
Pammolli et al. J Transl Med          (2020) 18:162  
https://doi.org/10.1186/s12967-020-02313-z

RESEARCH

The endless frontier? The recent increase 
of R&D productivity in pharmaceuticals
Fabio Pammolli1,2*, Lorenzo Righetto2, Sergio Abrignani3,4, Luca Pani5,6,7, Pier Giuseppe Pelicci8,9 
and Emanuele Rabosio2

Abstract 

Background:  Studies on the early 2000s documented increasing attrition rates and duration of clinical trials, lead-
ing to a representation of a “productivity crisis” in pharmaceutical research and development (R&D). In this paper, we 
produce a new set of analyses for the last decade and report a recent increase of R&D productivity within the industry.

Methods:  We use an extensive data set on the development history of more than 50,000 projects between 1990 and 
2017, which we integrate with data on sales, patents, and anagraphical information on each institution involved. We 
devise an indicator to quantify the novelty of each project, based on its set of mechanisms of action.

Results:  First, we investigate how R&D projects are allocated across therapeutic areas and find a polarization towards 
high uncertainty/high potential reward indications, with a strong focus on oncology. Second, we find that attrition 
rates have been decreasing at all stages of clinical research in recent years. In parallel, for each phase, we observe 
a significant reduction of time required to identify projects to be discontinued. Moreover, our analysis shows that 
more recent successful R&D projects are increasingly based on novel mechanisms of action and target novel indica-
tions, which are characterized by relatively small patient populations. Third, we find that the number of R&D projects 
on advanced therapies is also growing. Finally, we investigate the relative contribution to productivity variations of 
different types of institutions along the drug development process, with a specific focus on the distinction between 
the roles of Originators and Developers of R&D projects. We document that in the last decade Originator–Developer 
collaborations in which biotech companies act as Developers have been growing in importance. Moreover, we show 
that biotechnology companies have reached levels of productivity in project development that are equivalent to 
those of large pharmaceutical companies.

Conclusions:  Our study reports on the state of R&D productivity in the bio-pharmaceutical industry, finding several 
signals of an improving performance, with R&D projects becoming more targeted and novel in terms of indications 
and mechanisms of action.

Keywords:  R&D productivity, Pharmaceutical innovation, Attrition rates

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​
mmons​.org/licen​ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/publi​cdoma​in/
zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
It is no coincidence that Vannevar Bush devoted the 
first chapter of his The Endless Frontier [1] to “the war 
against disease”, as the life sciences and pharmaceuticals 

are a key area for the long term evolution of the relation-
ships between science, innovation, economic growth and 
society.

Notwithstanding the persistent contribution of scien-
tific research to pharmaceutical R&D [2–4], in the early 
2000s many concerns were raised on the ongoing pro-
cess of drug development, which culminated in a diffuse 
perception of a “productivity crisis” [5, 6]. Data showed a 
progressive increase of attrition rates at all stages of drug 
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development, together with a significant increase of the 
time needed for the completion of clinical trials [5, 7].

Several hypotheses were introduced to explain these 
trends, including a gestation lag associated with the fun-
damental transformations of scientific knowledge bases 
following the “omics” revolution [5, 8, 9]. Recently, sig-
nals have started to emerge of a change of tendency: (i) 
the number of New Therapeutic Entities (NTE) approved 
by year has increased regularly [10, 11]; (ii) research in 
oncology has benefited from the introduction of bio-
markers for the targeting of therapies [12, 13]; (iii) several 
innovations are shaping the process of pharmaceutical 
R&D, from artificial intelligence to 3D printing for drug 
design and production [14, 15]. In parallel, pharmaceuti-
cal companies have been rethinking the entire R&D pro-
cess, implementing novel organizational solutions [16] 
and devoting great efforts to the early detection of non-
viable drug candidates [17]. Finally, the recent upsurge of 
advanced therapies (e.g. CAR-T cell therapies) has been 
interpreted as a sign of a gestation lag of further major 
breakthroughs coming to an end [12, 15, 18].

Concurrently, regulatory agencies such as the US Food 
and Drug Administration (FDA) have worked to accel-
erate the drug approval process. Requests for Break-
through Therapy Designation [19], conceived to speed up 
approval for drugs that exhibit outstanding performances 
in preclinical research, have been increasing steadily 
passing from an average approval rate of 33% in the first 
years of application (2013–2015) to 44% in more recent 
years (2016–2018).

In this paper, we ensure comparability of results with 
Pammolli et  al., 2011 [5] and provide an updated and 
accurate picture of the current state of pharmaceuti-
cal R&D, using data on drug pipelines up to 2017. Our 
measures of productivity refer to the R&D process (e.g. 
attrition rates, phase durations), rather than to R&D 
expenditures [20–22]. This allows us to focus on a com-
prehensive data set of more than 50,000 R&D projects, 
whose processes have been registered with time and 
space signatures. Information on drug pipelines is inte-
grated with links to an enriched patent database and to 
sales figures for marketed compounds. Moreover, we 
provide a broad classification of the indications associ-
ated with each project (“chronic”, “lethal”, “multifactorial”, 
“rare”) and identify the type of each institution (i.e. phar-
maceutical and biotechnological companies, non-indus-
trial institutions) involved in the R&D process either as 
an Originator or as a Developer of each project. Finally, 
we introduce two measures of novelty, respectively for 
project indications and mechanisms of action.

We identify the therapeutic areas that have attracted a 
stronger effort, and we are able to ascribe the observed 
changes in attrition rates to institution types, and to 

different configurations of Originator–Developer collab-
orations [23].

Methods
Data
Data on R&D projects has been collected from R&D 
Focus, a comprehensive proprietary database on pharma-
ceutical R&D pipelines. Data on R&D projects has been 
complemented establishing specific matchings with sales 
figures from IMS/IQVIA, and with patent data from Reg-
pat and USPTO.

R&D Focus contains information about over 43,000 
medical compounds developed until September 2018, 
both successful and failed. For each compound, a number 
of details are available. In particular, in this paper we use 
the following pieces of information:

•	 ATC codes, classifying compounds into groups on 
the basis of the organ on which they act and their 
therapeutic and chemical properties; it is a hierarchi-
cal classification envisaging five levels. We refer to 
the first three classification levels, defined as follows:

•	ATC1: Anatomical main group, composed of one 
letter. Example: N: Nervous System.

•	ATC2: Therapeutic subgroup, composed of two 
digits. Example: N04: Anti-Parkinson Drugs.

•	ATC3: Therapeutic/pharmacological subgroup, 
composed of one letter. Example: N04B: Dopamin-
ergic Agents.

	  Additional file 1: Table S1, lists the ATC1 codes. 
Navigable lists of all the ATC levels are provided 
by the World Health Organization1 and by inde-
pendent online resources.2

•	 Indications, i.e., the diseases for which the compound 
is/will be used. To ensure compatibility with previ-
ous studies [5], each indication has been classified as 
rare/not rare, lethal/not lethal, chronic/not chronic, 
multifactorial/not multifactorial.3 We underline that 
this classification is preliminary, but can anyway be 
profitably employed to take into account the effects 
of disease types on other variables, as we will see 
below. Extending this classification with further cat-
egories would be an interesting future work.

1  https​://www.whocc​.no/atc_ddd_index​/
2  For instance, https​://www.sdrug​s.com/?c=atc&n=0
3  A disease is defined as rare if it has a prevalence of ≤ 200,000 affected 
individuals in the US. A disease is multifactorial when its causes are repre-
sented by the competition of several factors of a different nature, apparently 
not in direct connection between each other.

https://www.whocc.no/atc_ddd_index/
https://www.sdrugs.com/?c=atc&n=0
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•	 Mechanisms of action, representing the biochemical 
interactions and pathways through which the drug 
produces its effects.

•	 Institutions that have participated to the R&D activ-
ity, distinguishing Originators (patent owners) and 
Developers (institutions developing the compound).

•	 Codes of the patents related to the compound.
•	 Commercial summary, which is a description of facts 

and events related to the compound in natural lan-
guage.

Each pair (compound, indication), which defines an R&D 
project, is connected with information that reconstructs 
its development history. The development history is the 
sequence of development phases that the compound has 
undergone until its marketing or failure for any given 
indication. Phases are Preclinical, Phase I, Phase II, Phase 
III, Registration, Marketed. Each phase is associated with 
date and country of reference. Only projects started in 
USA, EU or Japan have been taken into account. We end 
up with a database covering the history of 50,150 R&D 
projects.

IMS/IQVIA data record sales in Euros of all marketed 
pharmaceutical products from 2002 to 2016, in 35 coun-
tries. The database contains 202,651 products corre-
sponding to 48,402 distinct compounds. The compound 
names of marketed products have been linked to the 
R&D compounds via text matching. In our R&D dataset 
we cover 2333 marketed compounds, and we have been 
able to connect 2123 of them with sales entries (91.0%). 
Globally, we identify 3584 projects, i.e., pairs (compound, 
indication), associated with sales figures.

We link the compounds listed in our R&D dataset 
with both USPTO and Regpat (EPO and PCT4 patents); 
we establish a correspondence between the compounds 
that we list in the R&D dataset and, respectively, 2917 
USPTO patents, 3441 EPO patents and 2419 PCT pat-
ents. For 14,263 R&D projects, i.e., pairs (compound, 
indication), we establish an association with a patent 
and its assignee(s), that is, its owning institution(s). Each 
institution name is then disambiguated and matched 
to a specific institutional type. In particular, we classify 
each patent assignee and each developing institution 
according to six categories: three industrial categories 
(pharmaceutical, biotech and other industrial) and three 
non-industrial categories (university, hospital and other 

research centers). For 84.6% of the R&D patents we are 
able to classify the assignees, while for 87.7% of the R&D 
compounds we are able to classify all the institutions 
involved in the R&D process.

Additional file 1: Fig. S1, proposes a flow chart summa-
rizing the criteria and the steps leading to the construc-
tion of the datasets employed in the experiments (R&D 
projects, R&D projects associated with patents, R&D 
projects associated with sales).

Data processing
Attrition rate
The attrition rate for a given development phase in a 
given year is defined as the percentage of R&D projects 
that entered the focal phase in that year and passed to 
the subsequent phase within 4 years (accordingly, the 
maximum possible starting year in our data is 2013). If 
information on the subsequent phase is missing but a 
more advanced one is recorded, the transition is deemed 
accomplished without imposing time constraints.

Phase duration
The duration of a given development phase in a year is 
defined as the median time required to the R&D projects 
that entered the focal phase in the given year to pass to 
the subsequent phase. The median is computed consid-
ering transitions with duration lower than or equal to 4 
years, to make a sound comparison across decades.

Probability of success
The probability of success of projects developed within a 
given ATC3 is measured by the number of projects that 
reach the market over the total number of projects in 
that ATC3. Projects started after 2013 are not taken into 
consideration.

Novelty measure
Various kinds of novelty measures have been used in the 
scope of drug development [24]. In this paper we intro-
duce a more comprehensive measure and we apply it to 
assess, for each project, the degree of novelty of both 
indications and mechanisms of action:

where nind/moa,<t is the number of times an indication/
mechanism of action listed in project i has appeared in 
previous projects, while Np,<t is the total number of pre-
vious projects. We select min(nind/moa,<t) to identify the 
“newest” mechanism of action amongst the ones related 
to the focal project.

(1)Novi =
1

(nind/moa,<t + 1)

Np,<t

Np,<t + 1

4  PCT patents are filed under the Patent Cooperation Treaty. The Patent 
Cooperation Treaty is an international treaty with more than 150 contract-
ing states, which makes it possible to seek patent protection for an invention 
simultaneously in a large number of countries. A PCT patent application has 
the effect of a national patent application in all PCT contracting states.
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Statistical techniques
Statistical tests
To assess the significance of a change in productivity 
measures in two different time spans, we use Wilcoxon 
test [25], which is a nonparametric test to detect differ-
ences in the medians of two distributions. To perform 
such a test on attrition rates, we compare the distribu-
tions of phase transitions, treated as a binary variable 
indicating failure/success for each phase occurrence, in 
the two time spans.

Changepoint detection
Changepoint detection [26] identifies the time instants 
(changepoints) corresponding to abrupt changes in 
a function. Identifying the changepoints divides the 
function into sections. In particular, we split the attri-
tion rate in correspondence of the years where the 
regression line changes the most. This is obtained by 
finding the sections of the function such that the sum 
of the residual errors of the regressions in each sec-
tion is minimized. Note that adding more changepoints 
keeps reducing the value of the residual error, leading 
to overfitting. To avoid this problem, the error metric 
needs to envisage also a term penalizing high num-
bers of changepoints. Let x1, . . . , xn be the points of 
the function that we are studying, and let f p,q be the 
regression line approximating the function between the 
time instants p and q ( p < q ). The changepoint detec-
tion procedure finds the K time instants k1, . . . , kK  min-
imizing the following metric:

where in this formula k0 represents time instant 1 and 
kK+1 represents the last time instant (n). The internal 
summation describes the residual error of the regres-
sion between the time instants kr and (kr+1 − 1) . The 
term βK  , where β is a parameter to be set, penalizes the 
addition of new changepoints. It can be easily shown 
that a new changepoint is rejected if it does not bring 
an improvement to the residual error of the regression 
at least equal to β . In this work the threshold β has been 
set to twice the variance of the function, meaning that we 
stop adding changepoints when the subsequent new one 
would increase the R2 determination coefficient of the 
regression of less than 2/n.

Regression with dummy variables
We model a set of response variables in a regression 
framework:

(2)J (K ) =

K
∑

r=0

kr+1−1
∑

i=kr

(

xi − f
kr ,kr+1−1
i

)2
+ βK

•	 Phase-by-phase transition: binary variable identify-
ing the successful passage from the focal phase to the 
next one;

•	 Sales: logarithm of the sum of sales of the focal drug.

Our main explanatory variable is the binary variable 
identifying the type of Originator–Developer (O–D) 
relationship under study. For each project, we define the 
Originator(s) according to the assignee(s) of the related 
patent(s), and the Developers according to the develop-
ing institution listed at each stage of the R&D process. 
We define O–D relationships according to the presence 
of at least 1 assignee or developer in one of the different 
institutional types. We treat the “university”, “hospital” 
and “other research” classifications as “non-industrial”. 
Also, we define as the baseline O–D relationship the one 
that has a pharmaceutical company acting both as Origi-
nator and Developer. Then, we study five possible O–D 
relations: non-industrial (O) and pharmaceutical (D); 
biotech (O) and pharmaceutical (D); non-industrial (O) 
and non-industrial (D); non-industrial (O) and biotech 
(D); biotech (O) and biotech (O).

In addition, we use a few dummy variables to con-
trol for fixed effects characterizing the focal project: the 
starting year, the indication and the classification of the 
indication. Please notice that the four indication classes 
that we have indicated above (i.e. “lethal”, “chronic”, “rare”, 
“multifactorial”) are overlapping, and therefore multiple 
fixed effects related to the indication type may be rel-
evant for a given R&D project.

In synthesis, the regression model for the generic 
response variable X can be written as:

where OD is the binary variable classifying each project 
by either a relevant project according to the O–D rela-
tionship under study, or a baseline project (pharmaceuti-
cal as originator and developer both).

Results
The evolution of R&D productivity in pharmaceuticals
We identify an R&D project as a specific indication-
compound association, and select projects started in 
either the US, Europe or Japan since 1990. We first focus 
on phase-by-phase attrition rates (Fig. 1a). At each stage 
of development, we define a success when we observe 
a transition to the next stage within 4 years, or, in case 
of missing data, to any other subsequent phase, without 
time constraint. As a consequence, in our analysis of 

(3)

X = αOD +

Ny
∑

t=1

βtyeart +

Ni
∑

i=1

ιi indicationi

+ κ chronic + � lethal + ρ rare + µmulti − factorial
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attrition rates we study projects which entered any phase 
of development by 2013, while we consider data until 
2017 to detect phase transitions. We use changepoint 
detection analysis [26] to pinpoint the most relevant 
shifts in regression slopes in the data. We have found that 
attrition rates in clinical phases have been declining in 
recent years, though they have remained above the values 
observed in 1990–1999. We also observe a reduction of 
attrition rates in preclinical research. To portray a com-
prehensive picture of recent trends, we show in Fig.  1b 
the average values of phase-by-phase attrition rates in 
the three decades under study. Tests on phase transitions 

for phases started in 2000–2009 and 2010–2013 (ibidem) 
show that the observed decreases are statistically signifi-
cant for all phases, except for Phase III (see "Methods" 
for details). Attrition rates in late-stages clinical trials (i.e. 
Phase II and III) remain quite high (Fig.  1a, b). Market 
launches (i.e. projects that are registered by a regula-
tory agency and marketed, see the Registration panel in 
Fig. 1a) have increased steadily.

As a first attempt to identify drivers of decreasing attri-
tion rates, we compute the relative performance of R&D 
projects targeting different therapeutic areas. To this end, 
we classify the projects according to their corresponding 

a

b

Fig. 1  a Time evolution of attrition rates at different stages of drug development. Black circles: data; red solid lines: linear regression in the 
corresponding time window; blue vertical solid line: changepoint. In a given year, the attrition rate for each development phase is defined as 
the percentage of projects that started the phase in that year and failed to pass to the subsequent phase within 4 years (accordingly, 2013 is the 
last year we do consider). b Average (± standard deviation) yearly phase-by-phase attrition rates in three different time intervals (1990–1999, 
2000–2009, 2010–2013). We also report the significance level of a Wilcoxon rank sum test [25] on the difference of attrition rates in 2000–2009 and 
2010–2013
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first-level ATC class. Additional file  1: Table  S2 reports 
the values involved in this computation (phase-by-
phase attrition rates, project share, significance level of 
the observed changes). Results provide a few relevant 
insights. First, at early stages of development (Preclini-
cal and Phase I) attrition rates have been decreasing 
quite ubiquitously, but significant reductions (Wilcoxon 
test [25] at 0.05 significance level) are to be ascribed to 
cancer research (ATC class L: Antineoplastic and Immu-
nomodulating Agents). Considering its share in the data, 
this result makes oncological research of utmost impor-
tance in the overall attrition rate reduction that we do 
observe for early stages of pharmaceutical R&D. Then, 
at later stages of the drug development process, signifi-
cant reductions occur in class J (General Anti-Infectives 
Systemic), which also shows a statistically significant 
improvement in Phase III, in class B (Blood and Blood 
Forming Organs), in class C (Cardiovascular System) 
and in class P (Parasitology). When we move to consider 
ATC classes that provided a negative contribution to the 
decrease of phase-by-phase attrition rates, only a few of 
the observed results are statistically significant, with the 
notable exception of increase of Phase III attrition rates 
for class N (Nervous System), confirming the difficulty of 
research in mental/brain diseases [27].

In order to get some further insights on the observed 
results, we focus on specific subsets of R&D projects: 
two important sets of biologics, i.e. advanced therapeu-
tics (cell and gene therapies) and monoclonal antibod-
ies, and the R&D projects related to Alzheimer’s disease. 
Biologics in fact are experiencing a remarkable growth 
in sales: according to EvaluatePharma [28], in 2020 sales 
of biological compounds are expected to increase by 50 
billion USD. Finally, R&D projects on Alzheimer’s dis-
ease represent a large class of neurological R&D projects 
[29]. In Additional file 1: Table S3, we show attrition rates 
in 2000–2009 and 2010–2013 for advanced therapies 
and monoclonal antibodies, while in Additional file  1: 
Table S4 we show attrition rates for Alzheimer’s disease 
for the same periods, including also a focus on the pro-
jects connected to the amyloid hypothesis,5 which we 
were able to identify in our data. As per advanced thera-
pies, the significant decrease of attrition rates in the early 
phases of development is confirmed, with a very remark-
able reduction for Phase I; please notice that the develop-
ment of these therapies has been growing in recent years 
and so we do not observe any project passing Phase III 
until 2013, while our data contain eight projects reach-
ing the market in 2014–2017. For monoclonal antibodies 

we record a significant decrease of attrition rate for the 
Preclinical phase. Regarding Alzheimer’s disease, Addi-
tional file  1: Table  S4 highlights the absence of signifi-
cant improvement in attrition rates; in particular, our 
data do not record any R&D projects passing Phase III. 
The further focus on the projects related to the amyloid 
hypothesis, accounting for about 50% of the Alzheimer’s 
projects, shows a similar pattern.

We now analyze the duration of R&D activities at dif-
ferent stages of the drug development process. First, we 
measure the time needed to identify non-viable R&D 
projects (Fig.  2a). Interestingly, ≃ 70% of projects that 
had started between 2000 and 2009 were terminated in 
the year they entered preclinical research, with a ≃ 20% 
increase with respect to the previous decade. For success-
ful projects, we measure the time lag from date of patent 
to date of market launch. In the inset of Fig. 2a we show 
the distribution of the time lag between patent filing and 
market launch of successful projects in the three decades 
under study. Interestingly, despite the increase observed 
for projects started in the 1990s and in the 2000s, this 
measure has decreased, showing that the development 
of at least a fraction of the projects has become faster in 
recent years.

To track the evolution of phase durations, we compute 
the time needed to progress along the pipeline in the dif-
ferent decades of observation (to ensure comparability of 
projects in different decades we imposed a constraint of 4 
years (48 months) as the maximum observable duration 
for a given phase). As shown in Fig. 2b, the time needed 
to complete preclinical research has been slightly increas-
ing, but we did not find significant differences between 
decades (Wilcoxon test [25] at 0.05 significance level). 
In Phase I of clinical research, projects progression has 
become significantly faster in the latest decade. The dura-
tion of Phase II saw a significant increase in 2000–2009, 
but then this trend has halted. The duration of Phase III 
has increased progressively and significantly remaining 
the longest, due to the complexity of inherent activities 
(regulatory requirements, increasing patient sample size, 
multi-center logistics [6]).

Finding the niche
Evidences presented in the previous section documented 
that attrition rates have been decreasing in recent years. 
We now move to investigate which therapeutic areas 
research has focused on.

To this end, similarly to Pammolli et  al. [5], we parti-
tion projects under study based on their ATC, identifying 
their main therapeutic areas at the 3-digit hierarchical 
level (ATC3). In Fig. 3 we show how projects are distrib-
uted across therapeutic areas, as a function of the cor-
responding probability of success (POS; i.e. how many 

5  According to the amyloid hypothesis, the main cause of Alzheimer’s disease 
is the accumulation and deposition of oligomeric or fibrillar amyloid β peptide 
[30].
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projects have reached the market from the preclinical 
phase, overall) up to 2013 and of the yearly average sales 
between 2002 and 2016. In general, results show that 
high uncertainty/high potential reward projects (i.e. low 
POS and high yearly sales) continue to polarize Research 
and Development efforts (Fig.  3a) [5]. Expectedly, pro-
jects in therapeutic areas with higher revenues and 
higher attrition rates have experienced the highest share 
increase between 2002–2009 and 2010–2017 (Fig. 3b). In 
particular, monoclonal antibody neoplastics (L1G) and 
immunosuppressants (L4X) have increased their share, 
while the still prevailing class L1X (antineoplastic and 
immunomodulating agents) has remained constant.

The concentration of projects in oncology has become 
even more apparent in the last decade: (i) 4 out the top 
5 ATC3 classes, ranked by their overall share in projects 
ongoing between 2000 and 2017, are related to oncol-
ogy (L); (ii) more than 40% of ongoing studies, currently 
listed on ClinicalTrials.gov6 are oncology-related (see 
Additional file  1: Table  S5). Other relevant fields that 
showed up in rankings include degenerative diseases of 
the central nervous system (N7X), with specific refer-
ence to Alzheimer’s disease (N7D), another area in which 
unmet medical need is high [32, 33]. Interestingly, coher-
ently with results presented in the previous section, 
while projects in cancer research have improved their 
attrition rates after 2010, the performance of projects in 
class N has worsened in most cases (see Additional file 1: 
Table S2). In fact, out of 86 projects on Alzheimer’s dis-
ease in the last 10 years, only one has received approval 
[15].

The focus on R&D projects of high complexity in rela-
tively unexplored areas is also witnessed by the fact that 
orphan drugs indications and approval have increased 
in recent years [34]. The number of yearly NME approv-
als for orphan drugs has more than doubled from 2000–
2009 to 2010–2017, while drug repositioning approvals 
towards rare indications have tripled in the same period 
[34]. We use a manual classification of indications to 
retrieve the share of rare diseases (defined as having a 
prevalence of ≤ 200,000 affected individuals in the US) by 
year of project start (Fig. 4a). In the observation period, 
this share has increased from 3 % in 1990 to about 16% in 
2017.

The general tendency towards development of drugs 
on orphan indications and treatments that are more and 
more specific and target relatively small subpopulations 
seems to act as a factor of increasing difficulty of pro-
jects. It has been observed, for instance, that orphan drug 

Fig. 2  a Time needed for project discontinuation; 1990–1999 (blue), 
2000–2009 (red). We highlight in green the area between the two 
curves. We show the fraction of projects that are discontinued 
after x years from the start of preclinical research. The distribution 
accounts for a maximum discontinuation time of 8 years, so we 
focus on projects started before 2010. Inset: boxplot of the time 
interval between patent filing and market launch years, based on the 
year of market launch, in three different time intervals (1990–1999, 
2000–2009, 2010–2017). b Median phase duration per each phase 
of the drug development process, in three different time intervals 
(phases started in 1990–1999, 2000–2009, 2010–2013). The duration 
of a development phase in a year is defined as the median time 
required to the projects that started the focal phase in the given year 
to pass to the subsequent phase. The median duration is computed 
considering only transitions with duration lower than or equal to 
4 years, to make a sound comparison across decades. When the 
median of a phase duration is not significantly different from that of 
the previous decade, the corresponding value is barred

6  ClinicalTrials.gov [31] is a database of privately and publicly funded clinical 
studies conducted around the world.
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development takes, on average, 2.3 years longer [35]. This 
is due, for instance, to the recruiting challenges associ-
ated with smaller and geographically dispersed patient 
populations, and to the scarcity of available animal mod-
els and biomarkers. An additional factor of complex-
ity might be the increasing relevance of multifunctional 
drugs, which have emerged, in opposition to single-target 
drugs, as a new approach to treatment [36–38].

We then consider the average number of mechanisms 
of action per drug, by starting year of the project (Fig. 4a), 
observing a clear positive trend with a pronounced 
increase after 2010. This trend is confirmed also for the 

individual ATC1 classes, as shown in Additional file  1: 
Fig. S2. Between 1990 and 2017, the average number of 
mechanisms of action per drug has nearly tripled. This 
result may reflect a general improvement of drug efficacy, 
as they act on multiple targets, while it also reflects the 
increasing difficulty of drug design [37].

The evidences that we have presented so far might 
seem to lead to apparently contradictory conclusions: 
on the one hand, we found that research is focusing on 
difficult and risky areas like oncology and rare diseases; 
on the other hand, we observed a recent increase in 
productivity. A few explanations for our results can be 

Fig. 3  Distribution of R&D projects, by probability of success and size of the market. In each panel, the probability of success (POS) is shown on 
the x axis and the logarithm of potential sales (yearly average computed in 2002–2016) on the y axis. A contour plot and a three-dimensional view 
of the same distribution are shown. In the contour plot we highlight the top 10 ATC3 classes by the focal metric being shown on the vertical axis. 
These are listed besides the contour plots. a The vertical axis shows the percentage distribution of research and development (R&D) projects by POS 
and sales level. The distribution of R&D efforts is concentrated in the upper left hand corner of the plot (indicating high sales and low POS). b The 
vertical axis shows the share variation between 2002–2009 and 2010–2017, again as a function of POS and sales. Positive values (peaks in the plot) 
represent areas in which the research efforts have increased from 2002–2009 to 2010–2017, whereas negative values (holes in the plot) correspond 
to a reduction of research intensity
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introduced. As per cancer drugs, recent reports [11, 14] 
show findings similar to ours and predict even greater 
sales and market share, due to the combination between 
high medical need and advances in the relevant science 
basis [6]. Advances in scientific knowledge bases sustain-
ing R&D activities in oncology are worth mentioning 
here. In fact, our data show that advanced therapies (i.e. 
cell or gene therapies) are mostly focused on oncology 
(Additional file 1: Fig. S3), and that projects on advanced 
therapies have been on a steep rise in the last few years 
(Additional file  1: Fig. S4) [15]. Also, the rising impor-
tance of anti-cancer antibodies (class L1G) could be a 
factor of simplification of drug preparation for preclini-
cal test and clinical trials, as the efficiency of monoclonal 
antibody production has improved significantly in recent 
times [39].

As per orphan indications, FDA data [40] show that 
they cover a majority share in fast-track programs, while 
projects in these areas are affected less by the “better than 
the Beatles” problem described by Scannell et al. [6]. In 
fact, in Additional file 1: Table S6 we show that the aver-
age phase-by-phase attrition rates have been declining in 
the subset of projects focusing on rare indications, with 
the notable exception of Phase III, in which trials set-up 
is known to be more demanding because of the small size 
of target population [35].

To complete the analysis, we investigate the degree of 
novelty associated with each research project. For each 

R&D project, we measure the novelty of indications and 
mechanisms of action. To this end, we devise an indica-
tor that counts the number of times a given indication/
mechanism of action listed in the focal project appeared 
in earlier projects, taking into account the total number 
of previous projects (see "Methods" for details). Inter-
estingly, the median value of both these measures has 
been increasing in recent years (Fig. 4b). In other words, 
research has tended to focus on novel indications and 
mechanisms of action. Recent reports [15] show, in fact, 
that 34% of mechanisms of action in FDA-approved 
drugs in 2018 are first-in-class (i.e. they were different 
from those of existing therapies). To gain insights into the 
relationships between novelty and market launches, we 
divide our dataset in successful (i.e. marketed) and failed 
projects. We have found a significantly higher median 
novelty of successful projects (0.083 vs 0.015; a Wilcoxon 
test rejects the null hypothesis that the two distribu-
tions have the same median with p << 0.01 ). In other 
words, an increasing fraction of marketed drugs tend to 
be based on novel mechanisms of action and target novel 
indications.

The division of innovative labor
As shown in [5, 41, 42], the contribution of different 
institutions (pharmaceutical and biotech companies, 
non-industrial institutions) to R&D performance might 
differ significantly. In this section, we first investigate the 

Fig. 4  Share of rare indications, number of mechanisms of action, and novelty of indications and mechanisms of action. a Evolution in time of the 
share of projects targeting rare diseases (i.e. having a prevalence of fewer than 200,000 affected individuals in the US) and of the average number 
of mechanisms of action per project, between 1990 and 2017, by project starting year (i.e. the year the focal project entered preclinical research). b 
Evolution in time of median novelty of indication/mechanism of action per project, between 2000 and 2017, by project starting year
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role of different institutional categories as Developers of 
R&D projects. Then, we study the Originator–Developer 
contractual relationships, where the Originator of a drug 
project is defined as the institution that holds the relevant 
patent and is assumed to have started the R&D project.

We distinguish pharmaceutical companies, biotech 
companies, universities, hospitals, other non-industrial 
research centers. Overall, we cover a subset of the pro-
jects (see the "Data" section) that shows statistics com-
parable to the whole sample (Additional file 1: Table S7). 
In Table  1 we list attrition rates for each institution 
type and the corresponding share of projects developed 
in the two periods. Here we focus on Developers, while 
in the last part of this section we concentrate on Origi-
nators. We measure the contribution of institution type 
i to the variation in attrition rates in phase p for phases 
started in 2000–2009 and 2010–2013 using the formula 
δip = (�ARip · Shi) ∗ 100/�ARtot,p , where �ARip is the 
variation observed in attrition rates in p in the projects 
developed by i, Shi is the share of phases belonging to 
projects developed by i in 2010–2013, and �ARtot,p is 
the total attrition rate observed for phase p for all pro-
jects for which institution classification was available. 
Strikingly, results show (Additional file 1: Fig. S5) that a 
relevant fraction of the observed reduction of the attri-
tion rates are to be ascribed to projects developed by 
biotechnological companies, with significant attrition 
rate decreases (Wilcoxon test [25] at 0.05 significance 
level) in all phases (except for Registration). The contri-
bution of pharmaceutical companies to the total attri-
tion rate changes tends to be high due to to the large 
share of projects in which they act as Developers (see 
e.g. in Phase I), but no significant changes are reported 

(except for Registration). Finally, non-industrial insti-
tutions acting as Developers experience a reduction of 
their attrition rates in Phase II and Registration.

We now focus on the Originator–Developer relation-
ships. While division of innovative labor and R&D alli-
ances have become increasingly important within the 
industry [43], academic and non-industrial institutions 
have been advocated as pivotal in driving early develop-
ment of candidate drugs [44], while influence of inter-
firm and public/private knowledge transfer on R&D 
productivity has been underlined [45, 46]. We study 
the effect of different Originator–Developer (O–D) 
relationships on attrition rates and sales for marketed 
products (i.e. the logarithm of composite sales for 
2002–2016). In general, we identify an O–D relation-
ship for each of 4860 R&D projects (1863 in the dec-
ade 1990–1999, 2997 in 2000–2013). In Additional 
file  1: Table  S8 we show a full count of these projects 
by the corresponding relative O–D relationship. We 
have found that since the year 2000 biotechnological 
companies have increased their role both as Origina-
tors and Developers, while pharmaceutical companies 
are now less dominant as Developers than they were in 
the past. This trend seems to be confirmed by recent 
reports [15]. In Table  2 we show the results of the 
regressions of two response variables, phase-by-phase 
transition rates and sales, accounting for different O–D 
relationships against the baseline (i.e. a pharmaceuti-
cal company being both Originator and Developer; 
the complete results can be found in Additional file 1: 
Table  S9). We run the regression for data before and 
after 2000, taken as a reference year. We consider fixed 
effects of time and a broad proxy for project difficulty, 

Table 1  Average phase-by-phase attrition rates and  phase-by-phase share: 2000–2009 (00), 2010–2013 (10), 
for  the  three institutional types under  study (pharmaceutical and  biotechnological companies, non-industrial 
institutions)

Developer Attrition rates

Preclinical Phase I Phase II Phase III Registration

00 10 00 10 00 10 00 10 00 10

Pharmaceutical 86.80 85.16 62.18 58.91 77.74 78.69 64.33 66.40 46.67 32.52

Biotech 90.25 82.17 59.61 54.15 82.20 77.48 78.15 64.14 35.00 22.54

Non-industrial 96.97 97.07 62.37 59.32 90.00 80.19 82.14 81.25 67.65 0

Share

Preclinical Phase I Phase II Phase III Registration

Developer 00 10 00 10 00 10 00 10 00 10

Pharmaceutical 24.16 24.44 43.99 49.15 47.56 48.34 62.26 62.36 76.69 61.19

Biotech 48.60 43.19 44.54 42.51 42.18 44.18 30.55 32.41 16.36 35.32

Non-industrial 27.24 32.37 11.47 8.33 10.26 7.48 7.19 5.24 6.95 3.48
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based on the classification of the targeted indication as 
“chronic”, “lethal”, “rare”, “multi-factorial”.

The transition rate results presented in Table  2 lead 
to two main conclusions. First, no O–D configuration 
seems to outperform the baseline. This result, while not 
surprising, confirms that large pharmaceutical compa-
nies have kept strong development capabilities, while 
they have continued to improve in discovery and preclin-
ical research, also through acquisitions of small, research 
intensive, biotechnology companies [4, 23, 43]. However, 
biotech firms have increased the share of R&D projects in 
which they act as Developers, and their performance has 
improved over time, converging to the benchmark pro-
vided by the baseline. This result is important, because 
it is showing that the transition of some biotechnology 
companies from being oriented mostly to discovery to 
becoming integrated pharmaceutical companies has been 
providing a positive contribution to the recent recovery 
of R&D productivity in pharmaceuticals.

When we consider the size of the market, we see that 
since the early 2000s biotech firms and non-industrial 
institutions after 2000 have acted as Developers of R&D 
projects leading to smaller markets. This result is coher-
ent with the higher share of projects focusing on an indi-
cation specified as “rare” (last columns of Table 2).

Concluding discussion
Our analyses in this paper revealed significant improve-
ments in different features of R&D productivity in 
pharmaceuticals. Attrition rates at all stages of drug 
development have decreased. Our findings are statis-
tically significant, except for Phase III, due to the low 
number of observations after 2013. The recent decrease 
of attrition rates in preclinical research is a piece of evi-
dence that will deserve further monitoring. Research on 
CNS has continued to experience the highest attrition 
rates. We found that pharmaceutical R&D has continued 
to focus on therapeutic indications where medical need 
is high (i.e. oncology and degenerative diseases of the 
CNS). These increasing efforts correspond to high uncer-
tainty and high potential reward projects. Interestingly 
enough, we found evidence that the time to discontinua-
tion of non-viable projects has tended to decrease.

As a possible driver of decreasing attrition rates at all 
stages of pharmaceutical R&D we mention the higher 
reliance on validation of drug targets in preclinical 
research, in terms of their role in the disease and their 
toxicity. Indeed, the extensive genetic validation of drug 
targets has become more widely embraced in differ-
ent therapeutic areas [47, 48] and it has been shown to 
improve the chances of passing through clinical stages 
[49]. Better selection of patient subsets for clinical trials 
via “stratification” based on biomarkers [50] is a possible 

factor of improvement of success rates. “Precision” diag-
nostic assays are increasingly used as clinical endpoints 
[51], contributing to strengthen selection capabilities in 
drug development. Finally, the higher number of mono-
clonal antibodies as new candidate drugs has positively 
affected both preclinical development and clinical grade 
batch preparation [52].

We found that many of the detected improvements 
are widespread across projects in different therapeutic 
areas and at different stages of development, except for 
Phase III, in which performances show a higher variabil-
ity and the impact of molecular stratification of patients 
seems to be still in its infancy. R&D projects on different 
types of cancer have experienced significant attrition rate 
decreases in early stages of development (Preclinical and 
Phase I) while improvements at later stages (II and III) 
have been driven more by anti-infective drugs.

The low productivity in CNS research can be explained 
by several motivations: e.g., patient heterogeneity, complex-
ity of neurodegenerative diseases that often involve multi-
ple molecular targets, the relatively low predictive validity 
of experimental animal models, the relative lack of estab-
lished clinical biomarkers [27, 53]. To improve this situa-
tion, changes are needed in both therapeutic research and 
regulatory policies, and specific programs and initiatives 
to promote such changes are being undertaken [54, 55]. At 
present, R&D productivity in CNS is still lagging behind.

Moreover, our analyses showed that the number of 
mechanisms of action in drug projects has grown over 
time, and that the novelty of mechanisms of action and 
indications has increased. New drugs are increasingly 
based on novel mechanisms of action. The rise in the 
number and novelty of mechanisms of action and indi-
cations that we discovered for recent projects and the 
increasing focus on high uncertainty and high potential 
reward projects shows that new research trajectories are 
opening up. We found, though, that phase duration at 
late stages of drug development is increasing, particularly 
in Phase III, pointing at requirements in terms of trial 
organization and outcomes. Our findings documented 
that increasing numbers of candidate drugs tend to tar-
get multiple (and novel) mechanisms of action, follow-
ing improvements in the understanding of the genetic, 
molecular and cellular bases of diseases. Though this par-
adigm shift may result into the generation of more effica-
cious drugs, it might also affect the length of the process 
of drug design. In fact, the duration of successful preclin-
ical research has slightly increased after 2010.

When looking at the relative contribution of different 
institutional types to the growth of R&D productivity, we 
found that a relevant fraction of the detected increases 
are due to better performance of biotechnological com-
panies, in preclinical and clinical research. The rising 
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importance of biotech firms results apparent also when 
studying the Originator–Developer contractual relation-
ships; in particular, the performance of biotech firms act-
ing as Developers of R&D projects is converging to that 
of large pharmaceutical companies. 

How much of the improvement in R&D productivity 
that we documented is structural and how much is tran-
sient is an important question for future research. The 
duration of drug development remains a concern, even 
though the intensification of the collaboration between 
firms and regulatory agencies can provide guidance and 
contribute to positively impact development times (e.g. 
in Breakthrough Therapy Designation procedures [56]). 
If the evidences of an increasing productivity will be con-
firmed, several cohorts of novel therapeutic compounds 
will reach the market, targeting specific indications and 
patient groups. A new landscape is emerging, which will 
be shaped by the coevolution between the progress of the 
research frontier and the strategies that regulators will 
implement to deal with new, possible, trade-offs between 
innovation, access and sustainability.

Limitations
This study is based on data collected from the R&D Focus 
dataset, which we have complemented through a signifi-
cant effort of data integration on patent data, sales figures, 
and with a classification of institutions and therapeutic 
indications. Ref. [57] reports missing data issues for Clini-
calTrials.gov: despite the fact that institutions are required 
to insert their results in the database, this has often not 
been done. R&D Focus mitigates this problem by relying 
on additional sources such as press releases, conference 
reports and information gathered directly from compa-
nies. Nevertheless, it is not possible to guarantee that the 
dataset reports all the phase transitions of the described 
compounds. This is true especially for the Preclinical 
phase, which typically is not public; 48% of the compounds 
reporting a Phase I are not associated with any Preclinical 
phase. These limitations notwithstanding, evidences pre-
sented in this paper provide, to our knowledge, the most 
comprehensive available investigation on recent trends 
in pharmaceutical R&D. We hope that our results can 
contribute to show the importance of data provision and 
integration on all the stages of drug development, with 
particular reference to detailed information on failures.
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