases. This hypothesis could 
guiding further experiments.

Numerous studies have shown that the distribution 
of methylation sites in different regions of the mRNA is 
essential for the stability of mRNA and the regulation 
of translation. Dominissini et al.’s study found that m1A 
is significantly enriched near the start of translation in 
mammalian and yeast cells and that m1A is associated 
with higher protein expression [53, 54]. Recent studies 
showed that in eukaryotes, m5C regulates translation in 
a negative way [55, 56], which could also work through 
the m5C sites near the start codon. Our results show that 
the peaks of m5C located in the start codon in HCC are 
significantly higher than those in the adjacent tissues. 
Our findings indicate that the expression of some pro-
teins will be reduced, resulting in the deletion of some 
essential proteins. In addition, we found that there are 
fewer m5C peaks at the 3′UTR in HCC, which could 
also cause differences in cell functions. For example, 
m5C at the 3′UTR may affect the binding of miRNA or 
RBPs to mRNA and thus regulate the translation process 

[43]. This mechanism has not been proven in HCC, so 
more sophisticated experiments are needed for further 
validation.

Research by Huang et  al. [57] found that abnormal 
N-glycosylation of proteins is involved in the develop-
ment of malignant tumors, including HCC. Interestingly, 
GSEA of differentially methylated genes in our study 
showed a significant decrease in N-glycan biosynthe-
sis in HCC tissues. N-glycans are major constituents of 
glycoproteins in eukaryotes and play an important role 
in many protein functions, such as protein folding and 
stability [58]. Abnormal glycosylation caused by the up-
regulation of fucosyltransferase is closely related to the 
malignant behavior of the proliferation of HCC [59]. 
This gene set was significantly down-regulated in HCC 
(FDR = 0.208), which could suggest that m5C promotes 
glycosylation disorders in HCC and causes increased 
malignant behaviors of HCC tissues. The bioinformat-
ics analysis of GO terms and KEGG pathways showed 
that m5C was involved in various aspects of cell func-
tion. Although we have a preliminary understanding 
of the functions of m5C, such as regulating RNA nuclei 
[25], affecting cell differentiation [60], regulating stem 
cell function, and stress [61], most of its mechanisms of 
action, especially in cancer, are still unknown. Therefore, 
there is a need for more research to establish a detailed 
understanding of the role of m5C. Our research provides 
a new perspective for later researchers to study the role 
of m5C in HCC to discover more information on the new 
therapeutic targets of HCC.

Conclusions
Our research reveals differences in m5C in mRNA of 
hepatocellular carcinoma and adjacent tissues for the first 
time and shows the distribution and possible function of 
m5C through statistical analysis and in-depth bioinfor-
matics analysis. We showed that m5C has a wide range 
of functions. However, its role in cells, especially in can-
cer, remains largely unknown. Therefore, more research 
is needed to determine its roles.
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