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Whole blood transcriptomic investigation 
identifies long non‑coding RNAs as regulators 
in sepsis
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Abstract 

Background:  Sepsis is a fatal disease referring to the presence of a known or strongly suspected infection coupled 
with systemic and uncontrolled immune activation causing multiple organ failure. However, current knowledge of 
the role of lncRNAs in sepsis is still extremely limited.

Methods:  We performed an in silico investigation of the gene coexpression pattern for the patients response to 
all-cause sepsis in consecutive intensive care unit (ICU) admissions. Sepsis coexpression gene modules were identi-
fied using WGCNA and enrichment analysis. lncRNAs were determined as sepsis biomarkers based on the interactions 
among lncRNAs and the identified modules.

Results:  Twenty-three sepsis modules, including both differentially expressed modules and prognostic modules, 
were identified from the whole blood RNA expression profiling of sepsis patients. Five lncRNAs, FENDRR, MALAT1, 
TUG1, CRNDE, and ANCR, were detected as sepsis regulators based on the interactions among lncRNAs and the iden-
tified coexpression modules. Furthermore, we found that CRNDE and MALAT1 may act as miRNA sponges of sepsis 
related miRNAs to regulate the expression of sepsis modules. Ultimately, FENDRR, MALAT1, TUG1, and CRNDE were 
reannotated using three independent lncRNA expression datasets and validated as differentially expressed lncRNAs.

Conclusion:  The procedure facilitates the identification of prognostic biomarkers and novel therapeutic strategies of 
sepsis. Our findings highlight the importance of transcriptome modularity and regulatory lncRNAs in the progress of 
sepsis.
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Background
Sepsis refers to the presence of a known or strongly sus-
pected infection coupled with systemic and uncontrolled 
immune activation causes multiple organ dysfunction 
with worldwide mortality among 17–26% [1, 2]. Common 

symptoms of sepsis contain  fever,  increased heart 
rate,  increased breathing rate and confusion, while spe-
cific symptoms include a cough with pneumonia or pain-
ful urination with a kidney infection. Sepsis can progress 
to septic shock with dramatically dropped blood pressure 
leading to a much higher mortality of 40% [3]. However, 
sepsis is a complex heterogeneous disease implicating a 
variety of cellular processes and we can hardly identify 
reliable diagnostic and prognostic biomarkers for sepsis 
in clinical [4].

High-throughput gene expression analysis can detect 
tens of thousands of genes simultaneously, which 
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provides vast opportunities to improve prognostic accu-
racy and address clinical questions that otherwise can-
not be answered. Transcriptomic strategies have been 
adopted among numerous diseases to investigate differ-
ential expression analysis, coexpression pattern, survival 
analysis, prediction modeling, etc., leading to substantial 
advances in the identification of promising diagnostic 
biomarkers as well as clinical use and disease treatment 
[4–6]. Poll and his colleagues have utilized the high-
throughput blood gene expression profiling to carry 
out the comparative analysis of the systemic response 
for sepsis patients diagnosed in distinct subgroups and 
endotypes, such as community-acquired and hospital-
acquired pneumonia, bacterial sepsis and fungal sepsis, 
hyper-inflammatory and hypo-inflammatory, and criti-
cally ill patients in different platelet counts [7–10]. Gene 
expression signatures and candidate plasma proteins 
have been identified and characterized from critically ill 
patients with different subtypes of sepsis [11–13].

Also, biological network analysis coupled with func-
tional module analysis have been commonly deployed 
in the domain of cancer study, to probe the tumor bio-
genesis and dysfunction in patients with cancer, which 
facilitated the pathway and mechanism studies that oth-
erwise would be hardly discovered [14]. We previously 
designed a procedure SMILE for the identification of 
protein modules taking account of the subcellular locali-
zation of proteins [15, 16]. The resulting modules showed 
high correspondence with known modules and canoni-
cal pathways. Moreover, a computational framework was 
proposed to predict moonlighting lncRNAs by clustering 
the protein interaction network to determine modules 
with independent functions [17].

Long non-coding RNAs (lncRNAs) are a type of tran-
scripts with more than 200 nucleotides that have low 
protein-coding potential, which function in a variety of 
cellular processes and usually serve as disease diagnostic 
and prognostic markers [17, 18]. Numerous studies have 
implicated the mutations and dysregulations of lncRNAs 
contribute to the development of immunity diseases and 

cancers [19–21]. Accumulating evidence has demon-
strated lncRNAs playing roles as competing endogenous 
RNAs (ceRNAs) to determine the fate of gene transcripts 
in a variety of diseases [22, 23]. However, the role of 
lncRNAs in sepsis remains largely unknown, although 
sporadic works reported that organ failure in sepsis is 
associated with the expression change of lncRNAs in 
some tissues, i.e., liver, kidney, and skeletal muscle [24]. 
Thus, in this context, we need to find new lncRNA thera-
peutic targets and investigate their regulatory mecha-
nisms in sepsis for the severely ill sepsis patients.

We comprehensively performed an in silico investi-
gation of the gene coexpression pattern for the patients 
response to all-cause sepsis in consecutive intensive care 
unit (ICU) admissions. Sepsis can be caused by a broad 
range of pathogens, including viruses, bacteria, fungi, and 
parasites. We investigate sepsis in this study regardless of 
the source of infection. We identified diagnostic modules 
based on the whole blood RNA expression profiles of 
sepsis patients, and subsequently predicted sepsis asso-
ciated lncRNAs on the basis of the interactions among 
lncRNAs and the identified coexpression modules. After 
that, we established five candidate lncRNA regulators 
of sepsis and investigated their regulatory mechanism 
through miRNAs playing in a competing endogenous 
RNA fashion. Ultimately, FENDRR, MALAT1, TUG1, 
and CRNDE were reannotated using three independ-
ent expression cohorts and validated as differentially 
expressed lncRNAs.

Materials and methods
Gene expression datasets and data preprocessing
Microarray dataset GSE65682 collected from the NCBI 
GEO database were used as the primary dataset in this 
study (Table  1) [25]. Raw array data preprocessing was 
performed using the affy package in the R environment 
[26]. The raw gene expression matrixes were normal-
ized by the RMA method [27–29]. Illumina chip dataset 
GSE69528 was adopted as validation dataset. The data 
were also preprocessed using R, which included quantile 

Table 1  Whole blood expression datasets

GSE Number Tissue Control Sepsis Platform

mRNA expression:

 GSE65682 [13] Whole blood 42 522 Affymetrix Human Genome U219 Array

 GSE69528 [49] Whole blood 28 83 Illumina HumanHT-12 V4.0 expression BeadChip

lncRNA expression:

 GSE95233 [50] Whole blood 22 51 Affymetrix Human Genome U133 Plus 2.0 Array

 GSE57065 [51] Whole blood 25 28 Affymetrix Human Genome U133 Plus 2.0 Array

 GSE28750 [41] Whole blood 20 10 Affymetrix Human Genome U133 Plus 2.0 Array
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normalization, flooring all intensities < 10 to 10, and log2 
transformation.  Only the common genes detected in 
both datasets remained for analysis. Average expression 
intensities were used when multiple probe sets mapped 
an individual gene symbol. The genefilter algorithm was 
used to filter genes with interindividual variability over 
0.5 [30], resulting in 11,222 most variable genes to con-
struct the sepsis coexpression network. To overcome 
multiple comparison, Benjamini–Hochberg adjusted 
probabilities were used to define significance throughout 
the paper [31]. Adjusted P-value of 0.01 was used in this 
study if not stated otherwise.

Series GSE65682 was analyzed using the Affym-
etrix HG-U129 platform, including 42 healthy samples 
and 760 patients admitted to the ICU with sepsis. 522 
patients with sepsis among them were picked up for fur-
ther analysis. We used the dataset GSE65682 as the core 
discovery dataset and the primary results were based on 
this dataset, because it has the largest size of whole blood 
septic samples of adults and a large number of the sam-
ples have clinical information. Series GSE69528 contains 
83 sepsis and 28 healthy whole blood samples analyzed 
using Illumina Human HT-12 V4.0 expression BeadChip. 
This dataset was used for the validation of module iden-
tification, as it has the second largest size of adult whole 
blood sepsis samples.

Coexpression network construction
The sepsis expression cohort was independently pro-
cessed using the weighted gene coexpression network 
analysis (WGCNA) for both datasets [32, 33]. A coex-
pression matrix is build up firstly, which is an adjacent 
matrix measuring the Pearson Correlation Coefficient 
(PCC) of all gene pairs. Then, a power function f(x) = xb is 
used to tune the weighted matrix or network to be scale-
free. A common linear model that regressed the connec-
tivity frequency on gene connectivity is used to assess the 
network scale-free degree, with the fitting index R2 close 
to 1 indicates perfect organized. b was set as 6 for both 
datasets to construct the scale-free networks (Additional 
file 1: Figure S1 and S2). Afterward, the weighted coex-
pression matrix is transformed into a topological overlap 
matrix (TOM), which is a classical algorithm considering 
both direct and indirect interactions of all the gene mem-
bers in the network, resulting in biologically more mean-
ingful modules. Modules with gene number over 20 were 
determined for further analysis.

Differentially expressed genes and modules
To identify differentially expressed genes (DEGs) between 
sepsis and normal samples, gene expression data were 
analyzed by the two-tailed t-test with a threshold of 0.01 
and log2 transformed absolute Fold Change (FC) value of 

1. A module is defined as Differentially Expressed Mod-
ule (DEM) if the module significantly overrepresents the 
DEGs. Similarly, a module is defined up-regulated (or 
down-regulated) DEM if the module significantly over-
represents the up-regulated (or down-regulated) DEGs. 
The statistical significance is assessed by the Hypergeo-
metric test with p-value less than 0.01, which is defined 
as follows,

where n is the network size or the total number of genes 
of the coexpression network, m is the module size, x 
is the number of DEGs, and i is the number of DEGs 
included in the module. The clusterProfiler package in R 
was adopted to perform the functional annotation of the 
identified DEGs and gene modules [34]. The Hypergeo-
metric test was also used to measure the consistence of 
two modules. Two modules, one from the primary data-
set while the other from the validation dataset, are con-
sidered reproducible or significantly overlapped when 
the hypergeometric test P value is less than 0.01.

Survival associated modules
Principal component analysis (PCA) was used to evalu-
ate whether gene modules are relevant to the clinical 
outcome of sepsis patients. For each module, the first 
principal component of its gene members is calculated as 
module eigengene (ME), which served as the most rep-
resentative gene expression of all genes in a module [18]. 
It was used to risk-stratified the sepsis patients into two 
subgroups. Then, we examined the correlation between 
ME and patient overall outcome to compute module-
trait relevance. A module is associated with a survival 
outcome if the correlation p-value is below 0.05. Kaplan–
Meier survival curves were used for illustrating the result 
of survival analysis, in which ME is the risk score assess-
ing the prognosis ability. For the 760 sepsis samples of the 
discovery dataset, only 479 of them having clinical infor-
mation were utilized for survival analysis.

ncRNA‑module interaction
The interactions between lncRNAs and gene products 
were obtained from two databases, LncRNA2Target v2.0 
[35] and RAID v2.0 [36]. LncRNA2Target v2.0 is a high-
confidence resource containing the relationships between 
lncRNAs and their target genes. We only adopted the lit-
erature mining low-throughput interactions. RAID v2.0 
is an online repository of RNA–protein interactions, 
including interactions between proteins and lncRNAs, 
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circRNAs, pseudogenes, and miRNAs, and only the 
experimental lncRNA-protein interactions were applied 
in this study. Together, 1724 lncRNAs with 31,179 gene/
protein targets were established for further analysis. We 
define a lncRNA as module regulator if the genes in the 
module significantly overrepresent the target genes of the 
lncRNA (p-value < 0.01, hypergeometric test). The same 
strategy was also adopted for the miRNA-module inter-
action, where the miRNA targets were obtained from 
mirCode [37], mirDB [38], and mirTarBase [39]. For com-
peting endogenous RNA analysis, only the lncRNA-mod-
ule pairs sharing at least one miRNA were determined as 
a lncRNA-miRNA-mRNA interaction. Additionally, we 
performed a literature search of the sepsis related miR-
NAs and collected 30 unique miRNAs as the sepsis diag-
nostic miRNAs (Additional file 2: Table S1).

Workflow of sepsis lncRNA identification
As shown in Fig. 1, the main procedure consists of the 12 
steps as follows:

1)	 Preprocess the raw data.
2)	 Establish the gene expression matrix for the genes 

with high variation.
3)	 Construct the gene coexpression network.
4)	 Identify gene coexpression modules using WGCNA.
5)	 Eliminate unstable modules by another expression 

dataset.
6)	 Screen differentially expressed genes (DEGs).
7)	 Identify modules enriched with DEGs (DEMs).
8)	 Calculate module eigengene and perform survival 

analysis.
9)	 Identify survival associated modules (SAMs).

Fig. 1  Workflow for the identification of sepsis lncRNA. DEGs, differentially expressed genes
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10)	Define sepsis modules by integrating DEMs and 
SAMs.

11)	Construct the lncRNA-module interaction net-
work.

12)	Select sepsis candidate lncRNAs that are topologi-
cally critical.

We can obtain the sepsis lncRNA candidates using the 
procedure once the gene expression data, clinical data, 
and lncRNA-gene interaction data are imported.

Reannotation of gene expression datasets
To explore how the lncRNAs are expressed in sepsis, we 
reannotated lncRNAs based on three sepsis adult whole 
blood gene expression datasets, GSE95233, GSE57065, 
and GSE28750. All of them are on the same platform 
of Affymetrix Human Genome U133 Plus 2.0 that were 
designed for detecting the expression intensity of cod-
ing genes. The platform of Affymetrix Human Genome 
U133 Plus 2.0 Array has been widely used for gene 
expression profiling of patient with sepsis [40, 41]. On 
top of this, it has the most comprehensive coverage of 
the annotated human lncRNAs. Using the latest NetAffx 
Annotation File, HG-U133_Plus_2 Annotations (Release 
35, 04/16/15), we reannotated the lncRNAs of the three 
datasets as follows: (1) The RefSeq ID labeled with NR_ 
or XR_, indicative of non-coding RNAs, are retained; (2) 
the Ensemble gene IDs annotated with antisense, pro-
cessed transcripts, sense overlapping, non-sense medi-
ated decay, sense intronic or lincRNA are retained; (3) 
pseudogenes, rRNAs, microRNAs, and other small RNAs 
including tRNAs, snRNAs and snoRNAs are filtered out. 
Finally, 5016 probesets were detected as lncRNAs repre-
senting 3640 unique lncRNAs. Probesets encoding more 
than one lncRNA were averaged.

Results
Overview of workflow
We aimed to construct a lncRNA-module network 
composed of modules associated with sepsis pathol-
ogy and lncRNAs with prognostic potential. To con-
struct the network, we started by collecting sepsis 
gene expression datasets. Two datasets GSE65682 and 
GSE69528 were used in this study and were served as 
the primary and validation datasets, respectively. Then 
the analysis was performed mainly on the primary 
dataset following the procedure in Fig.  1. (1) Preproc-
essing the raw data using RMA. (2) Establishing the 
gene expression matrix for the genes with high expres-
sion variance. (3) Constructing the gene coexpression 
network represented by the Pearson correlation coeffi-
cients of all gene pairs. (4) Identifying gene coexpres-
sion modules using WGCNA. (5) Filtering out unstable 

modules by another validation expression dataset. Only 
the modules detected in both datasets were retained 
for subsequent analysis. (6) Screening DEGs between 
the sepsis and normal samples for the primary dataset. 
(7) Identifying DEMs using hypergeometric test. (8) 
Calculating module eigengene (ME) and perform sur-
vival analysis. (9) Identifying survival associated mod-
ules (SAMs) by examining the correlation between ME 
and patient survival outcome. (10) Combing DEMs and 
SAMs and define them as sepsis modules. (11) Con-
structing the lncRNA-module interaction network. The 
interactions were established using hypergeometric test 
to assess whether a sepsis module significantly over-
represents the target genes of a lncRNA. (12) Select the 
hub lnRNAs connecting more than three sepsis mod-
ules as sepsis candidate lncRNAs. Five sepsis lncRNAs 
were ultimately identified, FENDRR, MALAT1, TUG1, 
CRNDE, and ANCR.

Coexpression network and modules
The primary results were based on the GSE65682 data-
set as it has the largest sample size. For this working 
dataset, we constructed a coexpression network con-
sisting of 11,222 genes with expression variance over 
0.5 across the sepsis patient samples. The topological 
overlap matrix illustrates an apparent organizational 
structure of the sepsis gene coexpression network, 
demonstrating that sepsis configures an array of spe-
cific coexpression structure. In total 59 modules were 
detected with sizes ranging from 30 to 750 (Fig.  2a). 
Different coexpression modules are highlighted in dis-
tinct colors. The detailed procedure of module iden-
tification and the module dendrogram are shown in 
Material and Method section and Additional file  1: 
Figure S1.

Using the same procedure, we also identified another 
set of gene module based on another independent micro-
array dataset GSE69528 for validation (Additional file 1: 
Figure  S2 and S3). Common genes detected in both 
datasets were used for the coexpression network con-
struction. Only the reproducible modules were retained 
for the subsequent analysis to investigate the expres-
sion change of modules during disease progression. As 
shown in Fig.  2b, rows are modules identified from our 
primary dataset GSE65682, while columns are modules 
determined from the validation dataset GSE69528. Sig-
nificance of pairwise module overlap was measured by 
the -log10 transferred hypergeometric test p-values. It is 
clear that a high reproducibility was achieved for the two 
module lists. 52 out of 59 modules have at least one sig-
nificant (P < 0.01, hypergeometric test) overlapping mod-
ule in the validation dataset (Fig. 2c).
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Establishment of sepsis modules
Using the t-test p-value of 0.01 and absolute fold change 
of 2 as thresholds, we screened 750 down-regulated 
DEGs and 391 up-regulated DEGs from the primary 
dataset (Fig.  3a). The down-regulated DEGs are signifi-
cantly involved in biological processes like neutrophil 
mediated immunity, defense response to bacterium, 
platelet degranulation, etc. (Fig.  3b), while the up-regu-
lated DEGs are enriched in the functional categories of 
T cell activation, Lymphocyte activation, T cell receptor 
signaling pathway, etc. (Fig. 3c).

To determine the expression difference of modules 
between the sepsis and normal samples, we adopted the 
hypergeometric test to evaluate whether a module sig-
nificantly overrepresents up-regulated or down-regulated 

DEGs. A module is referred to as Differentially Expressed 
Module (DEM) if a substantial large fraction of genes is 
differentially expressed, indicating distinct expression 
pattern between the sepsis patients and the healthy sam-
ples. Thus, some modules are over expressed in sepsis 
whereas some others are low expressed. In total ten up-
regulated and 13 down-regulated DEMs were detected 
from the sepsis coexpression network (Fig. 2d).

Moreover, to identify the modules associated with clin-
ical outcome in sepsis, we performed multivariate Cox 
regression analysis to assess the significance of the cor-
relation between patient overall survival and the Eigen-
gene (EG) values of each module. As shown in Fig. 3e, the 
risk scores of the EG values were sorted with correspond-
ing survival information for module 32. The dotted line 

Fig. 2  Module identification. a Identification of co-expression modules from the topological overlap matrix of GSE65682 using WGCNA. b 
Heatmap shows the reproducibility of two module lists. Rows represent modules identified from GSE65682 while columns represent modules 
from GSE69528. Grid color corresponds to –log10 transferred hypergeometric test P-values of the overlap of two modules. c Venn diagram of the 
identified modules from the two datasets. d Overview of the sepsis modules, including up-regulated DEMs, down-regulated DEMs, and SAMs. DEM, 
differentially expressed modules; SAMs, survival associated modules
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in the middle of the figures corresponds to the median 
of EG value, which stratifies the sepsis patients into two 
subgroups with high and low risk. Figure  3d illustrates 
the Kaplan–Meier curves for the patients with clinical 
information according to the EG of M32. Patients with 
high EG values show much poorer prognostic values than 
those with low EG values, indicating that the dysfunction 
of M32 is close related to the prognosis of sepsis patients. 
The expression profiling of the DEGs in module 32 are 
illustrated as a heatmap in Fig. 3f. In total, we identified 
14 modules from sepsis samples whose EGs are sub-
stantially correlated with patient overall survival and we 
defined them as survival-associated modules (SAM).

Characteristic of sepsis modules
31 sepsis modules, including both SAM and DEM, were 
screened from the primary dataset, implying novel gene 
signatures associated with sepsis pathology. We note an 
overlap of six modules (around 20%) between the two 
sets of SAM and DEM. Three of them are down-regu-
lated, i.e., M22, M32, and M4, while the other three are 
up-regulated, i.e., M15, M23, and M47. The down-reg-
ulated module M22, for instance, consists of 22 genes 
closely co-expressed with each other; nine out of them 
are down-regulated DEGs playing as hub genes in the 

module (Fig. 4a). Kaplan–Meier curves were plotted for 
the rank-ordered Eigen Module values of M22 to carry 
out the 28-day survival analysis (Fig.  4b). It is appar-
ent that patients with high EG value have substantial 
shorter survival time than those with low EG value. M22 
are mainly implicated in biological processes like T cell 
activation, regulation of lymphocyte activation, leuko-
cyte cell–cell adhesion, etc. (Fig.  4c). For the up-regu-
lated module M47, it has 26 gene members and nine of 
them are DEGs up-regulated and more topologically 
important (Fig. 4d). The Kaplan–Meier curves show that 
patients with high EG value of M47 have a significantly 
worse prognosis than the low EG ones (Fig. 4e). M47 are 
involved in function categories of neutrophil mediated 
immunity as well as neutrophil activation and degranula-
tion (Fig. 4f ). Some other sepsis modules and their corre-
sponding Kaplan–Meier curves are shown in Additional 
file 1: Figure S4 and S5.

Interestingly, we found that DEGs in the sepsis mod-
ules, either up-regulated or down-regulated, are prone 
to play a central role topologically in comparison to the 
non-DEGs. For instance, DEGs in M47 have an average 
correlation coefficient of 0.6 while the connectivity is 
merely 0.45 for the other genes (p < 3.96E−05, Mann–
Whitney U test). Similar results can be observed for the 

Fig. 3  Sepsis module identification. a Volcano plot shows the differentially expressed genes. b, c) Functional analysis of the up- and 
down-regulated DEGs, respectively. d Kaplan–Meier curves of patients with sepsis at high (red) or low (light green) risk stratified by the EG scores of 
module 32. e Distribution of the EG scores (upper panel) and distributions of the survival time of two groups of patients (lower panel). The dotted 
line represents the median EG score dividing patients into two groups of high (red) and low risk (light green). f Heatmap of the expression profiles 
for the genes in module 32. Rows represent genes while columns represent patients
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other four modules of both SAM and DEM, including 
M15, M22, M23, and M45 (Fig.  4g). The DEGs of M32 
are overall more correlated with module gene members 
in expression, although not significantly. Generally, the 
correlation coefficients of the DEGs is significantly higher 
than that of the non-DEGs in a module, suggesting that 
genes differentially expressed may drive the biogenesis or 
dysfunction of the coexpression gene modules.

Sepsis lncRNA candidates
We constructed a lncRNA-module interaction network 
including 251 interactions between 23 sepsis mod-
ules and 201 lncRNAs (Fig.  5a). Although most of the 

lncRNAs regulate none or merely a single sepsis mod-
ule (Fig.  5b), FENDRR, MALAT1, TUG1, CRNDE, and 
ANCR connect multiple sepsis modules with the con-
nectivity of 14, 10, 10, 8, and 5, respectively, which are 
expected to have high potentials to be involved in the 
sepsis progress (Additional file 3).

A subnetwork concentrating on the five sepsis can-
didate lncRNAs and their regulated sepsis modules 
is shown on the bottom panel of Fig.  5a. FENDRR, the 
FOXF1 adjacent non-coding developmental regulatory 
RNA, plays as a hub regulator mediating 14 sepsis mod-
ules in the lncRNA-module interaction network. Both 
MALAT1 and CRNDE regulate ten sepsis modules and 

Fig. 4  Identification of sepsis modules. a A co-expression module enriched of up-regulated DEGs. Vertexes correspond to genes and edges 
correspond to expression correlation. Only the edges with the absolute value of PCC greater than 0.5 are shown. Up-regulated DEGs are colored 
in red while down-regulated DEGs are colored in blue. b Kaplan–Meier curves of module 22. c Enriched GO biological processes of Module 22. d A 
co-expression module enriched of down-regulated DEGs. e Kaplan–Meier curves of module 47. f Enriched GO biological processes of Module 47. g 
The difference of mean correlation coefficient between DEGs and the other genes in different modules
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they share seven common modules, six out of them are 
down-regulated. TUG1 interacts with six down-regu-
lated and two up-regulated DEMs, indicating that TUG1 
tend to involve in under expression pathways. In con-
trast, ANCR (Angelman syndrome chromosome region) 
links four up-regulated DEMs and only one down-regu-
lated DEMs, suggesting that ANCR may mediate some 
over expression pathways implicated in sepsis.

Furthermore, we investigated the regulatory mecha-
nism of how the lncRNAs regulate the modules in sep-
sis from the perspective of competing endogenous RNAs 
(ceRNAs), which impact the translation rate of mRNAs 
by competing for shared miRNAs [22, 23]. lncRNAs 
are able to share the same miRNA response elements 

with mRNAs transferred by the sepsis modules, thereby 
sponging miRNAs intended to bind to these mRNAs and 
depressing the overall expression level of sepsis modules 
(Fig. 5c). Several miRNAs have been previously validated 
as potential regulators in sepsis, such as miR-34a, miR-
206, and miR-199b-5p [42]. By these miRNAs, we found 
that CRNDE regulates module 5 and module 20 through 
miR-199b-5p (CRNDE ⟶ miR-199b-5p⟶ M5/M20), 
indicating that CRNDE acts as a miRNA sponge of miR-
199b-5p and thereby modulating the transcripts of genes 
in module 5 and module 20 (Fig. 5d). Similarly, MALAT1 
regulates module 7 and module 20 through the miR-
206-mediated lncRNA-mRNA interactions (MALAT1 
⟶ miR-206 ⟶ M7/M20). The in-detail information of 

Fig. 5  Sepsis candidate lncRNAs. a Overview of the lncRNA-module network. The bottom panel illustrate the subnetwork of sepsis candidate 
lncRNAs and interacting modules. Up-regulated DEMs are colored in red, down-regulated DEMs are colored in blue, and SAMs are framed in red 
circle. The node size of modules corresponds to module size. b Module connectivity of lncRNAs. The pie plot indicates the proportion of lncRNAs 
with different connectivity. The bar plot shows the lncRNAs linking more than one module. c ceRNA regulatory mechanism in sepsis. Short curves 
represent miRNAs and ellipses stand for MREs of lncRNAs or gene transcripts. The lncRNA sharing MREs with a gene module were hypothesized to 
regulate the module by competing for microRNA binding. d ceRNA interactions. Red and blue lines indicate lncRNA-miRNA and miRNA-module 
interactions, respectively. Bold black line represents the competing endogenous relationship. e Secondary structure of FENDRR, MALAT1, TUG1, and 
CRNDE. f Description of the sepsis lncRNA candidates. ceRNA, competing endogenous RNA. MREs, miRNA response elements. DEMs, differentially 
expressed modules. SAMs, survival associated modules
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these candidate lncRNAs including secondary structure 
and miRNA targets are provided in Fig. 5e, f.

Expression pattern of candidate lncRNAs
Following an lncRNA reannotation pipeline (see Meth-
ods), we reannotated the probes from three array data-
sets to obtain the lncRNA expression profiling. The gene 
coverages among distinct platforms are different. The 
platform Affymetrix HG-U133 Plus 2.0 Array detects 
much more genes than Affymetrix HG-U219 Array 
and the Illumina one. In other words, GSE65682 and 
GSE69528 contain quite limited number of lncRNAs 
for further differential analysis. After reannotation, we 
separately screened the differentially expressed lncRNAs 
(DELs) from the datasets of GSE95233, GSE57065, and 
GSE28750. Our finding shows that four out of the five 
sepsis lncRNA candidates are differentially expressed in 
at least one independent dataset except for ANCR, whose 
probes were not covered by the array platform (Fig.  6). 
Specifically, CRNDE is significantly up-regulated in the 
sepsis samples of all the three datasets, in which the (log2 
transferred) fold changes are 0.43, 0.55, and 0.66, respec-
tively. FENDRR and MALAT1 are significantly down-
regulated in two datasets, while TUG1 is differentially 
expressed only in the dataset of GSE95233.

CRNDE, an oncogene that is usually overexpressed 
in tumor cells, contributes a lot to cellular proliferation, 
migration, invasion, and apoptosis [43]. More impor-
tantly, CRNDE can modulate the TLR3/NF-κB cytokine 
signaling pathway to trigger inflammation [44, 45], sug-
gesting that CRNDE may serve as a regulator in sepsis. In 
sepsis, genes or gene modules inducted by MALAT1 may 
modulate their expression pattern in endothelial cells, 
which is critical as MALAT1 has been reported to medi-
ate inflammation in traumatic brain injury [45]. Also, it 
was reported that TUG1 is able to affect the development 
of sepsis-associated acute kidney injury via modulating 
NF-κB pathway [46]. FENDRR has never been mentioned 
in the induction or progress of sepsis before, so it can be 
considered as a novel lncRNA regulator for sepsis.

Discussion
We used a module-centric algorithm to identify sepsis 
lncRNAs via a network linking lncRNAs and coexpres-
sion modules. Twenty-three sepsis modules, including 
both differentially expressed modules and prognostic 
modules, were detected from the sepsis whole blood gene 
expression profiling. We identified five sepsis lncRNAs, 
FENDRR, MALAT1, TUG1, CRNDE, and ANCR, all of 
which connect five or more sepsis modules, indicating 
their functions are highly related with biological pro-
cesses of sepsis. Further, we probed the regulatory mech-
anism of CRNDE and MALAT1 which act as competing 

endogenous RNAs (ceRNAs). CRNDE interacts with 
module 5 and module 20 through miR-199b-5p, while 
MALAT1 sponges miR-206 to regulate the target module 
7 and module 20. At last, the five sepsis lncRNAs were 
independently validated in three gene expression data-
sets of sepsis. Four out of them were reannotated and 
detected as differentially expressed lncRNAs in at least 
one dataset.

Genome-wide expression study of sepsis is relatively 
at its infancy and several technologies prevalently used 
in other diseases have not been widely adopted in sep-
sis. In order to detect the sepsis lncRNAs, we integrated 
the conventional approaches including gene coexpres-
sion, module identification, differential analysis, survival 
analysis, and lncRNA-gene interaction, as well as math-
ematical and statistical algorithms. We comprehensively 
studied the gene coexpression pattern of patients with 
all-cause sepsis in ICU admissions in this study, although 
sepsis is a heterogeneous immunity disease and the mor-
talities of sepsis patients in distinct subtypes are substan-
tially different [47]. In the future, we will investigate the 
coexpression pattern of patients with sepsis in specific 
subtypes, such as community-acquired and hospital-
acquired pneumonia, bacterial sepsis and fungal sepsis, 
hyper-inflammatory and hypo-inflammatory, and endo-
types classified by platelet counts [7, 9].

Since the interactions among lncRNAs and target genes 
are far from complete, the discovery of sepsis lncRNAs 
is limited by the interaction coverage [17, 18]. An alter-
native strategy is to produce the genome-wide RNA-seq 
data including both coding and non-coding genes, then a 
coding-non-coding network can be constructed and the 
association among coding and non-coding genes would 
be well established [48]. Undoubtedly, co-expression cor-
relation is a key characteristic in gene function studies, 
although it is often biased due to the small simple size 
and the disproportionately large contributions of a frac-
tion of samples. To improve the reliability, we will use the 
combination of protein–protein interactions and gene 
co-expression correlations to identify gene modules that 
are active in sepsis samples in future studies.

This is the first work computationally detecting the 
sepsis lncRNAs using coexpression and network analy-
sis for application in the intensive care unit environ-
ment. Also, FENDRR is first proposed as a sepsis related 
lncRNA. The predicted sepsis lncRNAs is helpful for the 
diagnosis of sepsis and can improve our understanding 
of sepsis progress and development, although further 
experimental validation is required to elaborate how 
lncRNAs modulate the molecular signaling pathways of 
sepsis. The procedure will facilitate the identification of 
other types of sepsis-related molecules, such as circRNAs 
and pseudogenes, for the patients in critical care settings.
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Conclusion
This study identified five lncRNAs as sepsis regulators 
based on the interactions among lncRNAs and the iden-
tified sepsis modules, four of which were differentially 
expressed in three independent datasets. The procedure 
facilitates the identification of prognostic biomarkers and 
novel therapeutic strategies of sepsis. Our findings high-
light the importance of transcriptome modularity and 
regulatory lncRNAs in the progress of sepsis.
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https://doi.org/10.1186/s12967-020-02372-2
https://doi.org/10.1186/s12967-020-02372-2


Page 12 of 13Cheng et al. J Transl Med          (2020) 18:217 

groups with higher or lower EG value for module 15, 23, 45, and 36, 
respectively. Figure S5. Example of the coexpression modules enriched of 
up (31 and 37) or down-regulated DEGs (45 and 39). Vertexes correspond 
to genes and edges correspond to expression correlation. Only the edges 
with the absolute value of PCC greater than 0.5 are shown. Up-regulated 
DEGs are colored in red while down-regulated DEGs are in blue.

Additional file 2: Supplementary table of the curated sepsis miRNA 
biomarkers.

Additional file 3: Survival-associated modules.
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