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Abstract 

Zinc finger E-box binding homeobox 1 (ZEB1, also termed TCF8 and δEF1) is a crucial member of the zinc finger-
homeodomain transcription factor family, originally identified as a binding protein of the lens-specific δ1-crystalline 
enhancer and is a pivotal transcription factor in the epithelial-mesenchymal transition (EMT) process. ZEB1 also 
plays a vital role in embryonic development and cancer progression, including breast cancer progression. Increasing 
evidence suggests that ZEB1 stimulates tumor cells with mesenchymal traits and promotes multidrug resistance, pro‑
liferation, and metastasis, indicating the importance of ZEB1-induced EMT in cancer development. ZEB1 expression 
is regulated by multiple signaling pathways and components, including TGF-β, β-catenin, miRNA and other factors. 
Here, we summarize the recent discoveries of the functions and mechanisms of ZEB1 to understand the role of ZEB1 
in EMT regulation in breast cancer.
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Background
Epithelial-mesenchymal transition (EMT) is the trans-
differentiation process that causes epithelial cells to lose 
their epithelial characteristics, such as cell junctions and 
apical-basal polarity, and acquire mesenchymal char-
acteristics, such as increased cell motility and invasive 
ability [1]. EMT is critical for normal developmental pro-
cesses, such as embryonic stem cell differentiation and 
induced pluripotency, and is involved in disease devel-
opment processes, such as wound healing, fibrosis, can-
cer stem cell (CSC) behaviors and cancer development/
migration. EMT occurs in breast cancer, providing highly 
mobile and invasive cancer cells for further metastasis.

Over the past decades, extensive research has focused 
on the function of EMT and its underlying molecular 

mechanisms. Lamouille et  al. reviewed the molecular 
mechanisms of EMT and summarized EMT transcrip-
tion factors with their direct targets and signaling path-
ways [2]. Most of the EMT transcription factors regulated 
epithelial/mesenchymal markers (such as E-cadherin, 
N-cadherin, and vimentin) directly or indirectly during 
both normal development and physiopathological pro-
cesses. Among these transcription factors, ZEB1 is a can-
didate repressor of E-cadherin [3] as are other zinc finger 
E-box binding (ZEB) family members [4], the Snail fam-
ily of transcription factors [5] and basic helix-loop-helix 
(bHLH) factors [6].

The ZEB1 protein participates in the differentiation of 
multiple tissues, including bone tissue [7], smooth mus-
cle tissue [8], neural tissue [9], etc. ZEB1 can decrease 
the expression of the epithelial marker E-cadherin [10] 
and related miR-200  s [11], resulting in the EMT pro-
cess. Abnormal expression of ZEB1 has been reported in 
various human cancers, including pancreatic cancer [12], 
lung cancer [13], liver cancer [14], colon cancer [15], and 
breast cancer [16]. Additionally, the increased expression 
of ZEB1 enhanced the chemo/radioresistance of cancer 
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cells [17], indicating that ZEB1 is not only involved in the 
oncogenesis and development of cancers but also affects 
the prognosis of cancer patients. This review will focus 
on the EMT transcription factor ZEB1 and its functions 
in the oncogenesis and development of breast cancer.

Transcription factor ZEB1 and its structural 
characteristics
ZEB homeobox is a transcription factor family that 
includes ZEB1 (also known as TCF8 and δEF1) and 
ZEB2 (also known as SIP1) [18]. Both of them con-
tain C2H2-type zinc fingers, the common DNA-binding 
motifs binding to paired CAG​GTA​/G E-box-like ele-
ments in the promoters of their target genes, and regulate 
cell differentiation and tissue-specific functions [19, 20]. 
ZEB1 is located on Chr10p11.22 and encodes the 1117 
amino acid ZEB1 protein, which mainly consists of the 
homologous structural domain homeodomain (HD) in 
the middle of the structure and the structures of the zinc 
finger N-terminal cluster (NZF) and C-terminal cluster 
(CZF) on both sides (Fig. 1).

The expression pattern of ZEB1 in breast cancers 
and its molecular mechanism of transcriptional 
suppression
The expression of ZEB1 in breast cancer
The expression level of ZEB1 is increased in triple-nega-
tive breast cancers (TNBCs) and basal-like breast cancers 
compared to the luminal subtype [21]. To understand 
the role of ZEB1 in TNBCs, Lehmann et  al. compared 
the different gene expression levels between aggres-
sive TNBC cancer cells (MDA-MB-231) with high ZEB1 
levels and their corresponding ZEB1 knockdown cells, 
revealing that the expression of 60% of genes was upreg-
ulated after ZEB1 knockdown and that the remaining 
genes were downregulated [22]. They predicted poten-
tial direct or indirect target genes of the transcriptional 
repressor ZEB1 and suggested that abnormal expres-
sion of the gene set may be a predictor of poor survival, 

therapy resistance and increased metastatic risk in breast 
cancer [22].

ZEB1 functions as a transcriptional suppressor
As mentioned before, the main transcriptional function 
of ZEB1 is suppressing the expression of its target genes, 
such as epithelial markers (E-cadherin), and correspond-
ingly increasing the mesenchymal levels of vimentin and 
N-cadherin [23]. Eger et al. first reported ZEB1 as a direct 
transcriptional repressor of E-cadherin by physically 
binding to the proximal promoter of E-cadherin in breast 
cancers [10]. As a transcriptional repressor, it was iden-
tified that ZEB1 can also directly bind to the promoter 
of miR-190, resulting in transcriptional suppression of 
miR-190 expression, which can reverse the transforming 
growth factor (TGF)-β-induced EMT process [24]. Most 
importantly, the expression of the miR-200 family mem-
bers was suppressed by ZEB1 binding to their promoters 
and was conversely involved in the regulation of ZEB1 
levels as a reciprocal ZEB1/miR-200 feedback loop [25, 
26].

A various set of cofactors were also recruited during 
the transcriptional suppression process of ZEB1 for its 
downstream target genes [27, 28], although only a few of 
them were reported [29]. ZEB1 activation requires inter-
action with PC2-CtBP-LSD1-LCoR or the yeast mating-
type switching/sucrose non-fermenting (SWI/SNF) 
chromatin-remodeling protein BRG1 to form the ZEB1-
Smad3-p300-P/CAF complex, affecting general tran-
scription [28]. The effector of the Hippo/Yes-associated 
protein (YAP) pathway, YAP, can specifically and directly 
interact with ZEB1, converting ZEB1 from a transcrip-
tional repressor to a transcriptional activator that binds 
to conserved TEAD-binding sites. As a result, functional 
cooperation between ZEB1 and YAP can stimulate the 
transcriptional activities of a ‘common ZEB1/YAP target 
gene set’, such as connective tissue growth factor (CTGF) 
and AXL receptor tyrosine kinase (AXL) [22].

Usually, the functional statuses of chromatin are 
identified by the covalent modification pattern of the 
N-terminal domains of the histones, indicating the tran-
scriptional activity of their target genes. For example, his-
tone H3 lysine 4 trimethylation (H3K4me3) was reported 
to be associated with transcriptional initiation [30], while 
lysine 79 dimethylation (H3K79me2) was associated with 
promoting transcriptional elongation [31]. Overall the 
combined effect of H3K4me3 and H3K79me2 contributes 
to the activation of gene transcription. In addition, lysine 
27 trimethylation (H3K27me3) was suggested to contrib-
ute to transcriptional repression [32–35]. An innovative 
and interesting study found that luminal breast cancer 
cell lines exhibited only presence of H3K27me3 and the 
relative absence of 3K4me3 and H3K79me2 at the ZEB1 

Fig. 1  The schematic structure of ZEB1/2. The structures of ZEB1/2 
are similar, with N-terminal and C-terminal zinc finger (NZF and CZF) 
and a central Homeodomain (HD). The ZEB1/2 protein interacted 
with other proteins through a corresponding binding domain, 
including the CAF/p300 binding domain (CBD) at the N-terminal, 
Smad interaction domain (SID) and CtBP interaction domain (CID) at 
the C-terminal
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promoter [29]. Oppositely, in basal-like or basal CD44hi 
breast cancer cells, high expression levels of ZEB1 were 
controlled by H3K4me3 and H3K79me2 in its promoter, 
which did not have H3K27me3, indicating active tran-
scription. More importantly, the ZEB1 promoter in basal 
CD44lo cells or plastic non-CSCs showed a bivalent 
chromatin configuration, enabling these cells to respond 
readily to microenvironmental signals, such as TGF-β 
[29].

The regulation of ZEB1 expression and activity
As an important transcriptional factor, the expression 
of ZEB1 is also regulated at multiple levels [36]. Sig-
nal transducer and activator of transcription3 (STAT3) 
has been reported to induce the expression of ZEB1 
[37]. Avtanski et  al. identified that honokiol (HNK) is 
an active bisphenol molecule that inhibits the function 
of STAT3 by repressing STAT3 phosphorylation and 
the transactivation potential; STAT3 recruitment to the 
ZEB1 promoter is then reduced, which causes decreased 
ZEB1 expression and nuclear translocation. In addition, 
HNK-mediated STAT3 inactivation triggered the STAT3-
mediated release of ZEB1 from the E-cadherin promoter, 
increasing E-cadherin expression and inhibiting EMT of 
breast cancer cells accordingly [37].

After the formation of the ZEB1 protein, insulin-like 
growth factor 1 (IGF-1) induced ZEB1 phosphoryla-
tion at residues T851, S852, and S853 by protein kinase 
C (PKC), showing involvement in the EMT process and 
resulting in transcriptional activity [38]. Another post-
translational modification of ZEB1 is polycomb protein 
(Pc2)-induced sumoylation at residues K347 and K777 
[39].

The stability of EMT-related transcription factors is 
essential for initiating cellular EMT. Thus, the deubiqui-
tinases (DUBs) were involved in counteracting polyubiq-
uitination and proteasomal degradation of ZEB1 [40]; 
these DUBs include USP51, which upregulated ZEB1 and 
the mesenchymal markers by binding, deubiquitinating, 
and stabilizing ZEB1 [41]. In addition to DUBs, other 
factors, such as CSN5, an oncogene involved in various 
types of cancer, may also interrupt the degradation of 
ZEB1 by stabilizing ZEB1 by directly interacting with it 
[42]. The phosphorylation of ZEB1 by ataxia-telangiecta-
sia mutated (ATM) kinase stabilizes ZEB1 in response to 
DNA damage [43].

The new findings related to posttranslational modifica-
tions that regulate ZEB1 provide an alternative pathway 
for precision medicine to treat breast cancer by targeting 
ZEB1.

The reciprocal ZEB1/target feedback loops 
involved in breast cancers
As a transcriptional suppressor, ZEB1 is involved in many 
signaling pathways to inhibit the expression of its targets. 
Interestingly, some of the targets of ZEB1, such as the 
ZEB1/miR-200s loop, function as a regulator of ZEB1 to 
control the level and function of ZEB1.

ZEB1/miR‑200s loop
Independent investigations revealed that miR-200 fam-
ily members, including miR-200a/b/c, miR-141 and 
miR-429, can revert the EMT process and are powerful 
inducers of epithelial differentiation. The mechanism 
of miR-200s suppressing ZEB1 involved posttranscrip-
tional repression by binding to the 3′-untranslated region 
(UTR) of ZEB1 mRNA, which contains 8 miR-200s bind-
ing sites [11, 44, 45]. As mentioned before, in addition to 
the inhibitory function of miR-200s on ZEB1, the expres-
sion of miR-200s can be reversely suppressed by ZEB1 
through direct binding to the highly conserved sites in the 
promoter common to the miR-200 family members [25]. 
Notably, ZEB1 and miR-200s have the opposite func-
tions to regulate EMT and the characteristics of cancer 
cells but also reciprocally control the expression of each 
other, which is a double-negative feedback loop named 
the ZEB1/miR200 feedback loop [25, 26]. Depending on 
the different extracellular signals, the unstable status of 
the ZEB1/miR-200 feedback loop will strongly promote 
the expression and effect of one group and will corre-
spondingly suppress those of the other group, resulting 
in the switch from one phenotype to another phenotype 
and stabilizing their epithelial/mesenchymal phenotype 
accordingly [46].

The ZEB1/miR-200 feedback loop was indicated to 
regulate EMT and, more importantly, was supposed 
to be a central switch for other crucial cellular func-
tions, such as survival vs. apoptosis, stemness vs. differ-
entiation, growth arrest vs. proliferation, and longevity 
vs. senescence [46]. In breast cancer, the studies of this 
loop mainly focused on mesenchymal-like characteristics 
involving different pathways or factors, such as the H-Ras 
signaling pathway [47], as well as the transcription factor 
zinc finger protein 217 (ZNF217) [25]. It was reported 
that autocrine TGF-β, which is upregulated by ZNF217, 
transcriptionally activated the expression of ZEB1 and 
finally exhibited feedback inhibition on miR-200c [48, 
49]. Using the intertwined feedback loop, Bai et al. found 
the underlying mechanism of trastuzumab resistance 
and metastasis in breast cancer where miR-200c targeted 
ZNF217 and ZEB1 to suppress TGF-beta signaling [50].
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ZEB1/MYB loop
ZEB1/MYB is another reciprocal negative feedback cir-
cuit involved in the process of breast cancer develop-
ment. Both ZEB1 and MYB are transcription factors that 
function as biological switches for molecular elements 
of their targets, affecting the tumor microenvironment 
and cell morphology. On one hand, ZEB1 transcription-
ally suppressed the expression of MYB by controlling the 
positive feedback cycle of MYB. On the other hand, MYB 
was found to inhibit ZEB1 expression and correspond-
ingly alleviate the ZEB1-mediated transcriptional repres-
sion of CDH1, restoring the epithelial phenotype [51]. 
The dual-negative regulation of ZEB1/MYC is thought to 
be the molecular mechanism of cell plasticity, regulating 
the state of tumor stem cells and promoting tumor inva-
sion and metastasis.

ZEB1/grainyhead‑like‑2 (GRHL2) loop
GRHL2 was found to be downregulated specifically in 
claudin-low subclass breast cancers and to suppress TGF-
β-induced, Twist-induced or spontaneous EMT partially 
by suppressing ZEB1 expression by directly binding to 
the ZEB1 promoter [52]. Soon after, Cieply et al. revealed 
that (1) GRHL2 altered the Six1-DNA complex to inhibit 
the transactivation of the ZEB1 promoter; and that (2) 
the combination of TGF-β and Wnt activation interacted 
with ZEB1 directly, affecting the activities of the GRHL2 
promoter to suppress its expression; these results indi-
cate a reciprocal GRHL2 and ZEB1 feedback loop that 
controls epithelial/mesenchymal phenotypes and EMT 
progress [53].

ZEB1/CD44s loop
In addition to negative feedback loops, ZEB1 was also 
involved in the positive dual promotion process with 
its targets. ZEB1 was correlated with maintaining stem 
cell specialties and cell survival in tumorigenesis [54], 
and a positive feedback loop between CD44s and ZEB1 
was involved [46]. CD44s is the active type to promote 
the expression of ZEB1 and is controlled by epithelial 
splicing regulatory protein 1 (ESPR1) through alterna-
tive splicing of CD44, causing a shift from the variant 
CD44v to the standard CD44s isoform [55]. To maintain 
the stemness and mesenchymal features of cancer cells, 
ZEB1, in turn, inhibited transcription of the splicing fac-
tor ESRP1, causing the switch from CD44 splicing to 
preferentially express CD44s and resulting in self-sus-
tained ZEB1/CD44s expression, which promoted both 
EMT and breast cancer development [56].

ZEB1/hyaluronic acid synthase 2 (HAS2) loop
Hyaluronic acid (HA), synthesized mainly by HAS2, 
is one major extracellular matrix (ECM) proteoglycan 

that is enriched in mammary tumors [57]. Preca et  al. 
reported a new positive feedback loop consisting of 
HAS2 and ZEB1 [58]. Extracellular HA contributed to 
ZEB1-driven EMT by triggering ZEB1 expression and 
was enhanced by HA-induced CD44s, indicating that 
HAS2 is necessary for TGF-β-induced EMT and that 
ZEB1 directly binds to the HAS2 promoter and activates 
its expression, further enhancing ZEB1 expression and 
shaping the microenvironment [58]. Interestingly, this 
positive ZEB1/HAS2/HA feedback loop will be facili-
tated by the ZEB1/ESRP1/CD44s loop, providing insight 
into a complex multifactorial positive feedback system.

The oncogenic functions of ZEB1 in breast cancer 
and their underlying mechanisms
Cell plasticity
CSCs, which are considered the subset of neoplastic cells 
in a highly tumorigenic state, contribute to phenotypic 
and functional heterogeneity in cancers [59]. Interest-
ingly, an innovative study conducted by Chaffer et  al. 
demonstrated that non-CSCs of human basal breast can-
cers are a plastic cell population, with the potential to 
switch from a non-CSC-state to a CSC-state; this switch 
is regulated by the condition of the ZEB1 promoter 
responding to microenvironmental signals (such as 
TGF-β) [29]. Accordingly, the active chromatin configu-
ration of the ZEB1 promoter significantly increased the 
CD44lo/hi ratio, predicting the critical role of ZEB1 for 
the transition of cell types from CD44lo to CD44hi and 
for the generation of CSCs from non-CSC cells, main-
taining the activities of CD44hi/CSC-like cells [29].

Similarly, ZEB1 was involved in Wnt/β-catenin sign-
aling to promote cancer cell metastasis [60]. Aberrant 
levels of ZEB1 suppressed the expression of epithelial 
splicing regulatory proteins (ESRPs) [61, 62], promoting a 
shift from the epithelial isoform (CD44v8-9) to the mes-
enchymal isoform (CD44s) [63, 64]. Cyclin-dependent 
protein kinase-like 2 (CDKL2) was demonstrated to acti-
vate a positive feedback circuit, the ZEB1/E-cadherin/β-
catenin signaling pathway, to enhance the mesenchymal 
characteristics and stem cell-like properties [65]. CDKL2 
upregulated the expression of ZEB1 through increasing 
the promoter activities of ZEB1, while it has also been 
reported as a well-established transcriptional suppres-
sor of E-cadherin [10]. Subsequently, a decreased level 
of E-cadherin destroyed the epithelial barrier [66], caus-
ing nuclear translocation of β-catenin and increased 
β-catenin/TCF4 transcriptional activity, which accord-
ingly promoted ZEB1 promoter activity and transcrip-
tional function [60], leading to further suppression of 
E-cadherin expression and sustaining activation of the 
positive feedback circuit. Finally, the EMT process was 
promoted by ZEB1 through the E-cadherin/β-catenin 



Page 5 of 10Wu et al. J Transl Med           (2020) 18:51 	

signaling pathway and strengthened the CD44 high mes-
enchymal properties under CDKL2 regulation [65].

Interestingly, in addition to the transition between the 
epithelial (E) and mesenchymal (M) states, Lu et al. pro-
posed the “ternary chimera switch (TCS)” model and 
proposed a third state with intermediate levels of both 
miR-200 and ZEB, corresponding to the epithelial-mes-
enchymal (E/M) hybrid phenotype [67]. Further, Zhang 
et al. confirmed that the SNAIL1/miR-34 module forms 
a biswitch between the E and E/M transitions, and the 
ZEB1/miR-200 module is another biswitch for the transi-
tion from the E/M to M state [68].

On the other hand, Drosophila Lgl and its mammalian 
homologs, LLGL1/2, are scaffolding proteins that regu-
late the establishment of apical-basal polarity in normal 
epithelial cells, and LLGL2 also combined with SLC7A5 
(a leucine transporter) and YKT6 (a regulator of mem-
brane fusion) to form a trimeric complex, promoting leu-
cine uptake, cell proliferation and resistance to endocrine 
treatment in ER-positive breast cancers [69]. ZEB1 has 
a specific property to modulate asymmetric-symmetric 
cell division through the transcriptional repression of the 
polarity protein LLGL1/2 by binding to their specific pro-
moter regions, resulting in induced EMT and regulating 
the polarity of stem cell division to maintain the mam-
mary epithelial homeostasis [70]. In addition to nor-
mal mammary epithelia, the epithelial polarity of breast 

cancer cells can be partially restored by knockdown of 
ZEB1 to accumulate LLGL2 in the cytoplasm [71].

Tumor growth, metastasis, and EMT
As shown in Fig.  2, the aberrant expression of ZEB1 is 
thought to be connected with tumorigenesis and poor 
prognosis in various tumors, especially in breast cancer 
[72–76]. In primary breast cancer, the increased ZEB1 
suppressed the expression of epithelial marker E-cad-
herin and induced the EMT process, indicating that the 
transformed tumor cells with high ZEB1 level lost their 
epithelial characteristics and developed a mesenchymal/
motile phenotype. Conversely, mesenchymal-epithelial 
transition (MET) process was occurred with decreased 
ZEB1 level, when metastatic breast cancer was formed 
in a distant location, to recover the epithelial features 
and lose the mesenchymal/motile phenotype with a 
low ZEB1 level (Fig.  2). Enhanced metastatic potential 
was associated with overexpression of ZEB1 in a mouse 
xenograft model of breast cancer, suggesting the role of 
ZEB1 in invasion and metastasis of human tumors [77]. 
On the other hand, ZEB1 contributes to the formation 
of the tumor microenvironment by regulating the lev-
els of various inflammatory cytokines, such as inter-
leukin 6/8 (IL-6/8), which resulted in increased tumor 
growth in basal-like breast cancer cells [78]. Recently, Fu 
et  al. revealed the important role of the ZEB1/p53 axis 

Fig. 2  ZEB1-involved EMT and mesenchymal-epithelial transition (MET) processes. In primary breast cancer, the increased ZEB1 level suppressed 
the expression of the epithelial marker E-cadherin and induced the EMT process. The transformed tumor cells with high ZEB1 levels lost their 
epithelial characteristics, developed a mesenchymal/motile phenotype, and subsequently invaded into lymph or blood vessels. When metastatic 
breast cancer was formed in a distant location, the ZEB1 expression level was decreased to promote the expression of the epithelial marker 
E-cadherin and inhibit the expression of the mesenchymal marker Vimentin, occurring the mesenchymal-epithelial transition (MET) process to 
recover the epithelial features and lose the mesenchymal/motile phenotype with a low ZEB1 level
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in stromal fibroblasts to promote mammary epithelial 
tumors, which demonstrated the high expression and 
activation of ZEB1 in the stroma was associated with 
increased ECM remodeling, immune cell infiltration and 
angiogenesis through increasing FGF2/7, VEGF and IL-6 
expression and secretion into the surrounding stroma 
[79].

Tumor vascularization predicted the deprivation of 
nutrients and oxygen and facilitated the metastasis pro-
cess of tumor cells through vessel formation with or 
without endothelial transdifferentiation. During this pro-
cess, the secreted proteins fibronectin 1 (FN1) and serine 
protease inhibitor family E member 2 (SERPINE2) are 
essential for vascular mimicry (VM) in this system. These 
secreted factors were upregulated in mesenchymal cells 
by ZEB1-repressed miRNA clusters, promoting autocrine 
signaling, which was followed by increased VM in breast 
cancer cells [80]. In clinical studies, ZEB1 was found to 
be significantly associated with the depth of invasion, 
lymph node metastasis and TNM stage in digestive can-
cer patients, as well as in patients with breast cancer [81].

Chemoresistance
Currently, chemoresistance has become a major chal-
lenge and research hotspot in cancer treatment, referring 
to the increased tolerance of tumor cells to chemothera-
peutic drugs and a decreased chemotherapeutic effect 
[82, 83]. CSCs have a self-renewal ability, can activate 
survival signaling pathways and can protect tumor cells 
from DNA damage and reactive oxygen species (ROS), 
contributing to drug resistance [84].

Increasing evidence indicates that ZEB1 has impor-
tant significance in therapeutic resistance [85, 86]. Wang 
et  al. found that breast cancer patients with high ZEB1 
levels showed poor responses to epirubicin (EPI), indi-
cating ZEB1 as the determinant of chemoresistance in 
breast cancer, involving DNA damage repair (DDR) [17]. 
In a large cohort of human breast cancer subjects, high 
levels of ZEB1 were shown to have positive relationships 
with Bcl-xl and cyclin D1, predicting a poor response 
to chemotherapy [77]. The researchers investigated the 
molecular mechanisms and found that the ZEB1/p300/
PCAF (P300/CBP-associated factor, PCAF) complex 
bound to the ATM promoter and accordingly transcrip-
tionally activated ATM, subsequently promoting homol-
ogous recombination (HR)-mediated DDR to clean up 
the chemotherapy-induced DNA fragments [77].

Endocrine therapy is an important therapeutic strategy 
for breast cancer patients with ER-positive expression; 
however, antiestrogen resistance has become a major 
obstacle in endocrine therapy and involves reduced 
estrogen receptor-alpha (ER-α) expression. Zhang et  al. 
discovered that ZEB1 mechanistically inhibited ER-α 

transcription through the ZEB1/DNA methyltransferase 
3B (DNMT3B)/histone deacetylase 1 (HDAC1) complex 
binding to hypermethylate and silence the ER-α pro-
moter, subsequently attenuating the responsiveness of 
breast cancer cells to antiestrogen treatment [87]; these 
results indicate that ZEB1 is a key determinant of anties-
trogen resistance in breast cancer.

Trastuzumab, a humanized monoclonal antibody 
against human epidermal growth factor receptor 2 
(HER2), provides a successful therapeutic strategy for 
HER2-overexpressed breast cancer. Unfortunately, 
decreased trastuzumab sensitivities developed in most 
patients within a year [88]. Bai et  al. noted that miR-
200c/ZNF217/TGF-β/ZEB1, an expansile regulatory 
loop of the miR-200c/ZEB1 negative feedback circuit, 
synergistically increased trastuzumab sensitivity and sup-
pressed the invasive abilities of breast cancer cells [50]. 
In this circuit, miR-200c suppressed the transcription 
factor ZNF217, which can promote the autocrine process 
of TGF-β; correspondingly, TGF-β signaling further tran-
scriptionally activated ZEB1 to exhibit feedback suppres-
sion on the expression of miR-200c [49, 89].

β-catenin/TCF4 was also involved in chemoresist-
ance through activating the transcriptional activities of 
ZEB1 [14, 60]. The nuclear accumulation of β-catenin 
was induced by Axl-activated Akt/GSK3β/β-catenin 
signaling, followed by a direct transcriptional increase 
in ZEB1, which in turn mediated DDR and doxorubicin 
resistance in breast cancer cells; these results suggest that 
the important function of Akt/GSK3β/β-catenin/ZEB1 
signaling is downstream of Axl-mediated drug resistance 
[60].

Radiation resistance
Radiotherapy is one of the major modalities of cancer 
treatment. A main reason for the failure of radiation 
therapy is intrinsic and therapy-induced radioresistant 
tumor cells, which display an enhanced DNA repair abil-
ity [90]. Although rare studies demonstrated the relation-
ship between ZEB1 and radioresistance, the results still 
promoted corresponding scientific ideas to  settle the 
problems caused by radiation resistance.

ZEB1 was identified to be phosphorylated and sta-
bilized by ATM after ionizing radiation treatment in 
breast cancer cells, and correspondingly, the upregula-
tion of ZEB1 was proven to stabilize checkpoint kinase 
1 (CHK1) by activating the deubiquitylation of ubiquitin-
specific-processing protease 7 (USP7), thus promoting 
homologous recombination-dependent DNA repair and 
resulting in radioresistance [43]. This study provided 
a potential mechanism for ZEB1 function in radiore-
sistance, that is, ZEB1 was phosphorylated and stabi-
lized by ATM depending on irradiation, which in turn 
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repressed its negative regulator, miR-205, resulting in 
a further increase in ZEB1; these effects were followed 
by increased ubiquitin-conjugating enzyme Ubc13 lev-
els and improved DDR, finally inducing radioresistance. 
Moreover, DDR was inhibited by miR-205 via target-
ing ZEB1 and Ubc13. Not surprisingly, targeting-ZEB1 
agents, such as the miR-205 mimics, were supposed to be 
potential radiosensitizing agents, revealing a new thera-
peutic strategy for radioresistant tumors [91].

On the other hand, as ZEB1 was identified as a down-
stream target of miR-205, the expression level of miR-205 
can be inhibited by nuclear enriched abundant transcript 
1 (NEAT1), which regulates EMT progress and radiore-
sistance in nasopharyngeal carcinoma [92]. Concerning 
the response of identified cancer cells to radiation, it is 
suggested that ZEB1 may both hinder the formation of 
oncogene-induced DNA damage by inhibiting oxidative 
stress and promote the clearance of DNA breaks by acti-
vating DDR, protecting cancer cells for survival [16].

Conclusion
In recent decades, the understanding of the molecular 
mechanism of ZEB1 in cancer progression has greatly 
improved (Fig.  3). Accumulated evidence indicates that 
ZEB1 displays a broad spectrum of biological functions. 
Elevated expression of ZEB1 not only increases cell 
motility and invasiveness by downregulating epithelial 
markers and upregulating mesenchymal markers but also 
contributes stem cell-like features to tumor cells, provid-
ing resistance to various types of therapy. Therefore, the 
expression of ZEB1 may be a biomarker of poor clinical 
outcomes for cancer patients. The recent recognition of 
the regulation and functions of ZEB1 has shed new light 
on understanding its potential clinical and therapeutic 
implications in cancers.

Despite these developments, much remains unknown 
about the role of ZEB1 in metastasis, a complex and 
multistep process where cancer cells hijack the nor-
mal developmental networks for tumor progression 
and metastasis. Within the complex signaling networks, 
ZEB1 is regulated through signal integration, cross-
talk and feedback control. It is often difficult to identify 
whether a particular molecule or pathway under investi-
gation is specific to ZEB1-mediated EMT. Therefore, fur-
ther investigations to reveal the contribution of various 
tumor microenvironmental factors to tumor progression 
will lead to a comprehensive understanding of ZEB1 in 
cancer.

Recent studies have shown that the suppression of 
the miR-200 family by ZEB1 results in the upregula-
tion of programmed cell death protein 1 (PD-L1), which 
is related to the immune system [93], suggesting that 
the ZEB1/miR-200 axis could influence the immune 

recognition of cancer cells. Therefore, in addition to nor-
mal treatments for cancers, the exploration of ZEB1 in 
immunotherapy has provided new potential and effective 
therapeutic strategies for metastatic breast cancers.
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