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Abstract 

Background:  Tumour cells interfere with normal immune functions by affecting the expression of some immune-
related genes, which play roles in the prognosis of cancer patients. In recent years, immunotherapy for tumours has 
been widely studied, but a practical prognostic model based on immune-related genes in lung adenocarcinoma 
comparable to existing model has not been established and reported.

Methods:  We first obtained publicly accessible lung adenocarcinoma RNA expression data from The Cancer Genome 
Atlas (TCGA) for differential gene expression analysis and then filtered immune-related genes based on the ImmPort 
database. By using the lasso algorithm and multivariate Cox Proportional-Hazards (CoxPH) regression analysis, we 
identified candidate genes for model development and validation. The robustness of the model was further exam-
ined by comparing the model with three established gene models.

Results:  Gene expression data from a total of 524 lung adenocarcinoma patients from TCGA were used for model 
development. We identified four biomarkers (MAP3K8, CCL20, VEGFC, and ANGPTL4) that could predict overall survival 
in lung adenocarcinoma (HR = 1.98, 95% CI 1.48 to 2.64, P = 4.19e−06) and this model could be used as a classifier for 
the evaluation of low-risk and high-risk groups. This model was validated with independent microarray data and was 
highly comparable with previously reported gene expression signatures for lung adenocarcinoma prognosis.

Conclusions:  In this study, we identified a practical and robust four-gene prognostic model based on an immune 
gene dataset with cross-platform compatibility. This model has potential value in improving TNM staging for survival 
predictions in patients with lung adenocarcinoma.

Impact:  The study provides a method of immune relevant gene prognosis model and the identification of 
immune gene classifier for the prediction of lung adenocarcinoma prognosis with RNA sequencing and microarray 
compatibility.
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Background
The high incidence and mortality of lung cancer make 
this disease one of the most severe public health prob-
lems worldwide. Lung adenocarcinoma accounts for 
60% of all lung cancers [1]. The TNM staging system 
is one of the most commonly used survival classifiers 
for lung cancer disease stage evaluation [2]. However, 
this system only considers anatomical factors and does 
not combine these factors with personalized genetic 
information or patient immune status. Therefore, 
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individual risk stratification can only be predicted 
based on general populations. With the application of 
microarray and sequencing technology, high-through-
put gene expression profiles associated with prognostic 
clinical data can be obtained [3], providing an oppor-
tunity for the personalized evaluation of cancer recur-
rence risk.

In recent years, an increasing number of studies have 
shown that gene expression sets are able to predict can-
cer patient survival, assisting decision-making regarding 
adjuvant chemotherapy administration. For example, 
chromosomal instability is a hallmark of cancer that is 
associated with tumour heterogeneity. Therefore, the 
centromere and kinetochore gene expression score (CES) 
signature has been used to predict the prognosis of lung 
cancer patients after treatment [4]. Furthermore, the dis-
covery of genetic biomarkers has played positive roles in 
tailoring treatment plans and avoiding unnecessary treat-
ments. However, current gene models, even those includ-
ing up to 14 genes, have neglected clinicopathological 
features or are far from practical [5].

The tissue microenvironment of tumour cells plays a 
crucial role in the development of tumours [6]. Tumour 
cells can mimic the functions of immune cells to induce 
immunosuppression by overexpressing immune-related 
genes, thereby promoting the proliferation and spread 
of tumour cells. The acquisition of immune functions 
maintains tumour cells that are able to survive in the 
immunosuppressive microenvironment. However, the 
expression patterns of immune-related genes or proteins 
in lung adenocarcinoma and their clinical significance are 
still unclear. With the increased study of tumour immu-
notherapy, immune scoring is considered an important 
tumour classification method to understand immuno-
logical characteristics and predict cancer patient survival 
[7]. However, this scoring method only utilizes the degree 
of immune cell infiltration rather than whole-tumour 
sequencing data to reflect the overall immune function in 
patients.

Studying the differential expression of immune-related 
genes in lung cancer tissue samples is of great signifi-
cance for understanding the immune microenvironment 
of lung cancer tissues and providing new insights to 
improve clinical diagnostics, prevention, patient immune 
status evaluation and prognosis. Based on this premise, 
we hypothesized that an immune-related gene expres-
sion score (IRGS) could assist the prognostic evalua-
tion of patients with lung adenocarcinoma. Independent 
high-throughput data from microarray platform verified 
the predictive power and universality of this model. Our 
model can predict the prognosis of patients with lung 
adenocarcinoma even more precisely when combined 
with the traditional TNM staging system.

Methods
Data acquisition
In brief, data were obtained from 3 independent data-
bases. The gene expression quantification data of RNAseq 
[HTSeq—Counts] for a total of 524 primary tumour and 
59 normal samples from the TCGA-lung adenocarci-
noma (LUAD) project were downloaded using GDCR-
NATools [8]. Metadata associated with the downloaded 
files was parsed using the tool to facilitate the integration 
of the count table with rows are genes and columns are 
samples. Trimmed mean of M values (TMM) normaliza-
tion of the count data was performed using edgeR. Next, 
2498 immune-associated genes were obtained from the 
immunology database and analysis portal (ImmPort) 
[https​://www.immpo​rt.org/share​d/genel​ists] on June 3, 
2018 [9].

In the validation stage, we screened lung adenocarci-
noma microarray data from the Gene Expression Omni-
bus database (GEO; http://www.ncbi.nlm.nih.gov/geo/) 
in June 2018 with the search term “lung adenocarci-
noma”. The following exclusion criteria were applied to 
the microarray data: (1) containing squamous cell carci-
noma, large cell lung cancer or other non-small cell lung 
cancer samples; (2) studies with no or insufficient clinical 
data; (3) only one TNM staging evaluation performed; 
and (4) non-primary surgical specimens. After review, 
GSE31210, which contained 226 lung adenocarcinoma 
samples and a full clinical dataset, was enrolled for vali-
dation [10].

Development of an IRGS risk model
An immune-related prognostic model was developed 
by using the TCGA and ImmPort datasets. First, differ-
entially expressed genes were identified by the limma 
package [11]. A false discovery rate (FDR) less than 0.01 
and an absolute fold change greater than 2 were defined 
as the significance threshold. Thus, 3013 differentially 
expressed genes (1173 genes with upregulated expres-
sion and 1840 genes with downregulated expression) 
were filtered out. Second, 364 differentially expressed 
immune-related genes were filtered from 2498 genes in 
the ImmPort database. Last, the glmnet package [12] in 
R was used to implement the Lasso algorithm for gene 
selection. With an optimal lambda value of 0.0175 based 
on cross validation at which the minimal mean squared 
error is achieved, a total of 18 genes were further sub-
jected to univariate and multivariate CoxPH regression 
analysis. Four immune-related genes (MAP3K8, CCL20, 
VEGFC, and ANGPTL4) were ultimately included in the 
risk prognosis model (risk score = − 0.434 × MAP3K8 + 
0.127 × CCL20 + 0.231 × VEGFC + 0.122 × ANGPTL4
). The Risk score is calculated as ∑coefficients * expres-
sion values and the median risk score is − 0.2047 for the 
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TCGA-LUAD cohort. For Kaplan–Meier (KM) survival 
analysis, patients were divided into a high-risk group and 
a low-risk group according to the median risk score cal-
culated by this prognostic model. Heretofore, we named 
this immune-related gene expression score signature the 
IRGS system.

External validation of the IRGS system
Independent validation was performed by using the 
publicly available lung cancer dataset GSE31210 pro-
filed by Affymetrix Human Genome U133 Plus 2.0. The 
GSE31210 dataset consisted of 226 lung tumour samples, 
of which 127 had an EGFR mutation, 20 had a KRAS 
mutation, 11 had an EML4-ALK fusion, and 68 were tri-
ple-negative cases. The data were normalized by the Affy-
metrix’s probe level normalization algorithm MAS5. We 
use overall survival (OS) data for survival analysis. Probes 
for all of the four prognostic genes in the IRGS system 
were able to be retrieved in the GSE31210 dataset. For 
genes with multiple probes, only the one with the largest 
variation was kept. Expression value of the selected probe 
for each gene was transformed to log2 scale and then the 
IRGS model was applied for survival prediction.

Robustness of the IRGS system
To evaluate the performance of the IRGS signature in 
predicting prognosis, we compared the IRGS system with 
previously reported signatures including the centromere 
and kinetochore gene expression score (CES) (CENP-A, 
HJURP, MIS18B, CENP-N, CENP-L, CENP-K, ZWINT, 
NDC80, SPC24, SPC25, NUF2, CENP-W, CENP-U 
and CENP-M) [4], the three-gene prognostic classifier 
(STX1A, HIF1A, and CCR7) [13] and a 14-gene expres-
sion assay (BAG1, BRCA1, CDC6, CDK2AP1, ERBB3, 
FUT3, IL11, LCK, RND3, SH3BGR, WNT3A and the 
three reference genes ESD, TBP, and YAP1) [5]. Con-
sistent with the approach used in IRGS development, 
Kaplan–Meier overall survival curves were plotted for 
patients stratified according to the median risk score cal-
culated by these models for the TCGA dataset. Then, the 
specificity and sensitivity of these models were analysed 
to calculate the area under the ROC curve.

In silico function analysis
To further explore the key functions of the genes in the 
IRGS system, we performed co-expression analysis of the 
four genes in the TCGA lung adenocarcinoma dataset. 
Protein coding genes with a Pearson correlation coeffi-
cient > 0.4 and P value < 0.01 were considered to be cor-
related. We sorted the LUAD RNA-seq data downloaded 
from the TCGA into the top and bottom quartiles of 
MAP3K8, CCL20, VEGFC, and ANGPTL4 expression 
(high and low expression, respectively) by GSEA [14] to 

assess the enriched pathways associated with the IRGS 
system.

Statistical analysis
R (Version 3.4.3) was used for most of the bioinformatics 
and statistical analyses including RNAseq and microarray 
data normalization and transformation, differential gene 
expression analysis, gene coexpression analysis, CoxPH 
and KM survival analyses, as well as ROC analysis. The 
in silico pathway analysis of the IRGS system was per-
formed using GSEA software. Two-sided P-values < 0.01 
were considered statistically significant.

To rule out batch effects in TCGA data collection pro-
cessing, we used the dispersion separability criterion 
(DSC) to measure the batch effects of TCGA-LUAD 
RNAseq data and didn’t observe strong batch effects 
(DSC < 0.5, an indicator of less serious batch effects, 
Additional file 1: Figure S1A). We have also compared the 
results of differential gene expression analyses before and 
after batch effect removal. A very large overlap of differ-
ential expression genes was observed (Additional file  1: 
Figure S1B), suggesting the batch effect small.

Results
A subset of immune‑related genes is dysregulated in lung 
adenocarcinoma patients
Aiming to identify immune-related genes that can clas-
sify high-risk and low-risk lung adenocarcinoma patients, 
we confined all the data sources in this study to RNA 
expression profiles of primary lung adenocarcinoma. By 
comparing primary tumor and solid tissue normal sam-
ples in TCGA, a total of 3013 differentially expressed 
genes (Additional file 2: Table S1) were identified, includ-
ing 1173 up-regulated genes and 1840 down-regulated 
genes (Fig.  1a). The differentially expressed genes were 
further matched with 2498 immune-associated genes 
from ImmPort to generate a list of 364 candidate genes 
(Additional file 3: Table S2). Next, by using the lasso algo-
rithm, the candidate genes were narrowed down to 18 
with the optimal lambda value of 0.0175 (Fig. 1b). Then, 
univariate and multivariate Cox regression analyses were 
further applied. To identify key components of these can-
didate genes, those fit with significantly and differentially 
expressed between tumor and normal samples, selected 
as an important feature by lasso, and significant in both 
univariate and multivariate coxph tests were candidate 
genes, restricting down to 4 genes (MAP3K8, CCL20, 
VEGFC, and ANGPTL4) with P-values less than 0.01 as 
potential parameters for use in our model (Additional 
file 4: Table S3). Using the TCGA database, we analysed 
MAP3K8, CCL20, VEGFC, and ANGPTL4 gene expres-
sion levels in both normal tissue and tumour tissue 
samples. The four immune-associated genes displayed 
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dysregulation in the tumour tissue samples compared 
with the normal tissue samples (Fig. 1c). The distribution 
of the survival status, risk scores, and expression of the 4 
IRGS genes in training samples are illustrated in Fig. 1d. 
None of these genes are common driver genes in lung 
cancer patients. We speculate that the collaboratively 
abnormal expression of the immune-related genes could 
be regarded as an independent prognostic factor.

Development and independent validation of IRGS
Next, we enrolled the 4 immune-related genes in build-
ing a prediction model to assess the recurrence risk 
of lung adenocarcinoma patients. Both univariate and 
multivariate CoxPH survival analysis in the TCGA 
dataset indicated that the risk score (the minimal, max-
imum and median of risk score of our model in TCGA-
LUAD dataset are − 1.9454, 2.3268 and − 0.2047) 
calculated by the IRGS model could be used as an inde-
pendent prognostic factor for lung adenocarcinoma 

patient survival (Table 1). The median value of the risk 
score was then used to stratify patients; patients scor-
ing greater than the median value were considered to 
have a poor prognosis, whereas patients scoring less 
than the median value were stratified as having a good 
prognosis. Kaplan–Meier survival analysis showed that 
the IRGS model is capable of stratifying the patients 
into two distinct groups with significant difference 
in overall survival (HR = 1.98, 95% CI 1.48 to 2.64, 
P = 4.19e−06); Fig.  2a). In addition to TNM staging 
alone in TCGA LUAD cohort (Additional file 5: Figure 
S2A–D), examination of our model at different stages 
of the lung adenocarcinoma revealed that the IRGS 
can separate low-risk and high-risk patients through-
out TNM stages, namely stage I (HR = 2.13; CI 1.30 to 
3.48; P = 2.73e−03), stage II (HR = 2.01; CI 1.22 to 3.32; 
P = 6.12e−03), stage III (HR = 2.62; CI 1.66 to 4.11; 
P = 3.32e−05), and stage IV (HR = 2.70; CI 1.02 to 7.30; 
P = 0.049). 

Fig. 1  The selection of immune-related genes. A Differentially expressed genes in the TCGA-LUAD dataset were filtered out. b Immune-related 
genes were narrowed down by the lasso algorithm. c The expression of MAP3K8, CCL20, VEGFC, and ANGPTL4 in cancerous and control tissue 
samples is shown. d The distribution of the survival status, risk scores, and expression of the 4 IRGS genes in training samples are illustrated. The x 
axis shows the patients ranked by risk scores. High and low risk patients were separated by the dashed line



Page 5 of 11Shi et al. J Transl Med           (2020) 18:55 	

Table 1  Univariate and multivariate Cox regression analyses of the IMAGES signature in the TCGA dataset

Variable Univariate analysis Multivariate analysis

HR 95% CI P value HR 95% CI P value

Risk score 2.72 2.10–3.52 2.74e−14* 2.35 1.82–3.05 6.70e−11*

Stage 1.67 1.46–1.92 1.71e−13* 1.59 1.38–1.84 3.96e−10*

Age 1.01 0.99–1.02 0.31 – – –

Gender 1.07 0.80–1.43 0.63 – – –

Smoking status 1.03 0.89–1.18 0.71 – – –

Fig. 2  The development and validation of IRGS. a Kaplan–Meier analysis of overall survival in high- and low-risk groups of the lung adenocarcinoma 
patients in the TCGA-LUAD dataset; b ROC curves of the IRGS system and gene components in the system; c the area under the ROC curve (AUC) is 
given, IRGS system, TNM system, age and TNM plus the IRGS system. d Kaplan–Meier analysis of overall survival in high- and low-risk groups of 226 
lung adenocarcinoma patients in an independent microarray dataset
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To test the applicability of the IRGS system, we applied 
ROC analyses to the training cohort. These analyses 
revealed that the individual genes in the model could 
not function as prognostic factors; they had to be com-
bined (Fig.  2b). Further analysis revealed that the IRGS 
system demonstrated a significant improvement over 
age or TNM staging in predicting prognosis. Moreover, 
the prognostic capability increased 11% when the IRGS 
system was combined with the traditional TNM staging 
system, yielding an AUC of 0.706 (Fig.  2c) and suggest-
ing that the IRGS is a powerful tool in LUAD survival 
prediction.

To further verify whether the model we created can be 
tested by independent validation and have cross-plat-
form universality, microarray data with clinical informa-
tion were obtained from the GEO database. Following 
the application of the exclusion criteria, the GSE31210 
microarray dataset was extracted from among 12 can-
didate datasets. Consistent with the training cohort 
results, the result of a univariate Cox regression analy-
sis suggested that the IRGS signature was significantly 
associated with survival (HR = 2.11; 95% CI 1.29 to 3.46; 
P = 2.93e−03) in patients with lung adenocarcinoma 
(Additional file  6: Table  S4). Kaplan–Meier analysis 
found that the IRGS model distinguished the high-risk 
group from the low-risk group, effectively differentiat-
ing the survival of the external 226 lung adenocarcinoma 
patients in the microarray dataset (HR = 3.92; 95% CI 
2.02 to 7.62; P = 2.36e−04; Fig. 2d). Thus, we found that 
the IRGS signature can be used in both the TCGA RNA-
sequencing data and lung microarray datasets to predict 
the survival of lung adenocarcinoma patients with differ-
ent TNM-stage disease.

Performance of the IRGS in predicting LUAD prognosis
Some prognostic gene signatures for lung cancer have 
been reported previously, and the robustness of the IRGS 
was compared with the three-gene classifier, the CES sig-
nature and the 14-gene practical assay in both the TCGA 
RNAseq training dataset and in the independent micro-
array validation dataset. We first extracted a list of genes 
in the literature from the TCGA-LUAD dataset and sub-
mitted them to the bioinformatic pipeline used for IRGS 
development. Survival curves were generated (Fig. 3a–c) 
and showed that all three prognostic models effec-
tively differentiated the survival of lung cancer patients 
(three-gene classifier: HR = 1.44, 95% CI 1.08 to 1.92, 
P = 0.014; the CES signature: HR = 2.07, 95% CI 1.55 to 
2.77, P = 7.20e−07); and the 14-gene practical assay: 
HR = 1.62, 95% CI 1.21 to 2.15, P = 1.12e−03). ROC anal-
ysis was performed with the same TCGA cohort, and the 
AUC values were 0.602 for the three-gene classifier, 0.616 
for the CES signature, and 0.598 for the 14-gene practical 

assay. The AUC value of the IRGS was 0.644 (Fig.  3d), 
leading us to conclude that the IRGS prognostic scoring 
system is more effective and accurate than previous gene 
expression signatures in predicting the survival of lung 
adenocarcinoma patients.

In the independent microarray validation dataset, all 
the three classifiers were capable of stratifying low-risk 
and high-risk lung adenocarcinoma patients (three-
gene classifier: HR = 2.35, 95% CI 1.21 to 4.56, P = 0.015; 
the CES signature: HR = 4.30, 95% CI 2.22 to 8.35, 
P = 1.59e−04; and the 14-gene practical assay: HR = 3.80, 
95% CI 1.95 to 7.37, P = 3.53e−04; Additional file 7: Fig-
ure S3A–C). The AUC values were 0.671 for the three-
gene classifier, 0.691 for the CES signature, and 0.672 for 
the 14-gene signature, whereas the AUC value for the 
IRGS was 0.681 (Additional file  7: Figure S3D). Taken 
together, the IRGS prognostic scoring system is compara-
ble with previous gene expression signatures in predict-
ing the survival of lung adenocarcinoma patients using 
gene expression data from the microarray platform.

Functional analysis of the IRGS signature
To further explore the core biological mechanism of 
our model, we performed individual co-expression 
analyses of the four genes with the TCGA lung adeno-
carcinoma RNA-sequencing dataset. Among the co-
expressed genes, 39 genes were significantly associated 
with MAP3K8, 16 genes were significantly associated 
with CCL20, 290 genes were significantly associated 
with VEGFC, and 60 genes were significantly associ-
ated with ANGPTL4, but no common intersections 
were found among the co-expressed genes, suggest-
ing that our model is the optimal gene combination 
(Fig.  4a). Next, we performed GSEA analysis of the 4 
genes in the IRGS model (Additional file 8: Table S5). 
In the high CCL20 expression phenotype, regulation 
of immunoglobulin production, positive regulation 
of immunoglobulin production, positive regulation 
of the innate immune response, regulation of the T 
helper 1-type immune response, activation of the 
innate immune response, positive regulation of B cell-
mediated immunity, and positive regulation of the 
immunoglobulin-mediated immune response were 
significantly enriched. Similarly, the pathways of T cell 
activation involved in the immune response, negative 
regulation of the adaptive immune response, nega-
tive regulation of cytokine production involved in the 
immune response, the humoural immune response, T 
cell differentiation involved in the immune response, 
and regulation of cytokine production involved in 
the immune response were found to be significantly 
enriched in the high MAP3K8 expression phenotype 
(Fig.  4b–h). Regarding the high VEGFC expression 



Page 7 of 11Shi et al. J Transl Med           (2020) 18:55 	

phenotype, 48 immune-associated pathways were sig-
nificantly enriched (Additional file 8: Table S5), rang-
ing from innate to adaptive immune responses. Our 
functional analysis indicates that genes in the IRGS 
system participate in a variety of immune functions in 
LUAD tissue.

Discussion
Tumour staging (AJCC/UICC-TNM classification) sum-
marizes data for the tumour burden (T), the presence 
of cancer cells in draining and regional lymph nodes 
(N), and metastatic evidence (M) to evaluate the dis-
ease stage and predict survival. However, anatomical 

Fig. 3  The IRGS system was compared with other gene models in the analysis of a unified RNA-sequencing dataset. a Kaplan–Meier curves were 
plotted for the TCGA LUAD dataset stratified by the three-gene classifier; b Kaplan–Meier curves were plotted for the TCGA LUAD dataset stratified 
by the CES signature; c Kaplan–Meier curves were plotted for the TCGA LUAD dataset stratified by the 14-gene assay; and d ROC curves for the IRGS 
signature, the three-gene classifier, the CES signature and the 14-gene practical assay were plotted
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classification provides limited information for estimating 
cancer patient outcomes, and the response to treatment 
cannot be predicted by this system. In 2005, Pages et al. 
showed that immune cell infiltration and the tumour 
microenvironment are associated with tumour progno-
sis [15]. Two years later, Galon et  al. proposed the con-
cept of the immunoscore [16] and described key immune 
components associated with cancer patient survival [17]. 
The immunoscore was first described as a prognostic 
marker for early stage (I/II) colorectal cancer patients in 
2009 [18]. There have been updated results supporting 
the implementation of the immunoscore as a new com-
ponent of a TNM immune cancer classification system 
[19]. These studies suggest that immunological classifica-
tion may be superior to the AJCC/UICC TNM classifica-
tion system alone and that introducing immune-relevant 
parameters as prognostic factors could be of great clinical 
significance. The immunoscore method is based on the 
evaluation of the type, density, and location of immune 
cells [16] and fails to comprehensively consider the bal-
anced conditions between tumour immune functions 
and host immune cells, which is a balance of multiple fac-
tors such as B cell immunity, T cell immunity, immune 
escape, cytotoxic effect on tumor cells by the host. An 
average immune related gene expression from RNA 
sequencing in bulk could reflect the status of immune 

cells and tumor cells, contributing better evaluation of 
disease stage and prediction of survival.

Although it has been shown in different studies that 
a specific gene set can predict the prognosis of cancer 
patients [20, 21], the number of genes in a model is often 
beyond practical need [22] or of immune irrelevance [23], 
making translational feasibility low. With the develop-
ment of tumour immunotherapy, the role of the immune 
system in the development of cancer has once again been 
taken into consideration. However, how immune genes 
in tumour cells affect cancer prognosis is still poorly 
understood and has not been well reported. Based on 
the TCGA-LUAD dataset and a meta-review of microar-
ray data (clinical information listed in Additional file  9: 
Table S6 and Additional file 10: Table S7), we established 
and validated a prognostic model based on the expres-
sion of immune-related genes in tumour cells. Our sys-
tem provides a model with high translational feasibility 
(current models are based on measurement of more than 
10 gene expression). Secondly, the four-gene prognos-
tic model based on an immune gene dataset is of cross-
platform compatibility. A durable model between two 
platform with fewer genes which is comparable to the 
current established multiple genes model could have a 
better chance to translate into clinical practice, especially 
aiming at understanding tumor immune environment.

Fig. 4  The functional analysis of the IRGS. a The Venn diagram indicates that each gene in the IRGS model has an individual biological function; 
b–h MAP3K8 and its co-expressed genes are involved in multiple immune-related responses
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To increase the utility of our model, we gradu-
ally reduced the number of differentially expressed 
genes from 3013 to 4 (MAP3K8, CCL20, VEGFC, and 
ANGPTL4) in the IRGS model by using the lasso algo-
rithm and multivariate Cox regression analysis. In the 
IRGS system, we postulated that high scores are asso-
ciated with increased levels of immune instability and 
an adverse tumour microenvironment in the cancer 
tissue and the IRGS genes collaboratively function as 
an indication of a poor prognosis in lung adenocarci-
noma. This system reflects that high levels of cancer 
cell immune instability reduce the susceptibility of 
cancer cells to adjuvant treatment. The IRGS system 
can divide lung adenocarcinoma patients into low-risk 
and high-risk groups, assisting clinical decision-making 
by increasing the precision of tumour staging and risk 
stratification. Although current models are able to dis-
tinguish high-risk and low-risk patient groups [4, 5, 13], 
the IRGS model has a better discriminating power in 
RNA sequencing dataset, and the IRGS combined with 
TNM staging can increase the predictive capacity.

Our functional analysis suggests that the genes in 
the IRGS model are widely involved in the immuno-
logical process. The inflammatory process is essential 
in the formation and development of cancer and may 
be involved in tumour growth and metastasis [24]. 
MAP3K8 (Serine/threonine protein kinase tumour 
progression locus 2) has been widely reported to be 
an important signal for inflammatory mediators, and 
mutational activation of MAP3K8 may be involved in 
the formation of lung cancer [25]. Su et al. showed that 
miRNAs might participate in lung cancer progression 
by regulating MAP3K8 [26]. The chemokine CCL20 
is abnormally expressed in non-small cell lung cancer 
and plays important roles in tumour cell growth, inva-
sion and metastasis [27]. For example, the expression 
of CCL20 in lung cancer cells is higher in patients with 
advanced lung cancer than in patients with early-stage 
lung cancer, and this high expression is associated with 
a poor prognosis. Bao et  al. reported that the CCL20 
gene may be a prognostic risk factor or protective fac-
tor for lung adenocarcinoma [28]. These observations 
mean that the unstable expression of these genes can 
cause different oncological outcomes. VEGF-C has 
been widely reported in lung cancer and is involved 
in lung cancer tumourigenesis and associated with 
lymphatic metastasis; it can be used as a biomarker 
for evaluating recurrence and prognosis in non-small 
cell lung cancer [29]. ANGPTL4 (Tumour cell-derived 
human angiopoietin-like protein 4) can damage vascu-
lar endothelial cell junctions, increase pulmonary capil-
lary permeability, and promote the process of tumour 
cells protruding through the vascular endothelium. It 

has also been found to be involved in the growth and 
metastasis of lung cancer [30].

We present an IRGS prognostic model based on a sec-
ond-generation sequencing technique on tumor samples, 
providing an efficient assessment of the overall tumour 
immune status. We noticed that there are some limita-
tions in the current TCGA based LUAD survival model. 
We understand that there is a need to investigate the lung 
adenocarcinoma prognostic model based on its intrinsic 
heterogeneity. However, the current RNA sequencing 
databases underreported pathological details. Another 
scenario is that comorbidities have a major impact on the 
treatment of lung cancer and have proven to be associ-
ated with lung cancer survival [31]. Based on current 
databases, the data were obtained from operable samples 
(mainly stage I–III), making survival model as a poten-
tial tool for early intervention after surgery. Therefore, 
the use of these models on advance lung adenocarcinoma 
is limited. To solve the problems as mentioned above, 
separate databases built by corresponding samples are 
needed in further studies. We will include these factors in 
future model development if detailed information were 
provided from the published database and will focus on 
these issues at the time of building our inhouse database.

Conclusion
In summary, we identified and validated an immune-
related gene expression score, which can be used as an 
independent prognostic signature in evaluating the sur-
vival of patients with lung adenocarcinoma. The IRGS 
signature was successfully validated with independent 
microarray data and indicated to be more efficient than 
existing lung cancer mRNA signatures. Further multicen-
tre prospective validation in clinical trials is needed.
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