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Abstract 

Background:  Papillary thyroid carcinoma (PTC), which is the most common endocrine malignancy, has been steadily 
increasing worldwide in incidence over the years, while mechanisms underlying the pathogenesis and diagnostic 
for PTC are incomplete. The purpose of this study is to identify potential biomarkers for diagnosis of PTC, and provide 
new insights into pathogenesis of PTC.

Methods:  Based on weighted gene co-expression network analysis, Robust Rank Aggregation, functional annota‑
tion, GSEA and DNA methylation, were employed for investigating potential biomarkers for diagnosis of PTC.

Results:  Black and turquoise modules were identified in the gene co-expression network constructed by 1807 DEGs 
that from 6 eligible gene expression profiles of Gene Expression Omnibus database based on Robust Rank Aggre‑
gation and weighted gene co-expression network analysis. Hub genes were significantly down-regulated and the 
expression levels of the hub genes were different in different stages in hub gene verification. ROC curves indicated 
all hub genes had good diagnostic value for PTC (except for ABCA6 AUC = 89.5%, the 15 genes with AUC > 90%). 
Methylation analysis showed that hub gene verification ABCA6, ACACB, RMDN1 and TFPI were identified as differen‑
tially methylated genes, and the decreased expression level of these genes may relate to abnormal DNA methylation. 
Moreover, the expression levels of 8 top hub genes were correlated with tumor purity and tumor-infiltrating immune 
cells. These findings, including functional annotations and GSEA provide new insights into pathogenesis of PTC.

Conclusions:  The hub genes and methylation of hub genes may as potential biomarkers provide new insights for 
diagnosis of PTC, and all these findings may be the direction to study the mechanisms underlying of PTC in the future.

Keywords:  Papillary thyroid carcinoma, Biomarkers, DNA Methylation, Robust rank aggregation, Weighted gene 
co-expression network analysis
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Background
Thyroid carcinoma is the most common endocrine can-
cer, and papillary thyroid cancer (PTC) accounts for the 
highest proportion of thyroid carcinoma. In recent years, 
the incidence of PTC has been steadily increasing world-
wide, which may be due to a real increase, or may be due 
to the improvement and widespread use of screening 
techniques [1]. Increased TSH, autoimmune diseases and 
inflammation were considered risk factors for thyroid 
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cancer [2]. In recent years, researchers believe that the 
major carcinogenic event of PTC is the activation of 
mitogen-activated protein kinase (MAPK) [3]. However, 
the mechanisms underlying the pathogenesis of PTC 
have not yet been elucidated. Surgical resection, TSH 
inhibition therapy and radioactive iodine therapy are the 
conventional treatment methods for PTC [4]. With these 
therapeutic approaches, most patients with PTC have a 
good prognosis, but there were some challenges for both 
patients and clinicians. The consequence of surgical exci-
sion that is one of the important treatments for thyroid 
cancer may be the increased incidence of hypothyroidism 
[5]; PTC is often difficult to diagnose because of simi-
larities between malignant and benign nodules, which 
results in some benign patients having their thyroid 
removed [6]; treatment of refractory radioiodine differen-
tiated thyroid cancer still faces challenges and some slow-
moving tumors were overdiagnosed and overtreated. In 
terms of molecular therapy, the combined use of immune 
checkpoint inhibitors and BRAF (especially BRAFV600E) 
inhibitors is aussichtsreich in the treatment of thyroid 
cancer and some progress has been made [7]. However, 
not all tumors have mutations in BRAF [8–10], and other 
biomarkers are needed. In addition, immunotherapy is 
associated with immune-related adverse events (autoim-
mune toxicities) [11]. For example, the use of mAbs anti-
cytotoxic T lymphocyte antigen 4 (anti-CTLA-4) and 
anti-programmed cell death protein-1/programmed cell 
death ligand-1 (anti-PD-1/PD-L1) causes thyroid dys-
function (including painless thyroiditis and so on) [12] 
in 10 percent of cancer patients [7]. DNA methylation, 
which belongs to epigenetics [13], can affect gene expres-
sion by affecting the structural stability of chromosomes 
and the interaction between DNA and proteins [14]. 
Abnormal levels of DNA methylation had been reported 
in almost all cancers. The study of DNA methylation is 
very important for the pathogenesis, early diagnosis and 
prognosis prediction of tumors and methylation drugs 
are the darlings of recent targeted therapies for cancer 
for DNA methylation itself is reversible. The combination 
of genetic alterations and DNA methylation alterations 
may improve their clinical value. However, the specific 
gene map and methylation map of PTC are not com-
plete. Therefore, it is necessary to further understand the 
underlying biological mechanisms underlying the onset 
and development of PTC and to identify potential bio-
markers for diagnosis. More accurate diagnosis leads to 
more personalized treatment, which is valuable in further 
improving patient survival.

As a bioinformatics method that can integrate gene 
lists of different technology platforms, Robust Rank 
Aggregation (RRA) is widely used in cancer research 
[15–17]. This method can reduce noise increase 

signal while integrating data information of different 
platforms, which makes the research results more reli-
able [16]. The weighted gene co-expression network 
analysis (WGCNA) [18] method is widely used in cancer 
research, but there is still room for the research of estab-
lishing gene co-expression network to identify the hub 
genes closely related to PTC. In order to better explain 
the biological function genes, gene set enrichment anal-
ysis (GSEA) on hub genes was performed. GSEA can 
assess whether an a priori defined set of genes shows 
statistically significant, concordant differences between 
two biological states [19]. Furthermore, we analyzed the 
relationship between hub genes and tumor immune infil-
trating cells since microenvironment composed of tumor 
immune infiltrating cells can play an important role in 
the occurrence and progression of tumor by promoting 
tumor and anti-tumor [20], and the influence of different 
infiltrating immune cells on tumor is different [21]. Our 
study might provide some new insights into current diag-
nosis and pathogenesis for PTC.

Methods
Thyroid cancer gene expression datasets collection 
and identification of robust DEGs
The data sets enrolled in this study needs to meet the 
main conditions [1]: The data set must include the gene 
expression profile of PTC and normal thyroid tissue [2]. 
The genes in the platform need to be above 5000. The 
6 unprocessed gene expression profiles that met the 
inclusion criteria of this study were downloaded from 
the Gene Expression Omnibus (GEO,  http://www.ncbi.
nlm.nih.gov/geo/) database: GSE6004 [22], GSE58545 
[23], GSE27155 [24, 25], GSE53157 [26], GSE60542 [27] 
and GSE33630 [28, 29]. The relevant data are shown in 
Table  1. For more detailed sample information, please 
see Additional file  2: Table  S1. After data normaliza-
tion using  robust multi-array averaging algorithm [30], 
“limma” [31] package were used to assess statistical sig-
nificance (P-value) for each gene based on a linear model 
implemented. Then, gene lists in six datasets were inte-
grated using the RRA method to identify differentially 
expressed genes (DEGs) according to P-value in “Robus-
tRankAggreg” package of R software, and P-value < 0.05 
was set as the threshold for DEGs.

Function enrichment analysis
The top 300 DEGs were uploaded to Database for Anno-
tation, Visualization, and Integrated Discovery (DAVID) 
[32] for Gene Ontology (GO) functional annotation and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analysis. The top terms were visual-
ized in “GOplot” [33] of R software.

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
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Weighted co‑expression network construction and key 
modules identification
1807 DEGs with P < 0.05 obtained from RRA to con-
struct gene co-expression networks with expression data 
retrieved from The Cancer Genome Atlas (TCGA). Spe-
cifically, 1807 genes were selected from the TCGA gene 
list, and then the 1807 genes with their gene expres-
sion values  and TCGA sample Numbers  formed a cor-
relation matrix. The threshold value of outliers was Z.K 
value < − 2.5. The correlation matrix (Sij) was converted 
to an adjacency matrix (Aij) based on soft threshold β 
that can approximate the scale-free distribution (R2 > 0.8). 
This transformation allows us to build networks with 
higher biological signals, which is the focus of the 
WGCNA approach. Topological overlap matrix (TOM) 
realizes the visualization of network, which is a simplified 
network diagram for identifying modules. The hierarchi-
cal clustering tree formed by average linkage hierarchical 
clustering also participates in the formation of modules. 
By the way, some genes without characteristics were 
assigned to the gray module. In order to identify the key 
modules closely related to PTC, module eigengene (ME), 
gene significance (GS), module membership (MM) and 
other parameters were calculated [34]. The genes in 
the key modules were uploaded to DAVID [32] for GO 
functional annotation and KEGG enrichment analysis to 
explore the biological functions of the key modules.

Identification, validation and efficacy evaluation for hub 
genes
The hub gene is defined as the gene with the highest 
degree of connectivity in the key module. Specifically, 
the genes with geneModuleMembership > 0.9 and gen-
eTraitSignificance > 0.5 were determined as the hub genes 
in the study. Samples in the Cancer Genome Atlas-Thy-
roid carcinoma (TCGA-THCA) and a separate data set 
GSE29265 was used to verify that hub genes can distin-
guish between non-tumor and PTC. If the P-value < 0.01, 
the selection of the hub gene is considered statistically 

significant. In addition, we conducted a study to under-
stand the expression patterns of hub genes between dif-
ferent stages of PTC based on GEPIA (Gene Expression 
Profiling Interactive Analysis, http://gepia​.cance​r-pku.
cn/) [35], which was a web server for cancer and normal 
gene expression profiling and interactive analyses. To 
assess diagnostic values of hub genes, receiver operating 
characteristic (ROC) curve was plotted and area under 
the ROC curve (AUC) was calculated with “pROC” of R 
package [36] to evaluate the capability of distinguishing 
tumor and normal tissue.

Methylation analysis of hub genes
Methylation is one of the earliest and most widely studied 
epigenetics to be included in our study. We conducted 
methylation analysis of hub genes based on methyla-
tion data obtained from the human disease methylation 
database version 2.0 [37, 38] (DiseaseMeth 2.0,  http://
bioin​fo.hrbmu​.edu.cn/disea​semet​h/), which collects and 
annotates the abnormal methylation of various cancers, 
is a useful resource platform for further understanding 
the molecular mechanisms of human disease. Data in the 
platform based on huge international disease projects 
including TCGA and public genome databases includ-
ing GEO [37]. Furthermore, the relationship between hub 
genes expression and their DNA methylation status were 
investigated based on MEXPRESS (http://mexpr​ess.be) 
[39].

Hub genes and tumor‑infiltrating immune cells
Due to tumor immune infiltrating cells (B cells, CD4+  T 
cells, CD8+  T cells, neutrophils, macrophages, and den-
dritic cells) are closely related to prognosis, thus it is neces-
sary to investigate the correlation between the expression 
of identified hub genes and tumor infiltrating immune 
cells, which might provide new ideas for immunotherapy. 
This analysis for immune infiltrating cells and their inter-
actions with tumor cells [40, 41] was performed on the 

Table 1  Characteristics of the data sets enrolled in the study

Dataset ID Number of normal 
samples

Number of tumor 
samples

Country GPL ID Number 
of rows 
per platform

GSE6004 4 7 USA GPL570 54,675

GSE58545 18 27 Poland GPL96 22,283

GSE27155 4 51 USA GPL96 22,283

GSE53157 2 7 Portugal GPL570 54,675

GSE60542 26 28 Belgium GPL570 54,675

GSE33630 45 49 Belgium GPL570 54,675

http://gepia.cancer-pku.cn/
http://gepia.cancer-pku.cn/
http://bioinfo.hrbmu.edu.cn/diseasemeth/
http://bioinfo.hrbmu.edu.cn/diseasemeth/
http://mexpress.be
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basis of TIMER, which use to comprehensively investigate 
molecular characterization of tumor-immune interactions.

Gene set enrichment analysis
GSEA, which is widely used to predict the biological func-
tions of hub genes, were performed in GSEA 4.0.3 and the 
top terms were visualized in R. The samples in TCGA were 
divided into two groups (high expression vs. low expres-
sion) with median expression values of each hub gene.

Results
Identification of robust DEGs
The P-value of each gene in 6 datasets was calculated based 
on the “limma” package. Gene lists of six datasets were 
integrated by RRA method and 1807 DEGs including 796 
up-regulated genes and 1011 down-regulated genes were 
identified to the threshold of P-value < 0.05. The top 20 
down-regulated and up-regulated genes were listed based 
on heat maps (Additional file 1: Figure S1).

Function enrichment analysis
Chord diagrams showed the biological pathways in which 
the top 300 genes were involved. The top terms were 
illustrated in Fig.  1. Figure  1a shows that these genes are 
enriched into extracellular exosome, plasma membrane, 
integral component of plasma membrane etc. based on 
GO cellular components. Figure 1b shows that these genes 
are enriched into signal transduction, response to interleu-
kin − 1, stem cell differentiation and positive regulation of 
MAP kinase activity etc. based on GO biological processes. 
Figure 1c shows that these genes are enriched to glycopro-
tein binding, protein binding and metalloendopeptidase 
activity etc. based on GO molecular function. These genes 
were enriched into the transcriptional misregulation in 
cancer, Rap1 signaling pathway and PI3K − Akt signaling 
pathway etc. based on KEGG (Fig. 1d).

Weighted co‑expression network construction and key 
modules identification
Since there were 5 samples with Z.K value < − 2.5 (TCGA.
KS.A41F, TCGA.EM.A3O3, TCGA.DJ.A2Q1, TCGA.
DE.A4MA and TCGA.BJ.A3F0), these 5 samples were 
considered as outliers and excluded from the subsequent 
analysis (Additional file  1: Figure S2). Matrix transforma-
tion is based on soft threshold β = 7 (scale free R2 = 0.88) 
(Additional file 1: Figure S3), which is selected according to 

scale-free topological criteria. 10 gene modules were iden-
tified based on TOM and average linkage hierarchical clus-
tering (Additional file 1: Figure S4). In order to identify the 
modules associated with clinical characteristics, the ME 
that represents the gene expression profile of each module 
was calculated. The MEblack (r = − 0.64, P = 5e − 38) and 
MEturquoise (r = − 0.65, P = 3e − 39) were considered to 
be the key modules most associated with thyroid cancer 
(Additional file 1: Figure S5). At the same time, the mod-
ule membership vs. gene significance showed that the black 
and turquoise modules were closely related to the disease 
(Additional file 1: Figure S6). GO and KEGG indicated that 
black module (Fig. 2a) was mainly enriched to extracellular 
region, extracellular matrix and extracellular space etc. GO 
and KEGG indicated that turquoise module was (Fig. 2b) 
mainly enriched to retinoic acid receptor signaling path-
way, oxidoreductase activity and cellular response to zinc 
ion etc.

Identification, validation and efficacy evaluation for hub 
genes
16 genes with geneModuleMembership > 0.9 and gen-
eTraitSignificance > 0.5 were determined as the hub 
genes in Table  2. Figure  3 (TCGA-THCA) and Fig.  4 
(GSE29265) intuitively showed that 16 hub genes are 
significantly down-regulated. Figure  5 ploted in GEPIA 
illustrated that there were some differences in expression 
patterns in different stages of PTC. The main difference 
was between stage I, II, and III: the expression patterns 
of ABCA6, PID1and TFPI were down in stage I–II–up in 
stage II–III, ACACB, BCL2, CASC2, ITPR1, MPPED2, 
MRO, PRKCQ, RMDN1, RNF150, RPS6KA6,SLC26A7, 
SLC4A4 and TTC30A were up in stage I–II–down in 
stage II–III (Table 2). Furthermore, ROC curves showed 
high diagnostic value of 16 hub genes for PTC (Additional 
file  1: Figure S7A, B): except for ABCA6 AUC = 89.5%, 
the 15 genes with AUC > 90%. To our knowledge, the 
eight hub genes (ABCA6, ACACB, TTC30A, RMDN1, 
RNF150, RPS6KA6, PID1 and TFPI) in Fig. 3 have been 
poorly studied. Therefore, we focused on these 8 hub 
genes in this study.

Methylation analysis of hub genes
As far as we know, DNA methylation shuts down the 
activity of some genes and demethylation induces 
gene expression. Additional file  1: Figure S8 shown 

(See figure on next page.)
Fig. 1  Chord diagrams for GO and KEGG analysis of top 300 DEGs. The link between genes and pathways was described grounded on GO 
cellular components. a The link between genes and pathways was described grounded on GO biological processes. b The link between genes 
and pathways was described grounded on GO molecular function. c The link between genes and pathways was described grounded on KEGG. d 
Different genes and pathways are color-coded according to the catalog
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that ABCA6, ACACB, RMDN1 and TFPI were signifi-
cantly different (P < 0.05), so ABCA6, ACACB, RMDN1 
and TFPI were defined as differentially methylated 
genes (DMGs). Moreover, the Additional file  1: Figure 
S9A–D illustrated that the expression levels of 4 DMGs 
are negatively correlated with DNA methylation in 

MEXPRESS. That indicate the abnormal down-regula-
tion of DMGs likely resulted from hypermethylation.

Hub genes and tumor‑infiltrating immune cells
Immune cells play an important role in the development 
and progression of tumors. Immunotherapy for cancer is 

Fig. 2  Enrichment analysis of black and turquoise modules based on GO and KEGG. a Indicates enrichment analysis of black module, and b 
indicates enrichment analysis of turquoise module. The pathways (vertical axis) and rich factor (horizontal axis) were shown, and the size and color 
of nodes that represent genes were depicted according to the legends
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becoming more and more important, so it is necessary to 
study the relationship between hub genes and immune 
cell infiltration. We studied the relationship between 8 
hub genes and different immune cells based on TIMER. 
However, RMDN1was not involved in this analysis since 
hub genes RMDN1 is not recognized by TIMER. The 
seven hub genes were all correlated with the immune 
cells (B cells, CD4+  T cells, CD8+  T cells, neutrophils, 
macrophages, and dendritic cells) and tumor purity in 
the study (Additional file 1: Figure S10A–G).

Gene set enrichment analysis
In order to further explore the expression pathways of 
8 hub genes, we conducted GSEA, which is widely used 
to predict the biological functions of hub genes. These 
results suggest that these genes are associated with PTC 
(Fig. 6). ABCA6, PID1, RMDN1, RPS6KA6, TTC30A and 
TFPI were involved in amino acid metabolism. ACACB, 
RMDN1, RNF150, TTC30A have been shown to be 
involved in carbohydrate anabolism. PID1, TFPI and 
ABCA6 may be involved in the niacin and niacinamide 
metabolism.

Discussion
The information of 6 data sets was integrated based on 
RRA, and 1807 DEGs were screened as the threshold of 
P-value < 0.05. In order to explore the specific biological 
role of these genes, the top 300 DEGs were analyzed by 
GO functional annotation and KEGG enrichment based 
on DAVID. Functional annotation of the top 300 DEGs 

may be helpful to the underlying mechanism of PTC. 
GO terms were obtained such as signal transduction, 
response to interleukin-1, positive regulation of MAP 
kinase activity, extracellular exosome, plasma membrane, 
integral component of plasma membrane and metal-
loendopeptidase activity. Signal transduction is very 
important in the occurrence of tumor [42]. Interleukin-1 
plays a role in regulating innate immunity and adaptive 
immunity [43]. In particular, interleukin-1 has dual roles 
of anti-tumor and pro-tumor [43]. Positive regulation of 
MAP kinase activity and metalloendopeptidase activ-
ity are thought to be associated with thyroid cancer [44, 
45]. This is a validation of the major carcinogenic event of 
PTC is the activation of MAPK. Meanwhile, KEGG terms 
such as transcriptional misregulation in cancer, Rap1 
signaling pathway and PI3K-Akt signaling pathway were 
obtianed. PI3K-Akt signaling pathway had been reported 
to play an important role in the development of thyroid 
cancer [46, 47], breast cancer [48], colorectal cancer [49], 
non-small cell lung cancer [50] and gastric cancer [51] 
etc.

In order to identify the hub genes in the 1807 DEGs, 
1807 genes were used to construct a gene co-expression 
network. MEblack and MEturquoise showed high cor-
relations with PTC. Enrichment analysis showed that 
the genes in the black module were mainly related 
to extracellular matrix, and the genes in the tur-
quoise module were enriched to retinoic acid recep-
tor signaling pathway, oxidoreductase activity and 
cellular response to zinc ion etc. As the main bioactive 

Table 2  The list of sixteen hub genes identified in gene expression network

GeneModuleMembership, GeneTraitSignificance and expression pattern of hub genes were showed. The cut-off thresholds of hub genes were 
geneModuleMembership > 0.9 and geneTraitSignificance > 0.5, and all hub genes are significantly down-regulated

Gene symbol GeneModuleMembership GeneTraitsignificance Expression pattern

PID1 0.915896493 0.66001985 Down in stage I–II–up in stage II–III

ABCA6 0.911773582 0.524366279 Down in stage I–II–up in stage II–III

TFPI 0.903220611 0.599708264 Down in stage I–II–up in stage II–III

MPPED2 0.945621212 0.637198678 Up in stage I–II–down in stage II–III

RPS6KA6 0.932048783 0.611335416 Up in stage I–II–down in stage II–III

MRO 0.931567859 0.632361438 Up in stage I–II–down in stage II–III

RMDN1 0.923154211 0.610969324 Up in stage I–II–down in stage II–III

ACACB 0.919880602 0.610967988 Up in stage I–II–down in stage II–III

SLC4A4 0.913670371 0.575022712 Up in stage I–II–down in stage II–III

TTC30A 0.912368213 0.563286233 Up in stage I–II–down in stage II–III

RNF150 0.909497328 0.625793803 Up in stage I–II–down in stage II–III

BCL2 0.909385573 0.588759014 Up in stage I–II–down in stage II–III

CASC2 0.908891219 0.567289908 Up in stage I–II–down in stage II–III

PRKCQ 0.907179413 0.615140746 Up in stage I–II–down in stage II–III

SLC26A7 0.903842658 0.648569813 Up in stage I–II–down in stage II–III

ITPR1 0.900631876 0.587725656 Up in stage I–II–down in stage II–III
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metabolite of vitamin A, retinoic acid plays a regula-
tory role in proliferation and differentiation [52], and 
it has a profound impact on adipogenesis by activating 
retinoic acid receptors [53]. It is important to note that 
retinoic acid receptor signaling pathway may play a role 
in immune suppression. Previous studies have shown 
that abnormalities in the retinoic acid receptor signal-
ing pathway are associated with various malignancies 
[54], but the specific mechanism between this pathway 
and PTC remains unclear. We identified 16 hub genes 

based on our selection criteria and ROC curve indi-
cated that 16 hub genes had good diagnostic value, 8 
of which were focused on. Not only did these genes dif-
fer significantly between tumours and non-tumours, 
but their expression patterns differed at different stages 
based on validation for hub genes. Methylation analysis 
showed that ABCA6, ACACB, RMDN1 and TFPI were 
identified as DMGs, and significant down-regulation of 
DMGs in patients with PTC might be realized by the 
hypermethylation. DNA methylation is reversible, so 

Fig. 3  Sixteen hub genes were verified based on TCGA. The 16 hub genes were significantly down-regulated
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targeted therapies are attractive in cancer. The com-
bination of genetic alterations and DNA methylation 
alterations may improve their clinical value. Therefore, 
16 hub genes and DNA methylation of DMGs as poten-
tial biomarkers may be used to diagnose state (inert 
or invasive) of PTC for selecting the most appropriate 
treatment plan at present, so as to avoid overtreatment, 
improve the diagnosis of invasive tumor. This may pro-
vide new insights into refractory radioiodine differenti-
ated tumors. The expression levels of 8 hub genes were 
significantly correlated with tumor purity, and these 

genes were moderately correlated with tumor-infiltrat-
ing immune cells. Furthermore, GSEA for hub genes 
predicted biological functions of these genes. ABCA6 
belongs to the superfamily of ATP-binding cassette 
transporters and ABCA6 may be related to lipid home-
ostasis in macrophages [55]. Although some members 
of the superfamily of ATP-binding cassette transport-
ers play important roles in tumor-generating mecha-
nisms and drug resistance [56], the specific biological 
role of ABCA6 is not clearly understood. ACACB has 
been reported in laryngeal squamous cell carcinoma 

Fig. 4  Sixteen hub genes were verified based on GSE29265. The 16 hub genes were significantly down-regulated
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[57], nasopharyngeal carcinoma [58] and hepatocellular 
carcinoma [59]. PID1, a gene that regulates the sensi-
tivity of fat and muscle cells to insulin signals, has been 
reported as a feature gene in several cancers, including 
thyroid cancer [60]. RPS6KA6, also known as RSK4, is 
considered as a tumor suppressor gene due to its resist-
ance to invasion and metastasis, which may be related 
with inhibition of the MAPK pathway [61]. The activa-
tion of MAPK likely resulted from down-regulated of 
RPS6KA6. RPS6KA6 has been significantly down-reg-
ulated in colorectal cancer [62], ovarian cancer [63], 
non-small cell lung cancer [64], breast cancer, acute 
myeloid leukemia [65], etc., while this study is the first 
to mention that RPS6KA6 is significantly down-regu-
lated in PTC. By the way, RPS6KA6 is also considered 
a DMG in esophageal cancer [66]. It is worth mention-
ing that RPS6KA6 was considered as a drug resistance 

marker for the treatment of cancer by protein kinase 
inhibitors in a study in 2012 [67]. In general, there has 
been little research on these 8 hub genes, especially 
RMDN1, TTC30A and RNF150, thus, it is imperative 
to fully uncover the specific relationship between hub 
genes and PTC.

Although WGCNA is widely used as a powerful data-
driven tool for various diseases including various solid 
malignancies and hematologic malignancies, there is lit-
tle research on establishing gene co-expression networks 
to identify genes that play a pivotal role in PTC. A new 
study using the WGCNA method to identify hub genes 
suggests that 11 hub genes may be involved in the recur-
rence of papillary thyroid cancer [68]. A total of 16 hub 
genes were identified in this study, and these 16 genes 
did not overlap with the above 11 genes. In particular, 
our study is the first to study PTC using a combination of 

Fig. 5  Pathological stage plot of THCA from GEPIA
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Fig. 6  Gene set enrichment analysis for hub gene
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RRA and WGCNA. However, we cannot deny that there 
may be bias due to the small sample sizes, more studies 
are needed to validate our results.

Conclusions
In summary, we identified 1807 DEGs from 6 datasets 
of PTC data based on RRA methods. From the gene co-
expression network, we identified 16 hub genes, which 
were shown to be significantly down-regulated and 
expression patterns differed at different stages accord-
ing to hub gene verification. ROC curve indicated that 
16 hub genes had good diagnostic value. For methyla-
tion analysis, ABCA6, ACACB, RMDN1 and TFPI were 
identified as DMGs, and MEXPRESS indicated that 
decreased expression level of these genes may relate to 
abnormal DNA methylation. Hub genes and methyla-
tion of DMGs may as potential biomarkers provide new 
insights for diagnosis of PTC. The expression levels of 8 
hub genes were correlated with tumor purity as well as 
tumor-infiltrating immune cells. Although these hub 
genes were found in PTC, the specific role of these hub 
genes in the underlying mechanism of PTC is not clear. 
Therefore, GSEA provides insights into the biological 
functions of hub genes, which might be the direction of 
future work. In addition, functional annotations for the 
top300 DEGs and key modules provide insight into the 
underlying mechanism of PTC. To further understand 
the pathogenesis of PTC is the key to adjust the current 
diagnosis, which can further improve the prognosis of 
PTC patients.
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