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Abstract 

Background:  Cervical cancer (CC) represents the fourth most frequently diagnosed malignancy affecting women all 
over the world. However, effective prognostic biomarkers are still limited for accurately identifying high-risk patients. 
Here, we provided a combination machine learning algorithm-based signature to predict the prognosis of cervical 
squamous cell carcinoma (CSCC).

Methods and materials:  After utilizing RNA sequencing (RNA-seq) data from 36 formalin-fixed and paraffin-embed-
ded (FFPE) samples, the most significant modules were highlighted by the weighted gene co-expression network 
analysis (WGCNA). A candidate genes-based prognostic classifier was constructed by the least absolute shrinkage 
and selection operator (LASSO) and then validated in an independent validation set. Finally, based on the multivariate 
analysis, a nomogram including the FIGO stage, therapy outcome, and risk score level was built to predict progres-
sion-free survival (PFS) probability.

Results:  A mRNA-based signature was developed to classify patients into high- and low-risk groups with significantly 
different PFS and overall survival (OS) rate (training set: p < 0.001 for PFS, p = 0.016 for OS; validation set: p = 0.002 
for PFS, p = 0.028 for OS). The prognostic classifier was an independent and powerful prognostic biomarker for PFS 
in both cohorts (training set: hazard ratio [HR] = 0.13, 95% CI 0.05–0.33, p < 0.001; validation set: HR = 0.02, 95% CI 
0.01–0.04, p < 0.001). A nomogram that integrated the independent prognostic factors was constructed for clinical 
application. The calibration curve showed that the nomogram was able to predict 1-, 3-, and 5-year PFS accurately, 
and it performed well in the external validation cohorts (concordance index: 0.828 and 0.864, respectively).

Conclusion:  The mRNA-based biomarker is a powerful and independent prognostic factor. Furthermore, the nomo-
gram comprising our prognostic classifier is a promising predictor in identifying the progression risk of CSCC patients.

Keywords:  Cervical squamous cell cancer, Weighted gene co-expression network analysis, Least absolute shrinkage 
and selection operator, Prognostic biomarkers, Nomogram
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Background
Cervical cancer (CC) represents the fourth most fre-
quently diagnosed malignancy and the fourth leading 
cause of cancer-related death among females in 2018 
worldwide [1]. Currently, the early diagnosis rate of 
cervical cancer has been improved after the introduc-
tion of cytologic screening and high-risk human pap-
illomavirus (HPV) DNA testing, while the incidence 
has been decreased due to the development of vaccines 
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against HPV. Comprehensive treatment, including the 
combination of bevacizumab, has achieved a favorable 
outcome for patients with cervical cancer [2–4]. How-
ever, 15–61% of women with stage I–III will experi-
ence metastatic disease, usually within the first 2 years 
of completing treatment [5]. Furthermore, for women 
with disease progression, the median overall survival 
ranges from 7 to 53 months [6]. So it appears that cer-
vical cancer with similar baseline features is comprised 
of different groups with distinct outcomes. This hetero-
geneity within cervical cancer may be attributed to dif-
ferences in molecular characterization. Currently, the 
International Federation of Gynecology and Obstetrics 
(FIGO) stage, lymph node status and clinicopathologi-
cal features of the primary tumor are the most impor-
tant prognostic variables for cervical cancer [7, 8], but 
these traditional prognostic factors do not help predict 
which patient will suffer disease progression.

With the rapid development of genomic sequencing 
technology, there has been increasing interest in the 
identification of molecules that are intimately associ-
ated with tumor phenotype and clinical behavior. In 
pursuit of molecules with better predictive value for 
cervical cancer, previous investigations have reported 
valuable biomarkers such as COX-2 [9, 10], p53 [11], 
VEGF [12], and Ki‑67 [13]. Recently, more candidate 
molecules have been identified [14–16]. However, the 
prognostic relevance of some biological factors requires 
further investigation because of a lack of high through-
put data or failure of validation from independent cent-
ers. Although several biomarkers have been applied to 
predict the clinical outcome of patients with cervical 
cancer, their sensitivity and/or specificity remain unsat-
isfactory. Therefore, it is extremely urgent to identify 
more valuable biomarkers for diagnosing and monitor-
ing recurrence and evaluating prognosis [17, 18].

In the present study, a combination machine learn-
ing algorithm-based strategy was developed to build 
robust prognostic models by using the RNA sequencing 
(RNA-seq) data from our retrospective cervical squa-
mous cell carcinoma (CSCC) patient cohort. External 
RNA-seq datasets about CSCC with clinical follow-
up details were carefully reviewed in Gene Expression 
Omnibus (GEO), The Cancer Genome Atlas (TCGA), 
and Oncomine databases. The eligible dataset was used 
as an independent validation set for the prognostic 
value. The performance of the Cox regression verified 
that our classifier was independent of clinical features. 
Furthermore, a nomogram was generated to predict the 
1-, 3- and 5-year progression-free survival in the train-
ing cohort and evaluated in the independent validation 
cohort.

Methods and materials
Patients and clinical data
A total of 36 CSCC patients who underwent concurrent 
radiochemotherapy in Sichuan Cancer Hospital between 
2013 and 2018 were included in the training set, based on 
the following criteria: (1) histologically confirmed CSCC; 
(2) availability of adequate archival formalin-fixed paraf-
fin-embedded (FFPE) tissue collected prior to treatment; 
and (3) availability of complete clinical and follow-up 
data. Clinical staging was performed or updated accord-
ing to the FIGO staging of cancer of the cervix uteri 
(2018) [19] and the 8th edition of the International Union 
Against Cancer (UICC)/American Joint Committee on 
Cancer (AJCC) Tumor Node Metastasis (TNM) classifi-
cation [20] (Additional file 1: Table S1).

TCGA is a database comprised of high throughput 
genetic information of different cancer types. To avoid 
the batch effect from different platforms, the Genomic 
Data Commons (GDC) Legacy Archive (https​://porta​
l.gdc.cance​r.gov/legac​y-archi​ve) was chosen to acquire 
the raw gene counts data and corresponding clinical 
information of human cervical carcinoma [21]. The selec-
tion criterion of the data for external validation was as 
follows: experimental strategy (RNA-Seq), data category 
(Gene expression), data type (Gene expression quan-
tification), platform (Illumina HiSeq), workflow type 
(HTSeq—Counts), and clinicopathological information 
(detailed FIGO/TNM stage, therapy outcome, and sur-
vival information). Finally, the validation dataset contains 
252 CSCC tissues.

The median follow-up time was 36  months for the 
training set, and 22.5  months for the validation set, 
respectively. The progression-free survival (PFS) was cal-
culated from the date of initial diagnosis until progres-
sion or death, whichever came first, or last follow-up 
examination. The overall survival (OS) was estimated 
from the date of initial diagnosis to death or last follow-
up examination. The protocol was approved by the ethics 
committee of Sichuan Cancer Hospital and carried out 
according to the principles of the Declaration of Helsinki. 
Informed consent was obtained from all patients in the 
training cohort for the acquisition and use of tissue sam-
ples and clinical data.

Clinical samples and RNA sequencing
The 36 FFPE samples were obtained from patients in 
the training cohort. Total RNA was extracted from 
archived FFPE specimens with the RNeasy FFPE Kit 
(Qiagen GmbH, Hilden, Germany) after deparaffiniza-
tion with Xylene. Paired-end libraries were synthesized 
from 100 ng/ml of total RNA using SMARTer Stranded 
Total RNA-Seq Kit v2 (Takara Bio, Japan) according to 
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the manufacturer’s instructions. Sequence data were 
obtained using the Illumina NovaSeq 6000 platform.

Weighted gene co‑expression network analysis
The weighted gene co-expression network analysis 
(WGCNA), which was first proposed in 2005 [22], is 
based on the concept that genes in the same module 
share biological functions and/or are controlled by a 
common mechanism [23]. A batch of highly co-expressed 
genes is grouped into modules based on similarities in 
expression profiles among samples, and different mod-
ules are involved in individual functions [24]. WGCNA is 
increasingly being used to identify candidate biomarkers 
or therapeutic targets [25, 26].

The “variance stabilizing transformation (VST)” func-
tion from “DESeq  2” was used to obtain a normalized 
gene expression matrix. Then gene coexpression net-
work analysis and hub genes screening were performed 
by the “WGCNA” package. The procedure was as follows: 
(1) Outlier samples were removed to ensure that the 
results of network construction were reliable. (2) A soft 
threshold (power = 4) was selected by standard scale-free 
model fitting index R2 = 0.703. (3) The adjacency matrix, 
a measurement of topology similarity, was transformed 
into a topological overlap matrix (TOM), and the corre-
sponding dissimilarity (1-TOM) was calculated. (4) The 
hierarchical clustering dendrogram was plotted with 
identified modules, which were composed of a cluster of 
interconnected genes. (5) The module eigengenes (MEs) 
were calculated to evaluate the correlation between the 
modules and the clinical traits. (6) The hub genes in the 
significant modules (4 modules in the present study) 
were extracted. (7) The correlation coefficients between 
the gene significance (GS) with module membership 
(MM) were calculated and the p values were obtained.

Least absolute shrinkage and selection operator
The least absolute shrinkage and selection operator 
(LASSO) is a machine learning algorithm in which both 
variable selection and regularization occur simultane-
ously. This penalized regression uses the L1 penalty 
which equals to the absolute value of the magnitude of 
coefficients to limit the size of the coefficients and then 
yields models with few coefficients (sparse models), 
and some coefficients can become zero and eliminate. 
Therefore, this model uses a penalty to shrink regres-
sion coefficients toward zero, a number of variables will 
be eliminated because their coefficients will shrink to 
exactly zero. This technique is quite suitable for analyzing 
gene expression profile, which is high dimensionality and 
small sample size [27, 28].

According to WGCNA results, a batch of genes in 
modules that were closely related to the prognosis of 

human CSCC was obtained. Those genes were used to 
identify the most powerful prognostic markers. In the 
present study, the LASSO regression model was per-
formed with the package “glmnet” and the penalty 
parameter “lambda” was selected to choose the best 
model based on leave-one-out cross-validation, which is 
more suitable than tenfold cross-validation for a smaller 
number of samples [29, 30]. Finally, we extracted varia-
bles with nonzero coefficients and their corresponding 
coefficients. Combining coefficients with the relative 
expression levels of the selected RNAs (RNAi), a risk 
score for each patient was calculated: 
Risk score =

n∑

i=1

RNAi × Coei , in this formula the Coei 

represents the coefficient of each mRNA from the model.

Statistical analysis and graphics
All statistical analyses and graphics were performed by 
using R software (R version 3.5.2). The associations of 
clinical characteristics between the training set and vali-
dation set were examined by Chi square test or Fisher’s 
exact test. The distributions of selected genes between 
groups were estimated and tested by the Wilcoxon rank-
sum test. The differential expression genes (DEGs) were 
calculated using Bioconductor packages of “DESeq  2”. 
The “pheatmap” package was used for heat maps. The 
optimal cutoff value, sensitivity, specificity, and Youden 
index were calculated via time-dependent ROC curves 
by using the “survivalROC” package. The concordance 
index (C-index) of the risk scores was computed in the 
“survcomp” package and compared by the Student t-test. 
Kaplan–Meier curves and log-rank tests were employed 
to analyze PFS and OS rates in the “survival” package. 
The Cox proportional hazards regression model was also 
performed in the package “survival”. The package “forest-
plot” was used for the presentation of the results of the 
univariable and multivariable analysis. The nomogram 
was formulated and validated by using the “rms” package. 
All statistical tests were two-sided.

Results
Cohort characteristics
The study design and workflow are indicated in Fig.  1. 
A total of 288 patients with CSCC from two independ-
ent datasets were recruited, the baseline characteristics 
of these patients were summarized in Additional file  1: 
Table S2. In the training set, there was no patient within 
FIGO stage I, T0-1 or M1 CSCC, and all 36 patients were 
treated with concurrent radiochemotherapy. In contrast, 
there were 125 patients within the FIGO stage I CSCC 
from the validation set, which were mainly treated with 
hysterectomy in the TCGA-CESC project. The other sig-
nificantly different characteristic between two datasets 
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was smoking status, 3% of patients in the training set had 
smoked for more than 3 years and 21% in the validation 
set (p = 0.018).

Weighted gene co‑expression networks
One sample was deleted as an outlier after the hierar-
chical clustering analysis (Additional file 2: Figure S1A). 
Then a co-expression network was constructed using 35 
cervical squamous cancer samples with complete clinical 
data (Additional file 2: Figure S1B). By the selected power 
of β = 4 (scale-free R2 = 0.703) as the soft-thresholding 
(Additional file  2: Figure S2A), a total of 46 modules 
were identified (Additional file 2: Figure S2B). The high-
est association in the module-trait relationship was found 
between 4 modules (purple, magenta, orange, and light-
steelblue1) and vital status (p < 0.01) (Additional file  2: 

Figure S3). Next, the gene significance was calculated to 
quantify the associations of individual genes in 4 mod-
ules with vital status. For each module, the MM was used 
to quantitatively measure the correlation of the selected 
module and the gene expression profile. Scatterplots in 
Additional file  2: Figure S4 showed significantly posi-
tive correlations of module membership with gene sig-
nificance in vital status. As a result, the 1360 RNAs in 4 
modules closely related to the prognosis of human CSCC 
were considered as candidates for identifying prognostic 
markers in our cohort.

Construction of prognostic classifier by LASSO
In the LASSO Cox regression model of the train-
ing set, a sequence of models was returned by the 
function “glmnet”. The optimal penalty parameter 

252 cervical squamous cell carcinoma
RNA-seq

WGCNA

Purple & Magenta & Orange & Lightsteelblue1 module

Raw data quality control

DESeq2 Normlization: 
Variance Stabilizing Transformation (VST)

Sichuan Cancer Hospital patient cohort

RNA sequencing experiment

LASSO COX model

36 formalin-fixed paraffin-embedded samples from 
cervical squamous cell carcinoma with complete 

follow-up data

RNA extraction

 2-mRNA-based risk score prognostic predictor

Training set

Independent Validation set

Validation

The Cancer Genome Atlas (TCGA) 
CESC project

Fig. 1  Flowchart of the prognostic model construction process
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(λ = 0.2828604) was chosen by leave-one-out cross-
validation via minimum criteria. We obtained 2 varia-
bles (ACAP1 and RASGRP1) with nonzero coefficients 
(Fig.  2a, b). Patients with higher ACAP1 showed sig-
nificantly longer OS and PFS in both the training 
set (Additional file  2: Figure S5A, B) and validation 
set (Additional file  2: Figure S6A, B) (p < 0.05), and 
RASGRP1 demonstrated the same prognostic value 

(p < 0.05) except for PFS in the training set (p = 0.09) 
(Additional file 2: Figures S5C, D, S6C, D).

A risk score was calculated based on the 2 mRNAs’ 
expression status and model coefficients for each sam-
ple in the training set: risk score = (0.29457828* sta-
tus of ACAP1) + (0.08243926* status of RASGRP1). A 
score of 0.6715958 was determined as the optimal cut-
off value with the maximum Youden index to separate 

Fig. 2  Construction of the prognostic model based on the risk score. a LASSO coefficient profiles of the 2 survival-related mRNAs. Each curve 
corresponds to a gene. It shows the path of its coefficient against the L1-norm of the whole coefficient vector at various λ values. The vertical 
line is drawn at the value λ = 0.2828604 chosen by leave-one-out cross-validation. Two genes (ACAP1 and RASGRP1) intersecting with the 
vertical line were chosen to build the final model. b Partial likelihood deviance for the LASSO coefficient profiles. The red dotted line stands for 
the cross-validation curve, error bars represent the upper and lower standard deviation curves along the λ sequence. The left vertical line shows 
the optimal λ value at which the minimum mean squared error is achieved and the corresponding genes. The right vertical line is for the most 
regularized model whose mean squared error is within 1 standard error of the minimal. It is indicated that the genes identified by optimal λ are the 
simplest model with the best performance. In a, b, the axis above indicates the number of genes involved in the LASSO model. c The expression 
levels of ACAP1 and RASGRP1 between low and high-risk groups in the training and validation set. The high-risk group (risk score ≥ 0.6715958) had 
significantly lower proportions of ACAP1 and RASGRP1 than the low-risk group (risk score < 0.6715958) in both datasets. All p values were corrected 
by the Bonferroni method. (Wilcoxon rank-sum test, *p-value < 0.05, ****p-value < 0.0001)
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patients into a low-risk group (risk score < 0.6715958) 
and high-risk group (risk score ≥ 0.6715958). In the 
validation set, risk scores were then calculated for 
each patient and the same cutoff value was used to 
divide patients into different groups. When comparing 
the expression levels of 2 genes between groups, we 
found that the high-risk CSCC group had significantly 
lower proportions of ACAP1 and RASGRP1 than the 
low-risk group in both the training and validation set 
(p < 0.05) (Fig.  2c). When a genome-wide differen-
tial gene expression analysis (DEA) was performed 
between high- and low-risk groups, ACAP1 and RAS-
GRP1 were found to be significantly lower in high-risk 
groups, but fold change did not reach the threshold of 
differential expression (Additional file  2: Figure S7A). 
Additionally, when DEA was performed between 
tumor and normal tissues from the validation set, it 
could be seen that both genes were highly expressed 
in tumor tissues, but RASGRP1 was a differentially 

expressed gene, while ACAP1 was not (Additional 
file 2: Figure S7B).

Validation of the risk score predictor for prognosis
As shown in Fig.  3a, d, two scatterplots and heatmaps 
were used to investigate the relationships between dis-
ease progression status and expression levels of selected 
genes in the training and validation set, respectively. 
Each point in the scatterplots represents a patient, and 
the shape of the point represents whether the disease has 
progressed or not. The corresponding heatmap below 
each point vertically represents the expression level of 
ACAP1 and RASGRP1 genes in this patient. It can be 
seen that the expression patterns of ACAP1 and RAS-
GRP1 in both datasets were quite similar. Patients from 
the low-risk group tended to express a higher ACAP1 
and RASGRP1 level, whereas patients from the high-risk 
group incline to express a lower level.

In the training set, the time-dependent ROC curve 
analysis showed the area under the curve (AUC) for PFS 

a b c

d e f

Fig. 3  The disease progression status and gene expression levels of each patient, time‐dependent receiver operating characteristic (ROC) curve, 
and survival analysis based on the prognostic classifier in the training set and validation set. a The distribution of disease progression status 
(upper panel) and gene expression levels (lower panel) of each patient between low and high-risk groups in the training set. Each point in the 
scatterplots represents a patient, and the shape of the point represents whether the disease has progressed or not. The corresponding heatmap 
below each point vertically represents the expression level of ACAP1 and RASGRP1 genes in this patient. The patients were ordered according 
to the risk score level. b Time-dependent ROC curves in the training set. The area under the curves (AUC) at 1-, 2-, 3-, and 5-year were used to 
evaluate the prognostic accuracy. c Survival analysis of the different risk groups in the training set according to the optimal cutoff value (log‐rank 
test p‐value < 0.001). d The distribution of disease progression status (upper panel) and gene expression levels (lower panel) of each patient 
between low and high-risk groups in the validation set. The patients were ordered according to the risk score level. e Time-dependent ROC curves 
in the validation set. f Kaplan–Meier curves show the distinct outcome between low‐ and high‐risk groups in the validation set (log‐rank test p‐
value = 0.002)
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at 1-, 2-, 3- and 5-year was 0.893, 0.898, 0.872 and 0.872, 
respectively (Fig. 3b), while the AUC for OS at 1-, 2-, 3- 
and 5-year was 0.817, 0.817, 0.839 and 0.787, respectively 
(Fig.  4a). We next sought to investigate the prognostic 
value of the risk score using the Kaplan–Meier survival 
curves and the log-rank test. The 1-, 2-, 3- and 5-year 
PFS rate of low-risk group was 100%, 87.8% (95% CI 
73.4–100), 80.5% (95% CI 62.8–100) and 80.5% (95% CI 
62.8–100) respectively, whereas it was only 61.1% (95% 
CI 42.3–88.3), 34.4% (95% CI 17.4–68.1), 20.6% (95% CI 
7.7–55.5), and 20.6% (95% CI 7.7–55.5) for the high-risk 
group (p < 0.001, Fig. 3c). Similarly, the OS rate was sig-
nificantly lower in the high-risk group compared with the 
low-risk group (p = 0.016) (Fig. 4b).

The 2-gene-based risk score prognostic predictor was 
then tested in the validation set. The AUC showed the 
ability of our model in predicting PFS (Fig.  3e) and OS 
(Fig. 4c) at 1-, 2-, 3- and 5-year. Then by Kaplan–Meier 

analysis and log-rank test, we found that the 1-, 2-, 3- and 
5-year PFS rate of low-risk group in the validation set 
was 94.5% (95% CI 90.3–98.9), 87.4% (95% CI 80.9–94.4), 
75.6% (95% CI 66.2–86.4) and 71.4% (95% CI 61.1–83.4) 
respectively, while it was 79.9% (95% CI 72.8–87.8), 66.5% 
(95% CI 57.9–76.3), 58.2% (95% CI 48.9–69.3), and 52.8% 
(95% CI 42.9–64.9) for the high-risk group (p = 0.002, 
Fig. 3f ). Likewise, patients with higher risk scores had a 
significantly lower OS rate than their low-risk counter-
parts (p = 0.028). The median OS of the high-risk and 
low-risk group was 103 months(95% CI 56—176 months) 
and 136 months (95% CI 56—200 months), respectively 
(Fig. 4d).

Cox proportional hazards regression model
To verify whether the risk score classifier is independent 
of other clinicopathologic features, the effect on PFS was 
analyzed by Cox proportional hazards regression in the 
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training and validation set. As shown in Fig.  5, in addi-
tion to FIGO stage, lymphovascular invasion (LVI) and 
therapy outcome, which are already well-known risk fac-
tors, multivariate analyses demonstrated that lower risk 
score remained a powerful and independent factor for 
a better PFS (training set: hazard ratio [HR] = 0.13, 95% 
CI 0.05–0.33, p < 0.001; validation set: HR = 0.02, 95% CI 
0.01–0.04, p < 0.001).

Furthermore, the predictive performance of the risk 
score classifier was compared with a 9-gene signature 
[31] and a 10-gene signature [32], respectively. Accord-
ing to the studies, the 9-gene signature was established 
to predict recurrence and the 10-gene signature was 
for OS. The risk score of both signatures was calculated 

according to the coefficients provided by the primary 
studies. The C-indices were then computed to assess the 
predictive power of different models in the validation set. 
The 2-mRNA based signature had a significantly higher 
C-index in predicting PFS (p‐value = 0.023) (Additional 
file  2: Figure S8A) and OS (p‐value = 0.001) (Additional 
file 2: Figure S8B) at each follow-up duration.

Construction and calibration of the nomogram for PFS
Nomograms are the visualization of statistical predic-
tive models specifically developed to provide a more 
individualized prediction of outcome based on a com-
bination of characteristics of each patient. Based on 
the results of the multivariable analysis, a nomogram 
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Fig. 5  Forest plot of hazard ratios for PFS assessed by the prognostic classifier and clinicopathological characteristics in the a training set and b 
validation set. Error bars represent 95% confidence intervals
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comprising the independent prognostic factors was 
formulated to predict the 1-, 3-, and 5-year PFS in 
the training cohort (Fig.  6a). The risk score level that 
divided patients into low risk and the high-risk group 
was found to have the largest contribution to progno-
sis, followed by therapy outcome and FIGO stage. Each 
category within the 3 variables was assigned a score 

on the “points” scale at the top. By summing all of the 
scores and locating it on the “total points” scale, we 
were easily able to draw a vertical line down to the PFS 
probability axis. Then the estimated probability of 1-, 3- 
and 5- year PFS was determined. The calibration plots 
showed that the bias-corrected line of 1-, 3- and 5-year 
PFS were close to the ideal curve, which indicated a 
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Fig. 6  Prognostic nomogram for PFS at 1-, 3- and 5-year and the calibration curves in both cohorts. a The nomogram was developed in the training 
cohort with the risk score level, Figo stage, and therapy outcome incorporated. Depending on the value which is located on the 3 variable axes for 
each patient, a score will be assigned by drawing a line from the value on each variable axis up to the “points” scale. By summing all of the scores 
and locating it on the “total points” scale, we were easily able to draw a vertical line down to the PFS probability axis to determine the likelihood of 
1-, 3- and 5- year PFS. The calibration curves for predicting PFS at each time point in the b training set and c validations set. Nomogram-predicted 
PFS is plotted on the x-axis; actual PFS is plotted on the y-axis
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good agreement between predicted and actual PFS 
in both the training and external validation cohort 
(Fig.  6b, c). The C-index of the nomogram was 0.828 
(95% CI 0.728–0.927) in the training cohort, 0.864 (95% 
CI 0.791–0.938) in the external validation cohort.

Discussion
In this study, the sequencing data of the training cohort 
was obtained by RNA-seq experiments in FFPE tumor 
tissues from Chinese patients with CSCC. The 4 modules 
with a significantly positive relation to vital status were 
identified by WGCNA, and the selection was narrowed 
to 2 candidate mRNAs by LASSO Cox regression. Sub-
sequently, according to the optimal cut-off point of risk 
score identified by the ROC analysis, CSCC patients 
in the training set were divided into low- and high-risk 
groups whose PFS and OS were significantly different. 
The reliability of our prognostic classifier was further 
confirmed in the independent validation set, indicating 
excellent reproducibility. The expression patterns of 2 
mRNAs between low and high-risk groups in both RNA-
seq based datasets were quite similar. More importantly, 
the results of the Cox proportional hazards regression 
model indicated that our classifier had a similar prognos-
tic ability to the FIGO stage and therapy outcome, and 
could act as an independent factor for CSCC prognosis in 
both cohorts. Finally, based on the multivariate analysis 
of PFS, we built a nomogram including the FIGO stage, 
therapy outcome, and risk score level to predict PFS 
probability. The performance of the nomogram was veri-
fied in the validation cohorts from TCGA. The C-index 
(0.864) and highly fitted calibration plots revealed that 
our nomogram could provide simple and accurate prog-
nosis predictions for 1-, 3- and 5-year PFS of CSCC.

WGCNA is a widely used approach to identify hub 
genes correlated with clinical traits in the data mining 
process. However, previous studies constructed the co-
expression network mainly based on the filtering genes 
by differential expression analysis (DEA) [33, 34], which 
can lead to losing some potential genes and invalidate 
the scale-free topology assumption [35]. Recently, several 
studies have reported on the transcriptional profiles of 
cervical cancer. The first study identified a series of mark-
ers by performing the LASSO Cox regression model [31]. 
Three other studies selected and validated the prognos-
tic signatures in a single dataset [32, 36, 37]. However, 
these studies used only one algorithm to select markers 
or lacked independent validation samples. To overcome 
these issues, a combination strategy from two distinct 
machine learning algorithms was developed based on the 
data without DEA to minimize the possibility of ignor-
ing important biomarkers. Then the candidates were vali-
dated in an independent cohort.

Interestingly, both mRNAs in our model were found 
novelly to be associated with CSCC. Functions of ACAP1 
in mediating endocytic recycling [38, 39] and cell migra-
tion [40] have been investigated already, but there is lim-
ited information on human cancers. The protein product 
of ACAP1, a GTPase-activating protein (GAP), activates 
the ADP-ribosylation factor 6 (ARF6) [41]. The amounts 
of ACAP1 are higher in highly invasive breast cancer cell 
lines than in weakly invasive or noninvasive cell lines 
[42]. As a key transport effector in the recycling of integ-
rin β1, the inhibition of ACAP1 activation would lead to 
the suppression of glioma cell invasion [43]. These results 
suggest the potential involvement of ACAP1 in cancer 
progression. On the other hand, the role of RASGRP1 
in tumorigenesis and progression remains controversial. 
Zhang et  al. found that RASGRP1 was upregulated in 
hepatocellular carcinoma (HCC) and the overexpression 
of RASGRP1 was an independent prognostic risk factor 
in HCC patients [44]. In another study, the interactions 
between RASGRP1 and the RAS effector kinase CRAF 
was found to be an important factor that led to drug 
resistance in lymphoma both in  vitro and in  vivo [45]. 
On the contrary, Depeille et al. identified high RASGRP1 
expression in colorectal cancer (CRC) patients corre-
lated with a better clinical outcome [46]. Similarly, Wang 
et  al. recently indicated higher expression of RASGRP1 
was associated with better DFS and OS for triple-neg-
ative breast cancer [47]. Here, we firstly report that the 
expression level of RASGRP1 mRNA was significantly 
associated with the prognosis of CSCC. Due to the lack 
of studies, the molecular mechanisms of RASGRP1 in 
CSCC remain unclear. Although our results indicate that 
RASGRP1 may be an intriguing target for CSCC, addi-
tional experimental studies should be conducted to sup-
port these findings.

To the best of our knowledge, this is the first nomo-
gram for predicting PFS of patients with CSCC that is 
based on RNA-seq data with long-term follow-up. A 
comprehensive, easy-to-use scoring system could have a 
favorable impact on the options of treatment and follow-
up schedules for patients with an individualized predic-
tion of PFS probability. Despite our noteworthy findings, 
this nomogram is limited by the retrospective nature of 
data acquisition and the failure to integrate some rec-
ognized prognostic factors, such as primary tumor size, 
stromal invasion, and lymphovascular invasion. Further 
improvements on larger data collecting, incorporation 
of other prognostic factors, and prospective validation 
will refine our classifier. Functional analysis of these mol-
ecules may provide new insights into mechanisms under-
lying the progression of CSCC and may help with the 
discovery of potential therapeutic targets.
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In summary, we developed a risk score as defined by an 
expression pattern of 2 genes for determining the prog-
nosis of CSCC patients. The initial results are promising 
and a nomogram comprising our prognostic classifier 
may help predict individual progression risk. The novel 
co-expression network and machine learning-based 
strategy described in the study may have a broad applica-
tion in precision medicine.
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