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Abstract 

Background:  Increasing evidences have found that the clinical importance of the interaction between hypoxia and 
immune status in gastric cancer microenvironment. However, reliable prognostic signatures based on combination of 
hypoxia and immune status have not been well-established. This study aimed to develop a hypoxia-immune-based 
gene signature for risk stratification in gastric cancer.

Methods:  Hypoxia and immune status was estimated with transcriptomic profiles for a discovery cohort from GEO 
database using the t-SNE and ESTIMATE algorithms, respectively. The Cox regression model with the LASSO method 
was applied to identify prognostic genes and to develop a hypoxia-immune-based gene signature. The TCGA cohort 
and two independent cohorts from GEO database were used for external validation.

Results:  Low hypoxia status (p < 0.001) and high immune status (p = 0.005) were identified as favorable factors for 
patients’ overall survival. By using the LASSO model, four genes, including CXCR6, PPP1R14A and TAGLN, were identi-
fied to construct a gene signature for risk stratification. In the discovery cohort (n = 357), patients with low risk yielded 
better outcomes than those with high risk regarding overall survival across and within TNM stage subgroups. Multi-
variate analysis identified the hypoxia-immune-based gene signature as an independent prognostic factor (p < 0.001). 
A nomogram integrating the gene signature and known risk factors yielded better performance and net benefits in 
calibration and decision curve analyses. Similar results were validated in the TCGA (n = 321) and two independent 
GEO (n = 300 and n = 136, respectively) cohorts.

Conclusions:  The hypoxia-immune-based gene signature represents a promising tool for risk stratification tool in 
gastric cancer. It might serve as a prognostic classifier for clinical decision-making regarding individualized prognosti-
cation and treatment, and follow-up scheduling.
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Background
Gastric cancer is a common cancer and a leading cause 
of cancer-related deaths worldwide [1]. The clinico-
pathologic characteristics are routinely revealed though 
Lauren/WHO classification and tumor-node-metasta-
sis (TNM) staging system for prognostication which is 
also critical for the selection of appropriate treatment 
[2]. However, gastric cancer is a heterogeneous disease, 
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and its outcomes can vary significantly even for patients 
with similar clinical features and treatment regimens, 
suggesting that clinicopathologic characteristics and 
current classifications are insufficient for prognostica-
tion and risk stratification [3, 4]. Hence, identification of 
novel markers providing more predictive value is highly 
demanded for improving the prognostication for gastric 
cancer.

Gastric cancer tissue is highly heterogeneous, where 
malignant cells are in an intricate relationship with tumor 
microenvironment, including immune cells, vessels and 
fibroblasts [5–7]. Either through structural and func-
tional abnormality of tumor vasculature or deterioration 
of the diffusion geometry of blood vessels, the vessels and 
fibroblasts cells of tumor microenvironment influence 
O2 perfusion and diffusion, and therefore, leading to the 
development of hypoxia in that tissue area [8]. Hypoxia 
has been reported as one of characteristic hallmarks of 
solid tumors that directly contribute to the malignant 
properties of cancers, including tumor progression, inva-
sion and metastasis [9–12]. Meanwhile, immune cell is 
also a potentially powerful force that can prevent or slow 
tumor growth, which is associated with tumor invasion 
and metastasis [13–15]. Interestingly, increasing evi-
dences have found that the direct or indirect interaction 
between hypoxia and immune status in gastric cancer 
microenvironment [16, 17], although their underlying 
mechanisms remains unclear.

In this study, we speculated that immune and hypoxia 
interaction could provide prognostic value for gastric 
cancer patients. Through a series of systematic analyses, 
we developed a novel gene signature by incorporating 
immune and hypoxia status into the current clinico-
pathologic characteristics and staging system, aimed to 
improve the prognostication of gastric cancer.

Methods
Patient cohort and data preparation
The discovery cohort contained 357 gastric cancer 
patients retrieved from the Gene Expression Omni-
bus (GEO, available at: https​://www.ncbi.nlm.nih.gov/
geo/) database (GSE84437). Three independent cohorts 
were used for external validations. The Cancer Genome 
Atlas (TCGA) cohort contained 321 patients from the 
“TCGA-STAD” project and the corresponding level-3 
gene expression data were obtained from the Genomic 
Data Commons (available at: https​://porta​l.gdc.cance​
r.gov) Data Portal on Nov 11, 2019. The ACRG cohort 
included 300 patients from the Asian Cancer Research 
Group study (GSE66229). To examine the survival ben-
efit of chemotherapy for patients in different risk groups, 
a cohort containing 136 patients (named as “CHEM” 
cohort) from the GEO database (GSE15459) was used for 

further analyses. The study complied with the principles 
set forth in the Declaration of Helsinki. Access to the de-
identified linked dataset was obtained from the TCGA 
and GEO databases in accordance with the database 
policy. For analyses of de-identified data from the TCGA 
and GEO databases, institutional review board approval 
and informed consent were not required.

For all expression datasets from the GEO database, 
background correction and quartile normalization were 
performed for each series by applying the robust multi-
array average algorithm [18]. The average value of gene 
symbols with multiple probes was calculated as expres-
sion level. For datasets from TCGA database, mRNA 
expression was quantified with fragments per kilobase of 
exon per million reads mapped (FPKM). For all cohorts, 
only patients with available expression profiles, clinico-
pathologic and survival data were included for analyses. 
The primary prognosis endpoint was overall survival and 
survival curves were estimated using the Kaplan–Meier 
method.

Identification of hypoxia status and hypoxia‑related DEGs
To deduce the hypoxia status, an algorithm of t-dis-
tributed Stochastic Neighbor Embedding (t-SNE) was 
applied [19]. t-SNE, a nonparametric, unsupervised 
method, can divide or condense patients into several dis-
tinct clusters, based on given signatures or hallmarks. 
The hallmark gene sets of hypoxia including 200 genes, 
were downloaded from the Molecular Signatures Data-
base (MSigDB version 6.0). Based on the clusters, two 
groups including “hypoxiahigh” and “hypoxialow” groups 
were identified to estimate the hypoxia status. Further, 
expression changes of target genes involved in HIF-1 
signaling pathway were analyzed between the hypoxiahigh 
and hypoxialow groups to explore their association with 
hypoxia. These targets were retrieved from the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) database 
(https​://www.kegg.jp/; ID:04066), including 15 genes 
involved in “Increase oxygen delivery” and 11 genes 
related to “Reduce oxygen consumption”. The limma 
algorithm was used to identify differentially expressed 
genes (DEGs) between the two groups [20]. Genes with 
a false discovery rate (FDR) adjusted p-value < 0.0001 and 
an absolute value of log2 (fold change) > 1 were consid-
ered as hypoxia-related DEGs.

Identification of immune status and immune‑related DEGs
The newly developed algorithm, ESTIMATE (Estimation 
of STromal and Immune cells in MAlignant Tumor tis-
sues using Expression data), takes advantages of charac-
teristics of the transcriptomic profiles of tumor tissues to 
infer the proportion of different infiltrating stromal and 
immune cells [21]. In this study, the ESTIMATE method 
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was applied to impute an immune score to represent the 
infiltration of immune cells for each gastric cancer sam-
ple to predict the immune status. Based on the immune 
scores, patients were stratified into two groups, and their 
prognoses were examined and compared. To identify 
the optimal score cutoff for dividing patients with the 
most significantly different outcomes, a method of maxi-
mally selected rank statistics was employed by using an 
R package “maxstat” [22]. Based on the optimal cutoff, 
patients with high immune scores were classified into 
the “immunehigh” group, and those yield lower immune 
scores were considered as “immunelow” group. DEGs 
between the immunehigh and immunelow groups were 
identified by the limma method. Genes with an FDR-
adjusted p-value < 0.0001 and an absolute value of log2 
(fold change) > 1 were considered as immune-related 
DEGs.

Identification of hypoxia‑immune‑related prognostic DEGs
The hypoxia and immune status identified above was 
further combined into a two-dimension index, whereby 
patients were divided into three groups, i.e., hypoxialow/
immunehigh, hypoxiahigh/immunelow, and “mix” groups. 
The hypoxia-immune-related DEGs were obtained by the 
expression comparison between the hypoxialow/immune-
high and hypoxiahigh/immunelow groups (|log2FC| > 1.7, 
FDR-adjusted p < 0.0001). Two gene sets (i.e., protec-
tive and risk DEGs) were then developed by overlap-
ping the hypoxia-immune-related DEGs and immune/
hypoxia-related DEGs obtained above. The protective 
DEGs contained all DEGs highly expressed in hypoxialow/
immunehigh group and also with conserved overexpres-
sion in hypoxialow or immunehigh group. And those DEGs 
overexpressed in hypoxiahigh/immunelow group as well 
as in hypoxiahigh or immunelow group were considered as 
risk DEGs. To obtain hypoxia-immune-related prognos-
tic DEGs, univariate Cox regression analyses were further 
performed among all protective and risk DEGs. Those with 
a p < 0.0001 and hazard ratio < 0.2 (for protective DEGs) 
or > 2 (for risk DEGs) were considered as significant.

Derivation of hypoxia‑immune‑based gene signature 
and prognosis classifier
The Least Absolute Shrinkage and Selection Operator 
(LASSO) is a popular method for regression with high-
dimensional predictors, which can preserve valuable 
variables and avoid overfitting. This approach has been 
extended and broadly applied to the Cox proportional 
hazard regression model for survival analysis with high-
dimensional data [23, 24]. In this study, the LASSO Cox 
regression model was employed to select the most prog-
nostic gene signature from all the identified hypoxia-
immune-related prognostic DEGs within the discovery 

cohort. Three-fold cross-validation and 1000 iterations 
were conducted to reduce the potential instability of 
the results. The optimal tuning parameter λ was identi-
fied via 1-SE (standard error) criterion. Then, a progno-
sis classifier was developed based on the individual-level 
risk scores derived from the selected prognostic gene 
signature. For each patient, the risk score was a sum of 
the products of the expression levels of the prognos-
tic signature genes and the corresponding coefficients 
derived from LASSO model, i.e., risk score = ∑(coeffi-
cienti × expression of signature genei). Based on the indi-
vidual-level risk scores, an optimal cutoff was identified 
via the method of maximally selected rank statistics to 
develop a prognosis classifier for gastric cancer patients.

Statistical analysis
All analyses were performed with R version 3.4.1 (http://
www.R-proje​ct.org) and its appropriate packages. t-SNE 
algorithm was performed by using R package “Rtsne” 
based on nonlinear dimensionality reduction. Immune 
score was imputed by using the “estimate” package. The 
Lasso Cox regression modeling was conducted by using 
the “glmnet” package. Data were analyzed with stand-
ard statistical tests as appropriate. Multiple testing was 
adjusted by the FDR method. For identifying independ-
ent risk factors for survival, multivariate Cox regression 
analysis was performed to adjust covariates.

Results
Hypoxia status and hypoxia‑related DEGs in gastric cancer
The discovery cohort contained 357 gastric cancer 
patients from the GEO database. Patient clinicopatho-
logic characteristics are listed in Table 1. The tumor stage 
upon presentation was stage I in 5.9%, stage II in 30.5%, 
and stage III in 63.6% of cases. With the expression 
matrix of 200 hypoxia hallmark genes from the MSigDB 
version 6.0, the Euclidean distance was calculated 
between any two patients in the discovery cohort and 
condensed into two-dimensional points using a nonlin-
ear dimensionality reduction algorithm t-SNE (see Meth-
ods for details); and subsequently, three patient clusters 
were determined and each patient was assigned to its 
closest (Fig. 1a). There were 120,107 and 130 patients in 
the three distinct clusters (i.e., Cluster1, Cluster2 and 
Cluster3), respectively. Survival comparison showed sig-
nificantly differences among the three clusters (log-rank 
test, p < 0.001). Patients in Cluster3 yield the best overall 
survival while those in Cluster1 had the worst prognosis 
outcome (Fig. 1b). This indicated that Cluster3 and Clus-
ter1 might be in the lowest and highest status of hypoxia. 
We further explore the expression changes (hypoxiahigh 
vs. hypoxialow) of the target genes from the KEGG HIF-1 
signaling pathway. Two gene sets were used, included 
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genes involved in “Increase oxygen delivery” (15 genes) 
and “Reduce oxygen consumption” (13 genes). Among 15 
genes related to “Increase oxygen delivery”, 11 (73.33%) 
were overexpressed in the hypoxiahigh group, compared 
against with the hypoxialow group. And 8 of 13 (61.54%) 
genes related to “Reduce oxygen consumption” were 
overexpressed in the hypoxiahigh group (Fig.  1c). These 
results showed the defined groups were significantly 
associated with the hypoxia status. Accordingly, patients 
in Cluster1 and Cluster3 were classified into “hypoxiahigh” 
and “hypoxialow” groups, respectively.

Expression profiles were compared between the 
hypoxiahigh and hypoxialow groups to obtain hypoxia-
related DEGs. A total of 372 hypoxia-related DEGs were 
identified (Fig. 1d). Among them, 368 (98.9%) was over-
expressed in the hypoxiahigh group where patients yielded 
relatively worse survival. These DEGs were considered 
as hypoxia-related risk DEGs. And four DEGs were 
found with overexpression in the hypoxialow group where 
patients yielded better prognosis. They were regarded as 
hypoxia-related protective DEGs. Overall, among all the 
hypoxia-related DEGs, most of them were considered as 
risk factors.

Table 1  Baseline characteristics of patients in the discovery cohort

a  Patients (n = 107) in t-SNE-derived cluster2 considered as in “moderate hypoxia status” were excluded from the comparison

Characteristics Whole cohort 
(n = 357)

Log-rank p Low risk (n = 95) High risk (n = 262) p

Gender 0.203 0.427

 Male 242 (67.79) 68 (71.58) 174 (66.41)

 Female 115 (32.21) 27 (28.42) 88 (33.59)

Age 0.051 0.391

 < 65 years 229 (64.15) 57 (60.00) 172 (65.65)

 ≥ 65 years 128 (35.85) 38 (40.00) 90 (34.35)

TNM stage < 0.001 0.004

 I 21 (5.88) 10 (10.53) 11 (4.20)

 II 109 (30.53) 37 (38.95) 72 (27.48)

 III 227 (63.59) 48 (50.53) 179 (68.32)

t-SNE clustering < 0.001 < 0.001

 Cluster1 120 (33.61) 12 (12.63) 108 (41.22)

 Cluster2 107 (29.97) 26 (27.37) 81 (30.92)

 Cluster3 130 (36.41) 57 (60.00) 73 (27.86)

Hypoxia statusa < 0.001 < 0.001

 High 120 (33.61) 12 (12.63) 108 (41.22)

 Low 130 (36.41) 57 (60.00) 73 (27.86)

Immune statusa 0.005 < 0.001

 Low 188 (52.66) 31 (32.63) 157 (59.92)

 High 62 (17.37) 38 (40.00) 24 (9.16)

Risk group by classifier <  0.001 –

 Low 95 (25.3) 95 (100.00) 0 (0.00)

 High 262 (74.7) 0 (0.00) 262 (100.00)

Fig. 1  Identification of hypoxia and immune status and hypoxia- and immune-related DEGs. a Dot plot for three distinct clusters identified by 
t-SNE algorithm based on 200 hypoxia hallmark genes. b Kaplan–Meier plot of overall survival for patients in three clusters. c Expression changes 
(hypoxiahigh vs. hypoxialow) of target genes involved in HIF-1 KEGG pathway. d Heatmap showing expression profiles for hypoxia-related DEGs 
with comparison between hypoxiahigh and hypoxialow groups. e Histogram shows the density distribution for high- and low-immune score 
groups divided by the optimal cutoff. f Scatter plot shows the standardized log-rank statistic value for each corresponding immune score cutoff. 
The optimal cutoff with the maximum standard log-rank statistic is marked with a vertical dashed line. g Kaplan–Meier plot of overall survival 
for patients in immunehigh and immunelow groups. h Heatmap showing expression profiles for immune-related DEGs with comparison between 
immunehigh and immunelow groups

(See figure on next page.)
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Immune status and immune‑related DEGs in gastric cancer
Immune status was identified for 250 patients in the 
hypoxiahigh and hypoxialow groups, based on the infil-
tration of immune cells in tumor tissue. Immune scores 
were calculated to represent the proportion of infiltrating 
immune cells by the ESTIMATE method (see Methods 
for details). Among all patients, the estimated immune 
score ranged from − 145.8 to 2910.8. The optimal cutoff 
was identified to classify patients into two groups (i.e., 
immunehigh and immunelow groups) with the most dis-
tinct survivals by a method based on maximally selected 
rank statistics (Fig.  1e, f ). Patients in the immunehigh 
group yielded better survival than those in the immunelow 
group (log-rank test, p = 0.005) (Fig. 1g).

Immune-related DEGs were obtained by expression 
comparison between the immunehigh and immunelow 
groups. A total of 216 immune-related DEGs were iden-
tified (Fig.  1h). Among them, 209 (96.8%) was overex-
pressed in the immunehigh group where patients yielded 
relatively better survival. These DEGs were considered as 
immune-related protective DEGs. And seven DEGs were 
found with overexpression in the immunelow group where 
patients yielded worse prognosis. They were regarded 
as immune-related risk DEGs. Overall, among all the 
immune-related DEGs, most of them were considered as 
protective factors.

Hypoxia‑immune‑related prognostic DEGs in gastric 
cancer
According to the above hypoxia and immune sta-
tus, we further combined them into a two-dimension 
index, whereby patients were divided into three groups: 
hypoxialow/immunehigh, hypoxiahigh/immunelow, and mix 
groups. Survival analysis showed significant differences 
among three groups (log-rank test, p < 0.001); patients in 
the hypoxialow/immunehigh group had the best survival 
while those in the hypoxiahigh/immunelow group yield the 
worst prognosis (Fig. 2a). This provided a hint of inverse 
association between effects of hypoxia and immune on 
prognosis of gastric cancer patients.

To obtain hypoxia-immune-related DEGs, expres-
sion profile comparison was further conducted between 
the hypoxialow/immunehigh and hypoxiahigh/immunelow 
groups. A total of 102 hypoxia-immune-related DEGs 
were identified (Fig.  2b), including 30 overexpressed in 
hypoxialow/immunehigh groups where patients yielded 
better survival, which were defined as hypoxia-immune-
related protective DEGs, and 72 overexpressed in 
hypoxiahigh/immunelow group where patients had worse 
outcome, which were defined as hypoxia-immune-related 
risk DEGs.

Two gene sets (protective DEGs and risk DEGs) were 
developed by combining the hypoxia-immune-related 

DEGs and immune- (or hypoxia-) related DEGs obtained 
above. The conserved DEGs in above two processes of 
DEGs identification were considered as critical protective 
or risk DEGs (see Methods for details). Finally, a total of 
95 critical DEGs were identified, including 29 protective 
DEGs (Fig. 2c) and 66 risk DEGs (Fig. 2d). Among those 
critical protective DEGs, almost all of them (28 out of 
29, 96.6%) were immune-related DEGs. On the contrary, 
the majority (60 out of 66, 90.9%) of those critical risk 
DEGs were hypoxia-related DEGs. These findings sug-
gesting that immune status could play a favorable role in 
gastric cancer while hypoxia status might make adverse 
impacts on prognosis of gastric cancer patients. Further, 
Gene Ontology enrichment analyses found that the pro-
tective DEGs were related to activation of immune cells, 
migration of immune cells and release of inflammatory 
factors (Fig. 2e), while the risk DEGs could take part in 
cytoskeleton, cell junction and pathway involved in epi-
thelial-mesenchymal transformation such as Wnt path-
way (Fig. 2f ).

To identified hypoxia-immune-related prognostic 
DEGs, univariate Cox regression analyses were further 
performed among all critical protective and risk DEGs. 
Among all of the 95 critical DEGs, 39 were identified 
with significantly effects on patient prognosis, including 
seven protective DEGs and 32 risk DEGs (Fig. 3a).

Hypoxia‑immune‑based gene signature and prognosis 
classifier in gastric cancer
The LASSO Cox regression model was employed to 
select the most useful prognostic gene signature from 
all hypoxia-immune-related prognostic DEGs within the 
discovery cohort (Fig.  3b) (see “Methods” for details). 
The optimal gene signature consisting of three prog-
nostic DEGs (i.e., TAGLIN, CXCR6 and PPP1R14A) 
as well as the corresponding coefficients were identi-
fied (Fig.  3c). Among three signature genes, TAGLIN 
and PPP1R14A were risk DEGs and CXCR6 was pro-
tective. Expression levels of three signature DEGs and 
corresponding coefficients derived from the LASSO 
Cox regression model were used to calculate the indi-
vidual-level risk score for each patient as following: risk 
score = − 0.059 × expression of CXCR6 + 0.011 × expres-
sion of PPP1R14A + 0.016 × expression of TAGLN. Based 
on this three-gene-based risk score, a prognosis classifier 
was developed to classify patients into high- and low-
risk groups. The optimal risk score cutoff in this classi-
fier was identified by the method of maximally selected 
rank statistics (Fig.  3d). The risk curve and signature 
DEGs expression pattern are plotted in Fig. 3e. Survival 
comparison showed that patients in the low-risk group 
yielded significant better survivals than those in high-risk 
group (log-rank test p < 0.001) (Fig.  3f ). The prognosis 



Page 7 of 17Liu et al. J Transl Med          (2020) 18:201 	

Fig. 2  Identification and biological function of hypoxia-immune-related protective and risk DEGs. a Kaplan–Meier plot of overall survival for 
patients in three groups by combining the hypoxia and immune status. b Heatmap showing expression profiles for hypoxia-immune-related 
DEGs with comparison between hypoxialow/immunehigh and hypoxiahigh/immunelow groups. c, d Venn diagrams show overlaps of 
hypoxia-immune-related DEGs with hypoxia-related and immune-related DEGs for identification of protective and risk DEGs. e, f Representative 
Gene Ontology terms enriched by the hypoxia-immune-related protective and risk DEGs. P-values were adjusted by false discovery rate
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classifier was further validated within two patient sub-
groups with stage II and stage III disease in the discov-
ery cohort, respectively (Fig. 4a, b). Similarly, in both the 
stage II and stage III subgroups, patients were consist-
ently stratified into the low-risk group with better sur-
vivals and the high-risk group yielding worse outcomes 
(log-rank test, p = 0.004 in stage II and p < 0.001 in stage 
III, respectively).

Hypoxia‑immune‑based prognosis classifier 
and clinicopathologic characteristics in gastric cancer
The clinicopathologic characteristics of patients in the 
low- and high-risk groups are listed in Table  1. Gen-
der, and age were comparable between the two risk 
groups. The high-risk group included more patients 
with advanced-stage tumors, and more patients in the 
low-risk group were with early-stage tumors (Chi square 
test, p = 0.004). Consistently with the abovementioned 
findings, the high-risk group tended to include more 
patients with high hypoxia status (χ2 test, p < 0.001) and 
low immune status (χ2 test, p < 0.001). Univariate analy-
ses in the discovery cohort revealed that hypoxia and 
immune status, as well as the prognosis classifier were 
significant factors associated with survival (log-rank test, 
p < 0.001, p = 0.005 and p < 0.001, respectively). Multi-
variate analysis also identified the prognosis classifier as 
an independent prognostic factor (adjusted p < 0.001), 
which was similar to and independent of tumor stage 
(adjusted p < 0.001) (Table 3). This indicated the potential 
of integration of hypoxia and immune status for progno-
sis stratification in gastric cancer. Further, by integrating 
the hypoxia-immune-based prognosis classifier and well-
known prognostic factors, a nomogram was constructed 
by using the discovery cohort for overall survival predic-
tion (Fig. 4c). The C-index for nomogram was 0.782 (95% 
CI 0.703–0.861), significantly higher than that of TNM 
stage (0.665, 95% CI 0.634–0.696; p = 0.039), indicating 
better discrimination for the nomogram. The calibra-
tion curve showed well performance for the nomogram, 
compared with an ideal model (Fig. 4d). The clinical use-
fulness of the nomogram was quantified by the decision 
curve; the nomogram provided better net benefits than 

the alternative options, regarding 1-, 3-, and 5-years 
overall survival probability (Fig. 4e).

Validation of hypoxia‑immune‑based prognosis classifier 
in three independent cohorts
The hypoxia-immune-based prognosis classifier was 
further validated by three independent cohorts, includ-
ing the TCGA, ACRG and CHEM cohorts (see Methods 
for details). Patient clinicopathologic characteristics are 
listed in Table  2. By employing the prognosis classifier, 
being similar with the findings in the discovery cohort, 
three validation cohorts were consistently stratified into 
the high-risk group with worse survivals and the low-risk 
group with better outcomes (log-rank test, p = 0.002 in 
TCGA cohort, p < 0.001 in ACRG cohort, and p = 0.006 
in CHEM cohort, respectively) (Fig. 5). Validations were 
also conducted in subgroups of patients with stage II 
and III diseases in the TCGA and ACRG cohorts; simi-
lar results were also obtained. Interestingly, in the CHEM 
cohort, we found that patients in the high-risk group 
yielded survival benefits from adjuvant chemotherapy 
(log-rank test, p = 0.014); however, there were no sig-
nificant survival benefits of chemotherapy for patients 
in the low-risk group (log-rank test, p = 0.883) (Fig. 5c). 
The efficacy of the classifier was further evaluated using 
another outcome of disease-free survival; and the results 
were similar with that of overall survival (Fig. 6). Consist-
ently, multivariate analyses revealed that the prognosis 
classifier was an independent prognostic factor in three 
validation cohorts (adjusted p < 0.001 in TCGA cohort, 
adjusted p < 0.001 in ACRG cohort and adjusted p = 0.001 
in CHEM cohort, respectively) (Table 3).

Discussion
Considering the widely varying prognostic outcomes 
of gastric cancer, it is of great importance to establish a 
robust classifier to stratify patients with different risks 
and prognoses, which is critical to maximize the ben-
efits brought by the personalized treatment and timely 
follow-up. In this study, the comprehensive mining of the 
transcriptional profiles and microenvironment character-
istics was aimed to construct a tool to help address this 
important clinical issue. We found that both the hypoxia 

Fig. 3  Hypoxia-immune-based gene signature and prognosis classifier. a Forest plot of hazard ratios for 39 hypoxia-immune-related prognostic 
DEGs. b Three-fold cross-validation for tuning parameter selection in the LASSO model. The partial likelihood deviance is plotted against log (λ), 
where λ is the tuning parameter. Partial likelihood deviance values are shown, with error bars representing SE. The dotted vertical lines are drawn at 
the optimal values by minimum criteria and 1-SE criteria. c LASSO coefficient profiles of the hypoxia-immune-related prognostic DEGs. The dotted 
line indicates the value chosen by 3-fold cross-validation. d Scatter plot shows the standardized log-rank statistic value for each corresponding 
cutoff of hypoxia-immune-based risk score. The optimal cutoff with the maximum standard log-rank statistic is marked with a vertical dashed line. e 
Distributions of risk score, survival status and expression profile of signature genes. f Kaplan–Meier plot of overall survival for patients in low-risk and 
high-risk groups by hypoxia-immune-based prognosis classifier in discovery cohort

(See figure on next page.)
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(See figure on next page.)
Fig. 4  Validation of hypoxia-immune-based prognosis classifier in TNM subgroups and nomogram for predicting overall survival. a, b Kaplan–Meier 
plot of overall survival for patients in low-risk and high-risk groups by hypoxia-immune-based prognosis classifier in stage II and III subgroups in 
discovery cohort. c Nomogram developed by using discovery cohort to predict 1-, 3-, and 5-years overall survival probability. d Plot depicting the 
calibration of the nomogram in terms of the agreement between predicted and observed outcomes. Nomogram performance is shown by the plot 
relative to the dotted line, which represents perfect prediction. e Decision curve analysis shows the expected net benefits based on the nomogram 
prediction at different threshold probabilities. None: assume an event will occur in no patients (horizontal solid line); All: assume an event will occur 
in all patients (dash line)

and immune status of the tumor microenvironment was 
associated with gastric cancer patient survival. Moreover, 
the inverse effects of hypoxia and immune status were 
significantly associated with prognosis, even after strati-
fying patients by clinicopathologic risk factors. Finally, a 
hypoxia-immune-based three-gene signature was devel-
oped as a prognosis classifier, with promising perfor-
mance in risk stratification among the discovery cohort 
and three independent cohorts. These findings represent 
a new insight to improve discussions on patient prognos-
tication and stratification through considering the micro-
environment characteristics and transcriptomics.

The immune and hypoxia microenvironment plays 
a critical role in the tumorigenesis and progression of 
gastric cancer [10, 11, 13–15, 25]. On one hand, the 
immune incapability in the tumor microenvironment 
has been reported as an essential mechanism for solid 
cancers to evade from host immunity [13, 15, 25–27]. 
It was found that higher expression of immune-related 
gene predicts better prognosis in both EBV-positive and 
EBV-negative gastric cancer patients [25]. Also, the esti-
mation of immune cells in tumor tissues could improve 
the accuracy of TNM staging system for prognostication 
in gastric cancer [28]. On the other hand, the hypoxic 
microenvironment promotes tumor malignancy by acti-
vating angiogenesis and increases cell migration and 
expansion toward cancer stem cell phenotype by altering 
cell skeleton and extracellular matrix [10–12]. These find-
ings were similar with the results in current study. We 
found that the protective DEGs, mainly containing the 
immune-related DEGs, could take part in the activation 
of immune cells, migration of immune cells and release of 
inflammatory factors and those risk DEGs, of which the 
majority was hypoxia-related DEGs, were associated with 
cytoskeleton, cell junction and pathway involved in epi-
thelial-mesenchymal transformation such as Wnt path-
way. More importantly, it has been reported that hypoxia 
incapacitated immune effector cells [17] and enhanced 
the activity of immunosuppressive cells [16], and immune 
escape [29] and tumor cell adaptations to hypoxia [30] 
could promote and perpetuate immunosuppression. In 
current analysis, we found that the hypoxia and immune 
status made inverse effects on patient prognosis in gastric 
cancer; higher hypoxia status was associated with poor 

prognosis while higher immune status could indicate bet-
ter outcomes; and the impact of the inverse interaction 
on survival also observed after combining hypoxia and 
immune status. Thus, the hypoxia and immune status 
accompanied with their interaction in tumor microen-
vironment and its linking to gastric cancer progression 
could provide improved discussion with gastric cancer 
regarding prognosis.

As the hypoxia and immune activity in tumor micro-
environment is complicated, there is no public biomarker 
using mRNA expression pattern to estimate their status 
[31, 32]. Indeed, as tumors develop regions of hypoxia, 
tumor can also react favorably to hypoxic conditions as 
well as recovery of tumor blood and nutrient supply to 
some extent [32, 33]. Thus, it is not powerful (and likely 
to omit important biology process information) to deter-
mine the hypoxia status by a single biomarker [10, 11, 
34]. The machine learning algorithm t-SNE provides an 
elegant and robust dimensionality reduction approach, 
which has been applied to explore potential subtypes in 
prostate cancer [35] and breast cancer [36]. In the present 
study, the nonlinear cluster method of t-SNE identified 
distinct patterns of hypoxic tumor microenvironment 
based on a set of two hundred hypoxia hallmark genes; 
further, expression changes of HIF-1 targeting genes were 
analyzed to explore their association with the hypoxia 
process. When it came to immune status, the ESTIMATE 
algorithm was used to impute immune scores to pre-
dict the level of infiltrating immune cells based on 141 
specific gene signatures of immune cells. It was a newly 
developed algorithm that takes advantage of the unique 
properties of the transcriptional profiles of cancer tissues 
to infer tumor cellularity as well as the different infiltrat-
ing normal cells [21]. Subsequent works have applied 
the ESTIMATE algorithm to prostate cancer [37], breast 
cancer [38], and colon cancer [39], showing the effective-
ness of such big-data based algorithms, although combi-
nation of immune characteristics with hypoxia status has 
not been investigated in detail.

Important roles of the signature genes identified in 
this study have been previously reported in multiple 
types of cancers. TAGLN encodes a shape change and 
transformation sensitive actin-binding protein. Over-
expression of TAGLN was associated with cell invasion, 



Page 11 of 17Liu et al. J Transl Med          (2020) 18:201 	



Page 12 of 17Liu et al. J Transl Med          (2020) 18:201 

Table 2  Baseline characteristics of patients in three independent validation cohorts

a  Twelve patients with unavailable stage information in the TCGA cohort and four patients with unavailable Lauren classification information in the CHEM cohort were 
excluded from the comparison

Characteristics Whole cohort Low risk High risk p

TCGA cohort (n = 321) (n = 78) (n = 243)

Gender 0.772

 Male 204 (63.55) 48 (61.54) 156 (64.20)

 Female 117 (36.45) 30 (38.46) 87 (35.80)

Age 0.995

 < 65 years 146 (45.48) 36 (46.15) 110 (45.27)

 ≥ 65 years 175 (54.52) 42 (53.85) 133 (54.73)

TNM stagea 0.253

 I 44 (13.71) 13 (16.67) 31 (12.76)

 II 104 (32.40) 18 (23.08) 86 (35.39)

 III 132 (41.12) 36 (46.15) 96 (39.51)

 IV 29 (9.03) 7 (8.97) 22 (9.05)

WHO classification 0.085

 Intestinal/tubular 125 (38.94) 34 (43.59) 91 (37.45)

 Diffuse 57 (17.76) 15 (19.23) 42 (17.28)

 Mucinous/signet ring cell 26 (8.10) 1 (1.28) 25 (10.29)

 Others 113 (35.20) 28 (35.90) 85 (34.98)

ACRG cohort (n = 300) (n = 219) (n = 81)

Gender 0.950

 Male 199 (66.33) 146 (66.67) 53 (65.43)

 Female 101 (33.67) 73 (33.33) 28 (34.57)

Age 0.999

 < 65 years 161 (53.67) 118 (53.88) 43 (53.09)

 ≥ 65 years 139 (46.33) 101 (46.12) 38 (46.91)

TNM stage 0.097

 I 30 (10.00) 27 (12.32) 3 (3.70)

 II 97 (32.33) 73 (33.33) 24 (29.63)

 III 96 (32.00) 67 (30.59) 29 (35.80)

 IV 77 (25.67) 52 (23.74) 25 (30.86)

Lauren classification 0.141

 Diffuse 135 (45.00) 91 (41.55) 44 (54.32)

 Intestinal 146 (48.67) 113 (51.60) 33 (40.74)

 Mixed 19 (6.33) 15 (6.84) 4 (4.93)

CHEM cohort (n = 136) (n = 46) (n = 90)

Gender 0.709

 Male 93 (68.38) 30 (65.22) 63 (70.00)

 Female 43 (31.62) 16 (34.78) 27 (30.00)

Age 0.726

 < 65 years 87 (63.97) 28 (60.87) 59 (65.56)

 ≥ 65 years 49 (36.03) 18 (39.13) 31 (34.44)

TNM stage 0.496

 II 36 (26.47) 15 (32.61) 21 (23.33)

 III 63 (46.32) 19 (41.30) 44 (48.89)

 IV 37 (27.21) 12 (26.09) 25 (27.78)

Lauren classificationa 0.075

 Diffuse 30 (22.06) 15 (32.61) 15 (16.67)

 Intestinal 95 (69.85) 27 (58.70) 68 (75.56)

 Mixed 7 (5.15) 3 (6.52) 4 (4.44)
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Fig. 5  Validation of hypoxia-immune-based prognosis classifier in three independent cohorts regarding overall survival. a Kaplan–Meier plot of 
overall survival by risk groups for patients in the TCGA cohort and subgroups according to TNM staging. b Kaplan–Meier plot of overall survival 
by risk groups for patients in the ACRG cohort and subgroups according to TNM staging. c Kaplan–Meier plot of overall survival by risk groups for 
patients in the CHEM cohort. And overall survival comparison among patients received chemotherapy or not in the low- and high-risk groups
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Fig. 6  Validation of hypoxia-immune-based prognosis classifier in three independent cohorts regarding disease-free survival. a Kaplan–Meier plot 
of disease-free survival by risk groups for patients in the TCGA cohort and subgroups according to TNM staging. b Kaplan–Meier plot of disease-free 
survival by risk groups for patients in the ACRG cohort and subgroups according to TNM staging. c Kaplan–Meier plot of disease-free survival by 
risk groups for patients in the CHEM cohort. And disease-free survival comparison among patients received chemotherapy or not in the low- and 
high-risk groups



Page 15 of 17Liu et al. J Transl Med          (2020) 18:201 	

which in turn contributed to promoting cancer metas-
tasis [40]. Notably, the expression of TAGLN is signifi-
cantly induced by hypoxia in lung adenocarcinoma [41]. 
Another risk gene PPP1R14A, has been reported to drive 
Ras pathway and tumorigenesis via inactivation of the 
tumor suppressor merlin [42]. These results were consist-
ent with the results in this study that overexpression of 
TAGLN and PPP1R14A could be unfavorable factors for 
patient’s outcomes. The protective gene CXCR6 is known 
as a chemokine receptor, which is selectively expressed in 
NK cells, T cells, and plasma cells. It is responsible for the 
chemotactic migration of immune cells to cancer tissues, 
which has the potential to kill cancer cells [43, 44]. In 
our study, CXCR6 was identified as an immune-related, 
favorable gene for prognosis in gastric cancer. However, 
the abovementioned three signature genes were seldom 
studied in the context of combination of immune and 
hypoxia. Thus, signature genes identified in this study 
could provide underlying targets for experimental design 
in the laboratory to elucidate molecular mechanisms in 
gastric cancer.

Many potential targets, even with their detailed mecha-
nism of action, have been revealed to play critical roles in 
tumor development and progression. However, it remains 
challenging for clinicians and researchers to translate 
these efforts and findings from laboratory into clinical 
settings. Integration of molecular and genetic character-
istics and clinicopathologic factors provides a new insight 
for this issue regarding precision prognostication and 
individualized treatment. In current study, it was worth 
mentioning that patients in the low-risk group seemed 
not benefit from adjuvant chemotherapy. This provides 
a hint that hypoxia and immune status could serve as 
underlying markers for selecting sensitive patients to 
chemotherapy. Ongoing efforts on characterizing proper-
ties of tumor cell and its microenvironment are making 
intrinsic and extrinsic variations more and more clear; 
meanwhile, emerging techniques of sequencing make it 
possible for individualized risk stratification and treat-
ment at molecular level in clinical application. Thus, the 
findings in current study, which links the genetic profiles 
and microenvironment characteristics to patient progno-
sis, could potentially provide translational value for clini-
cal management of patients with gastric cancer.

Several limitations exist in this study. First, although 
several independent external validations were performed 
in this study, it was difficult to cover all variations among 
patients from different geographical regions when tis-
sues and information were retrospectively collected in 
publicly available databases. Second, considering that the 
microenvironment characteristics might be distinct in 
different tumor regions, such as tumor core and invasive 
margin. Samples used for analyses were all collected from 
the core of tumor, and it is impossible to evaluate the 
immune and hypoxia status in different tumor regions. 
Thus, findings in this study are waiting for further vali-
dation by well-designed, prospective, multicenter studies.

Conclusions
In conclusion, the hypoxia and immune status in tumor 
microenvironment is associated with the prognosis of 
gastric cancer patients. And the hypoxia-immune-based 
gene signature yielded promising ability for risk strati-
fication and can providing additional value beyond the 
current TNM staging system. It might serve as a prog-
nostic classifier for clinical decision-making regarding 
individualized prognostication and treatment, and fol-
low-up scheduling.
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Table 3  Multivariate Cox regression analyses of  risk 
factors for overall survival

a  Gender and age were adjusted for modelling using the discovery cohort; and 
gender, age and histology classification were adjusted when using TCGA, ACRG 
and CHEM cohorts

Adjusted 
Hazard 
ratioa

95% 
confidence 
interval

Adjusted p

Discovery cohort

 Risk group (High vs low) 3.24 2.03–5.18 < 0.001

 Tumor stage < 0.001

  II vs I 1.35 0.48–3.81 0.574

  III vs I 3.37 1.24–9.17 0.017

TCGA cohort

 Risk group (High vs low) 2.91 1.76–4.80 < 0.001

 Tumor stage < 0.001

  II vs I 1.91 0.93–3.92 0.076

  III vs I 3.04 1.54–6.01 0.001

  VI vs I 6.92 3.07–15.59 < 0.001

ACRG cohort

 Risk group (High vs low) 1.99 1.42–2.78 < 0.001

 Tumor stage < 0.001

  II vs I 1.51 0.58–3.93 0.398

  III vs I 3.01 1.18–7.68 0.021

  VI vs I 8.83 3.50–22.28 < 0.001

CHEM cohort

 Risk group (High vs low) 3.01 1.56–5.83 0.001

 Tumor stage 0.012

  III vs II 2.20 1.04–4.64 0.039

  IV vs II 3.35 1.50–7.48 0.003
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