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Abstract 

Background:  In the process of drug development, computational drug repositioning is effective and resource-
saving with regards to its important functions on identifying new drug–disease associations. Recent years have 
witnessed a great progression in the field of data mining with the advent of deep learning. An increasing number of 
deep learning-based techniques have been proposed to develop computational tools in bioinformatics.

Methods:  Along this promising direction, we here propose a drug repositioning computational method combin‑
ing the techniques of Sigmoid Kernel and Convolutional Neural Network (SKCNN) which is able to learn new features 
effectively representing drug–disease associations via its hidden layers. Specifically, we first construct similarity metric 
of drugs using drug sigmoid similarity and drug structural similarity, and that of disease using disease sigmoid similar‑
ity and disease semantic similarity. Based on the combined similarities of drugs and diseases, we then use SKCNN 
to learn hidden representations for each drug-disease pair whose labels are finally predicted by a classifier based on 
random forest.

Results:  A series of experiments were implemented for performance evaluation and their results show that the 
proposed SKCNN improves the prediction accuracy compared with other state-of-the-art approaches. Case studies of 
two selected disease are also conducted through which we prove the superior performance of our method in terms 
of the actual discovery of potential drug indications.

Conclusion:  The aim of this study was to establish an effective predictive model for finding new drug–disease 
associations. These experimental results show that SKCNN can effectively predict the association between drugs and 
diseases.

Keywords:  Sigmoid kernel, Convolutional Neural Networks, Random forest

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
New drug discovery is expensive due to the increasing 
challenges in drug target identification and drug design. 
Drug development normally contains three phases: the 
discovery phase, the preclinical phase, and the clinical 
development phase, each of which cost a lot of time and 
money. Nowadays, developing new drug generally takes 

13–15 years and costs an average of $2 billion to $3 bil-
lion, which is continuing to increase. As the efficacy 
and side effects of older drugs are still not fully under-
stood, there is growing interest in using older drugs to 
treat other diseases for which they were not originally 
designed. Some redirected drugs have been successfully 
identified by casual or rational observations. In view of 
this, it is an urgent need to utilize an efficient and scal-
able approach for identifying the associations between 
old drugs and disease on a large scale.

In recent years, a large number of computational meth-
ods have been proposed to predict drug–disease associa-
tions. For instance, Chen et al. proposed a method called 
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HNBI, which is based on an allogeneic network for drug 
indication prediction [1]. However, drug repositioning 
applying this method requires drug target-miRNA and 
miRNA-disease associations, which is limited in number. 
Chandrasekaran et  al. proposed to apply and combine 
multi-perspective and multi-approach learning to study 
the association between drugs and diseases [2]. However, 
the approach they propose needs to incorporate a lot of 
multi-source information. Huang et  al. used a network 
communication method to integrate drug–protein inter-
action networks and use gene expression profiles to infer 
and assess the probability of drug and disease occurrence 
[3]. However, the application of this method is limited 
due to its need for the expression profile of target genes 
as input data, which, in most cases, is unavailable. Luo 
et  al. proposed a recommendation system called DRRS 
[4]. They predict new drug indications by integrating data 
sources and validation information relevant to drugs and 
diseases. The effectiveness of DRRS could be negatively 
affected by the sparsity and similarity measurement of 
data sets that they use.

As the materials for classification problem in data min-
ing, raw data contain useful information that is benefit for 
prediction performance as well as large noise informa-
tion, which poses the major challenge for the prediction 
task [5]. Feature extraction is proposed to learn the most 
meaningful features for each sample, discarding the noise 
from the raw data. It is an important area in conventional 
researches in bioinformatics, especially for those asso-
ciated with drugs. For example, Liang et  al. extracted 
characteristics from LRSSL by combining molecular fin-
gerprints of drugs and extracting important drug charac-
teristics from multiple drug characteristic spectra under 
the constraint of L1-norm [6]. Zhang et  al. propose the 
model of SCMFDD applying a matrix containing only 0 
and 1 to represent features, which can only represent the 
existence of substructures, targets, or drug interactions 
[7]. The calculation of drug repositioning can also con-
sider the application of deep learning to extract features.

In recent years, deep learning methods have made 
remarkable progress in solving such problems as natural 
language processing, image recognition and speech rec-
ognition [8]. It proves to be effective in solving different 
types of problems in data mining, opening a new avenue 
for the application of bioinformatic tools. Thus, the appli-
cation of deep learning in feature extraction for drugs is 
gaining increasing attention [9]. For example, DeepCCI 
proposed by Kwon et  al. uses a Convolutional Neural 
Network to automatically extract the Simplified Molec-
ular Input Line Entry Specification (SMILE) features 
of chemicals [10]. Along this promising direction, this 
work proposes a novel feature extraction method based 
on Convolutional Neural Network (CNN) for learning 

a meaningful feature representation of drug–disease 
associations.

As supplement to clinical experiments for identifying 
drug–disease associations, computational methods based 
on statistic rules and machine learning are low-cost and 
fast [11]. In addition, they are able to integrate different 
types of data resources relevant to diseases and drugs 
and can therefore yield the most potential candidates for 
experimental validation. Much effort has been devoted 
towards this promising direction. For example, MBiRW 
uses a comprehensive similarity measure and a dual ran-
dom walk algorithm to identify potential indications for 
a given drug [12]. DrugNet is method which is proposed 
based on a heterogeneous network of interconnected 
drugs, proteins, and diseases for testing different types 
of drug relocations [13]. HGBI is based on graph reason-
ing for achieving network drug and target correlation 
prediction [14]. Although HGBI is used to predict the 
association between drugs and targets, it is based on the 
prediction of drugs and diseases. KBMF is a combination 
of dimensionality reduction, similarity decomposition 
and binary classification to predict drug target interac-
tion network [15]. DRRs proposed a drug repositioning 
recommendation system to predict new drug indications 
by integrating relevant data sources [4].

A large number of drug–disease associations have been 
confirmed by clinical studies and stored in some public 
databases. However, the number of such data is still lim-
ited for fully understanding the effects of drugs on dis-
eases. In this study, we propose a computational method 
for drug repositioning which combines Sigmoid Ker-
nel and Convolutional Neural Network (SKCNN). The 
SKCNN combines multiple sources of data information, 
including drug sigmoid kernel similarity, drug struc-
tural similarity, disease semantic similarity and diseases 
sigmoid kernel similarity. Specifically, in the first step 
of our methods, the drug structure similar network and 
the disease semantic similar network are combined with 
the sigmoid kernel network to obtain the drug and dis-
ease similar descriptors [16]. Secondly, the Convolutional 
Neural Network technology is used to extract the useful 
information of drug and disease similarity symbols for 
representing their interactions and further combine them 
as the final feature descriptor. Finally, the feature descrip-
tor is used as the inputs of the random forest classifier 
to predict the association of each type of drug with all 
diseases.

To evaluate the performance of SKCNN, tenfold cross 
validation was implemented on the gold dataset. As a 
result, SKCNN obtained 91.65% prediction precision 
with 87.07% recall at the area under the curve (AUC) of 
95.11%. In comparison with different classifier, SKCNN 
also achieved good results. In addition, we validated 
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the proposed model against two human disease includ-
ing obesity and asthma. As a result, more than 15 of the 
top-20 drug candidates (15/20 for obesity and 17/20 for 
asthma) predicted by SKCNN were successfully con-
firmed in comparative toxicogenomics database (CTD 
database) [17]. These experimental results indicated that 
SKCNN is effective to predict drug–disease associations 
on a large scale.

Materials and methods
In this section, we introduce a novel drug repositioning 
computational method using Sigmoid Kernel and Con-
volutional Neural Network (SKCNN). In this section, we 
first give a brief description of the used datasets. Second, 
we explain how drug similarity and disease similarity are 
computed based on the known drug–disease association. 

Third, feature extraction based on the convolution neural 
network is explained. Finally, we show the experimental 
results yielded by random forest based on cross valida-
tion [18].

The flowchart of SKCNN model to predict potential 
drug–diseases associations is as shown in Fig. 1. SKCNN 
first calculated the drug sigmoid kernel, disease sigmoid 
kernel, drug structural similarity and disease semantic 
similarity respectively. The drug sigmoid kernel is com-
bined with drug structural similarity and disease sigmoid 
kernel is combined with disease semantic similarity to 
obtain the drug and disease similar descriptors. It then 
uses the CNN to extract the features based on the com-
bined drug and disease similarity. In its last step, a ran-
dom forest classifier is introduced to infer whether the 
drug–disease pair as the given input is associated or not.

Fig. 1  Flowchart of SKCNN model to predict potential drug–disease associations
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Datasets
As shown in Table 1, Gottlieb et al. collected 593 drugs, 
313 diseases and 1933 validated drug–disease associa-
tions from multiple data sources and referred to this data 
set as the gold standard dataset, which we here abbrevi-
ate as Fdataset [19]. In this dataset, the information of 
drugs is collected from the DrugBank database. Disease 
information is collected from the Online Mendelian 
Human Genetics (OMIM) database [20], which focuses 
on genetic diseases, including textual information and 
related reference information, sequence records, maps, 
and other related databases. Luo et al. compiled another 
dataset called Cdataset which covers 663 drugs, 409 dis-
eases as well as 2532 associations between them [12].

Similarity for drugs and disease
We here introduce two kinds of drug similarities (drug 
sigmoid kernel similarity and drug structure similarity) 
and two kinds of disease similarities (disease sigmoid 
kernel similarity and disease semantic similarity) in this 
section. Previous researches show that the sigmoid kernel 
function which belongs to the global kernel function is 
effective to extract the global characteristics of the sam-
ples. In this work, we used it to extract the features repre-
senting each drug–disease association. We construct an 
adjacency matrix A , which briefly store the known and 
unknown drug–disease association information between 
drug d

(

j
)

 and disease e(i) . The columns of the matrix 
represent drugs and the rows represent diseases. When 
drug d

(

j
)

 is proved to be related to disease e(i) , elements 
A
(

e(i), d
(

j
))

 are equal to 1, otherwise 0. We defined 
binary vector V (d(i)) to represent the association profile 
of drug d(i) by observing whether d(i) is associated with 
each of disease. The binary vector V (d(i)) is equivalent to 
the ith column vector of adjacency matrix A . The sigmoid 
kernel for drug d(i) and drug d

(

j
)

 is calculated as follow:

where a = 1/N  and N  notes the dimension of the input 
vector. The value of r is 0.

Similarly, we calculate the sigmoid kernel of the dis-
ease, where binary vector V (e(i)) (or V

(

e
(

j
))

 ) represents 
the interaction profiles of disease e(i) (or e

(

j
)

 ) by observ-
ing whether e(i) (or e

(

j
)

 ) is associated with each of the 
drugs and is equivalent to the ith (or jth) row vector of 
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= tanh
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]
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adjacency matrix A . For disease e(i) and disease e
(

j
)

 , we 
calculate the sigmoid nucleus between diseases as follow:

where b = 1/M and M denotes the dimension of the 
input similarity. We set the value of z as 0.

Drug structure similarity is calculated based on their 
chemical structures. We downloaded SMILES from 
DrugBank [21, 22]. The Chemical Development kit is 
used to calculate the similarity of two drugs as the Tani-
moto score of their fingerprints [23]. The similarity with 
less predicted information is converted to a value close 
to zero. The drugs are clustered according to the known 
relationship between drugs and diseases. We apply the 
Logistic function to compute the similarity and modify 
the surface of the genetic-related diseases. The Logistic 
regression function is defined as follows:

where x denotes the similarity value, c and f are adjust-
ing parameters. Convert small similarity values to values 
close to zero. At the same time, large similarity values will 
be enlarged by Logistic function. Then, the drug struc-
ture similarity DEr is obtained.

We construct a drug weighted network based on the 
known drug-disease association. A point in the network 
is represented by a group of drugs, a group of drugs with 
a common disease form a edge, and the shared disease 
of the drug pair represents the weight. As a graphical 
clustering method, ClusterONE was proposed to the 
problem of identifying cohesive modules in the field of 
formaldehyde networks [24]. We here introduced it to 
identify cluster C , which is computed as follows:

where Win(C) denotes the total weight of the inner edges 
of a set of vertices C ; Wbound(C) denotes the total weight 
of the edges connecting the set to the remainder of the 
group; and P(C) is the penalty term. We assume that 
drug di and drug dj are located in the same cluster C . The 
drug structure similarity DE between ri and rj is defined 
as [12]:

In addition, for the structure similarity between the 
two drugs, if it is equal to or greater than 1, we use 0.99 
instead.

We further calculate another type of disease similarity, 
that is, disease semantic similarity by using MimMiner, 

(2)Ki
(

e(i), e
(

j
))

= tanh
[

b
(

V (e(i)) · V
(

e
(

j
)))

+ z
]

(3)L(x) =
1

1+ e(cx+f )

(4)f (C) =
Win(C)

(Win(C)+Wbound(C)+ P(C))

(5)DE =
(

1+ f (C)
)

∗ DEr

Table1  General statistics on Fdataset and Cdataset

Datasets Drugs Diseases Interactions

Cdataset 663 409 2532

Fdataset 593 313 1933
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which measures disease similarity by calculating similari-
ties between medical subject words (MeSH) terms [25]. 
Next, diseases similarity is improved based on the adjusted 
approaches used in drug structure similarity measure. On 
this basis, a disease sharing network based on known drug-
disease associations was constructed. The points in the 
network represent diseases, and the weights in the network 
indicate the number of commonly used drugs for the dis-
ease pair. Applying ClusterONE to cluster disease on dis-
ease sharing network to enhances the similarity between 
diseases in the same cluster and obtains a comprehen-
sive disease similarity like drugs. Based on the clustering 
results, we compute the combined disease similarity DS 
[12].

Multi‑source feature fusion
In this study, we fuse the different types of disease similar-
ity into one with the sigmoid kernel of the disease, and so 
do the similarity of drugs. It is anticipated that, using fea-
ture fusion can yield more meaningful features that com-
prehensively reflect the characteristics of the disease and 
drugs.

For the similarity of drug, we combined drug structural 
similarity DE and drug sigmoid kernel similarity Kr to form 
drug similarity RSim . The drug similarity RSim

(

d(i), d
(

j
))

 
for drug d(i) and drug d

(

j
)

 is computed as follow:

(6)
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(
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ifd(i) and d
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j
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has sigmoid kernel similarity

DE otherwise
,

where we use the drug structural similarity DE in the 
case that the sigmoid kernel of a given drug pair ( d(i) and 
d
(

j
)

 ) is missing [26].We construct two types of disease 
similarity, a semantic similarity model DS and a sigmoid 
kernel similarity Ki . The disease similarity Sim

(

e(i), e
(

j
))

 
for disease e(i) and disease e

(

j
)

 is computed as follows:

Similar with the construction of drug similarity, we 
choose to use disease semantic similarity DS to measure 
the similarity of a disease pair if their sigmoid kernel sim-
ilarity is missing.

Feature extraction based on SKCNN
As an effective solution, deep learning has received 
extensive attention in the field of bioinformatics. Increas-
ing attention has been attracted by the use of CNN to 
effectively extract features from different types of raw 
data, including the type of data we used in this work. 
We here introduced CNN to further improve the feature 
representation of drugs and disease in a deep-learning 
manner. As shown in Fig.  2, we conduct convolution 
operation on the input similarity using multiple convolu-
tion kernels in the convolutional layer.

The mapping process is a forward propagation pro-
cess, in which the output of the former layer is taken as 
the input of the latter layer. In ith layer, the convolutional 
operation can be described as:

(7)

Sim
(

e(i), e
(

j
))

=

{

Ki
(

e(i), e
(

j
))

ife(i) and e
(

j
)

has sigmoid kernel similarity

DS otherwise
.

Fig. 2  Convolution on features
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where Wi denotes the weight matrix of the convolu-
tion kernel of ith layer; ⊗ represents convolution; bi is 
the offset vector; σ(x) is the activation function. As the 
next step of convolution, the pooling process is shown in 
Fig. 3. In the pooling layer αi , the pooling is conducted as:

The Convolutional Neural Network is constructed by 
using alternate sets of convolutional layers and pooling 
layers, followed by the feature selection in the pooling 
layer. Then, the extracted features are learned by the full-
connected layer, as well as the probability distribution S. 
CNN allows the original input matrix α0 to be mapped to 
the new feature expression S by multilevel data transfor-
mation or dimension.

where S represents the feature expression, ai represents 
the ith label class, and α0 represents the original input 
matrix. The training objective of CNN is to minimize the 
loss function F(W , b) of the neural network. Meanwhile, 
the final loss function E(W , b) can be controlled by norm 
to prevent overfitting, and then the overfitting strength 
can be controlled by parameter �:

In the training process, the Convolutional Neural 
Network is optimized by gradient descent method, the 
parameters of the CNN network are updated layer by 
layer (W , b) , and the learning rate η is used to control the 
intensity of the back-propagation.

(8)αi = σ(αi−1 ⊗Wi + bi).

(9)αi = subsampling(αi−1).

(10)S(i) = Map(A = αi|α0; (W , b)),

(11)E(W , b) = F(W , b)+
�

2
WTW

(12)Wi = Wi − η
∂E(W , b)

∂Wi

(13)bi = bi − η
∂E(W , b)

∂bi

In addition, we implemented a series of experiments 
to optimize the parameters of CNN. As a result, we used 
a convolution and pooling operation with a kernel size 
of 16 × 16 for the convolutional layer and 2 × 2 for the 
subsampling layer. The activation function is set as the 
sigmoid function; the loss function is set as binary_cros-
sentropy; and Adam is chosen for optimization.

Random forest (RF) is a popular ensemble classifier 
and is widely used to solve prediction problems, e.g. 
classification and regression, in different fields includ-
ing marketing, health insurance and bioinformatics [27]. 
A multitude of decision trees are constructed in RF for 
training and the mode of their classification is used to 
yield the most possible class for input samples. As RF 
corrects for decision trees’ habit of overfitting to their 
training set, it generally yields a more stable prediction 
performance than other types of single classifier such as 
SVM [28]. As stability and accuracy are of great impor-
tance for predicting the association between drugs and 
diseases on a large scale, in this work, we choose to use 
RF as the classifier to deal with the features learned by 
SKCNN.

Results and discussion
Evaluation criteria
To evaluate the performance of SKCNN, in this work, we 
use for types of evaluation criteria to evaluate the per-
formance of the proposed model, i.e., precision (Prec.), 
F1-score, Recall and accuracy (Acc.).

where TP, FP and FN represent the number of positive 
samples correctly predicted in the model, the number 
of correctly predicted negative samples, the number of 
falsely predicted positive samples and the number of false 
predicted negative samples, respectively.

Evaluate prediction performance
To evaluate the performance of SKCNN with regards to 
the prediction on drug–disease associations, we use ten-
fold cross-validation on the Fdataset and Cdataset. There 

(14)Prec. =
TP

TP + FP

(15)Recall =
TP

TP + FN

(16)F1− score =
2PR

P + R

(17)Acc. =
TP + TN

TP + TN + FP + FN
,

Fig. 3  Maximum pooling of features
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are totally 1933 drug–disease associations in Fdataset. In 
cross validation, we divided original samples into ten dis-
joint groups, nine of which were selected as training sets 
each time, and the remaining group was used as a test set, 
such that we repeat the experiment 10 times. Finally, we 
yielded the experimental results and computed the mean 
and standard deviation as the final experimental results 
for performance evaluation [29]. We performed tenfold 
cross-validation on two data sets.

We implemented our proposed method on the data-
set of Fdataset using tenfold cross validation. Table  2 
shows that our proposed model yielded an average accu-
racy of 89.55%, precision of 91.65%, recall of 87.07% and 
F1-score of 89.28% with standard deviations of 1.15%, 
1.77%, 1.75% and 1.19%, respectively. Table 3 shows that 
in the experiment on the Cdataset, our method yielded 
the average accuracy of 91.38%, precision of 92.69%, 
recall of 89.89%, and F1-score of 91.25% with standard 
deviations of 1.39%, 1.58%, 2.21% and 1.45%, respectively.

To evaluate the performance of SKCNN, we compare 
it with five state-of -the-art methods: MBiRW, Drug-
Net, HGBI, KBMF and DRRs, which are reviewed as 
aforementioned. The results of SKCNN tenfold cross-
validation AUC are shown in Fig.  4. We summarize the 
experimental results of the six models as shown in Fig. 5. 
On the Cdataset, SKCNN has an AUC of 0.968. DrugNet, 
MBiRW, HGBI, KBMF and DRRS yielded poor AUCs of 
0.804, 0.933, 0.858, 0.928 and 0.947, respectively. On the 
Fdataset, SKCNN has an AUC of 0.951. DrugNet has an 
AUC value of 0.778, MBiRW, HGBI, KBMF and DRRS 
yielded poor AUC of 0.917, 0.829, 0.915 and 0.930. The 
results from both two experiments demonstrate that the 
performance of SKCNN is significantly better than the 
other five models.

Table 2  Experimental results of  tenfold cross-validation 
yielded by SKCNN on Fdataset

Test set Acc. (%) Pre. (%) Recall (%) F1-score (%)

1 89.69 92.31 86.60 89.36

2 87.37 90.06 84.02 86.93

3 88.66 90.32 86.60 88.42

4 88.86 90.76 86.53 88.59

5 88.86 89.06 88.60 88.83

6 89.64 91.80 87.05 89.36

7 90.93 95.40 86.01 90.46

8 89.38 91.30 87.05 89.12

9 91.45 91.67 91.19 91.43

10 90.67 93.85 87.05 90.32

Average 89.55 ± 1.15 91.65 ± 1.77 87.07 ± 1.75 89.28 ± 1.19

Table 3  Experimental results of  the  tenfold cross-
validation yielded by SKCNN on Cdataset

Test set Acc. (%) Pre. (%) Recall (%) F1-score (%)

1 90.35 92.18 88.19 90.14

2 93.11 95.82 90.16 92.90

3 89.13 90.91 86.96 88.89

4 92.09 95.32 88.54 91.80

5 89.53 91.32 87.35 89.29

6 91.50 91.67 91.30 91.49

7 91.30 91.97 90.51 91.24

8 91.50 93.03 89.72 91.35

9 93.87 93.02 94.86 93.93

10 91.50 91.67 91.30 91.49

Average 91.38 ± 1.39 92.69 ± 1.58 89.89 ± 2.21 91.25 ± 1.45

Fig. 4  a, b The ROC curves yielded by SKCNN using tenfold cross validation on the Fdataset and Cdataset, respectively
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We consider additional statistical analysis should be 
conducted to quantify how outstanding the prediction 
performance is compared with the other methods. For 
this, we performed T test on the AUC values of the six 
methods on the Fdataset and Cdataset, and the calcu-
lated p-values were close to 0.0613 and 0.0534 respec-
tively. Therefore, for the prediction implemented by the 
six methods on the two datasets, we consider the perfor-
mance difference significant and anticipate that SKCNN 
has better performance than the others in real prediction 
with high possibility.

We also calculated the value of Cohen’s d to measure 
standardized difference of the prediction performance 
between the proposed method and the compared ones. 
As a result, regarding to the AUC values on C dataset, 
the Cohen’s score was 0.917. For F dataset, the value of 
Cohen’s d is 0.898. The results show that the effect is sig-
nificant on two datasets.

Comparison among different classifier
To evaluate the performance of random forest that 
we use to construct our prediction model, we further 
implemented support vector machine (SVM) classifier 
on Fdataset and Cdataset using same feature extraction 
method for performance comparison [30]. SVM is a dis-
criminant classifier defined by the classification hyper-
plane and widely used to solve classification problems 
in different domains. Tables  4 and 5 show the results 
yielded by combining the proposed feature descriptor 
with support vector machine on Fdataset and Cdataset. 
In the experiment on Fdataset, SVM yielded an average 
accuracy of 83.76%, precision of 82.66%, recall of 85.56% 
and F1-score of 84.02% (see Fig. 6), with standard devia-
tions are 1.54%, 1.98%, 3.61% and 1.70%, respectively. For 
the prediction on Cdataset, the average accuracy, preci-
sion, recall and F1-score are 87.04%, 89.57%, 83.85%, and 
86.60% (see Fig. 6), respectively with standard deviations 

of 1.66%, 1.24%, 2.63% and 1.83%. On the Fdataset, the 
mean AUC is 0.9041. In the Cdataset, the mean AUC was 
0.9423. The performance of both datasets was worse than 
that of SKCNN.

Case study
In this section, we selected two diseases, obesity and 
asthma, for case studies. In the experiments of this sec-
tion, all known drug–disease associations in the Fdataset 
are used as training samples of SKCNN. It is worth not-
ing that when predicting the relevance of a particular dis-
ease, all associations between a particular disease and the 
drug should be removed from the training set. Based on 
the predicted results yielded by SKCNN, we pick up top-
20 drugs for confirmation using CTD databases.

Obesity is abnormal or excessive accumulation of fat 
that poses a risk to a person’s health. It is a major risk 

Fig. 5  AUC results yielded by different methods using tenfold cross 
validation

Table 4  Results yielded by SVM on Fdataset using tenfold 
cross validation

Test set Acc. (%) Pre. (%) Recall (%) F1-score (%)

1 86.08 83.33 90.21 86.63

2 83.51 83.51 83.51 83.51

3 84.54 81.31 89.69 85.29

4 81.35 82.70 79.27 80.95

5 82.64 82.14 83.42 82.78

6 84.20 84.38 83.94 84.16

7 82.90 83.96 81.35 82.63

8 82.38 78.28 89.64 83.57

9 83.42 81.16 87.05 84.00

10 86.53 85.79 87.56 86.67

Average 83.76 ± 1.54 82.66 ± 1.98 85.56 ± 3.61 84.02 ± 1.70

SKCNN 89.55 ± 1.15 91.65 ± 1.77 87.07 ± 1.75 89.28 ± 1.19

Table 5  Results yielded by SVM on Cdataset using tenfold 
cross validation

Test set Acc. (%) Pre. (%) Recall. (%) F1-score. (%)

1 86.61 88.43 84.25 86.29

2 89.17 90.95 87.01 88.93

3 84.39 87.50 80.24 83.71

4 90.51 92.18 88.54 90.32

5 85.77 89.52 81.03 85.06

6 86.17 89.96 81.42 85.48

7 87.15 89.50 84.19 86.76

8 87.35 89.54 84.58 86.99

9 85.97 89.57 81.42 85.30

10 87.35 88.57 85.77 87.15

Average 87.04 ± 1.66 89.57 ± 1.24 83.85 ± 2.63 86.60 ± 1.83

SKCNN 91.38 ± 1.39 92.69 ± 1.58 89.89 ± 2.21 91.25 ± 1.45
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factor for diabetes, cardiovascular disease and cancer. 
As shown in Table  6, 15 out of the top 20 predicted 
drugs are confirmed after we matched the prediction 
results with the records of the CTD datasets. Another 
type of disease we focus on for case study is asthma, a 
complex disease whose concomitant symptom include 
paroxysmal wheezing, shortness of breath, chest tight-
ness and cough. It shown that there are about 300 mil-
lion people have asthma in the world and 30 million 
people have asthma in China. Table  7 list the top-20 
drugs predicted by SKCNN to be associated with 
asthma. After querying the database of CTD, 17 of 
them are successfully validated. The case studies of 
both obesity and asthma demonstrate the promising 
performance of SKCNN to predict the most potential.

Conclusion
Although the problem of predicting drug–disease asso-
ciation is of great importance for drug repositioning 
and much effort has been made toward this domain, 
there were still some challenges that needed to be over-
come such as low prediction accuracy and complex data 
fusion for feature extraction. In this study, we propose a 
novel deep learning-based computational method called 
SKCNN to predict drug lists that associated with diseases 
on a large scale. Specifically, SKCNN is deep-learning 
technique which offers a computational pipeline that 
combines Sigmoid Kernel and Convolutional Neural 
Network. It can effectively integrate the data of known 
drug-disease associations and different type of side infor-
mation relevant to drugs and disease.

Fig. 6  a, b The ROC curves yielded by SVM using tenfold cross validation on the Fdataset and Cdataset, respectively

Table 6  Top-20 drugs predicted by  SKCNN to  be 
associated with obesity based on Fdatabase

Index Drug name Evidence Index Drug name Evidence

1 Vigabatrin Confirmed 11 Fluoxymester‑
one

NA

2 Sumatriptan Confirmed 12 Disulfiram Confirmed

3 Sulindac Confirmed 13 Carteolol Confirmed

4 Paroxetine Confirmed 14 Aspirin Confirmed

5 Ofloxacin Confirmed 15 Vincristine Confirmed

6 Mesalazine Confirmed 16 Triamcinolone Confirmed

7 Mercaptopu‑
rine

NA 17 Terazosin NA

8 Isoproterenol Confirmed 18 Sildenafil Confirmed

9 Hyoscyamine Confirmed 19 Sertraline Confirmed

10 Formoterol NA 20 Salicyclic acid NA

Table 7  Top-20 drugs predicted by  SKCNN to  be 
associated with asthma based on Fdatabase

Index Drug name Evidence Index Drug name Evidence

1 Methimazole Confirmed 11 Quinidine Confirmed

2 Famotidine Confirmed 12 Quetiapine Confirmed

3 Clonazepam Confirmed 13 Pyridoxine NA

4 Trimethoprim NA 14 Propranolol Confirmed

5 Triamcinolone Confirmed 15 Propafenone Confirmed

6 Timolol Confirmed 16 Promethazine Confirmed

7 Theophylline Confirmed 17 Procainamide Confirmed

8 Tetrabenazine NA 18 Prednisolone Confirmed

9 Tamoxifen Confirmed 19 Praziquantel Confirmed

10 Ropinirole Confirmed 20 Pravastatin Confirmed
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We evaluate our proposed model on two real datasets 
that collect experimentally-supported data using ten-
fold cross validation. The experimental results demon-
strate that our proposed method is effective to predict 
drug–disease association on a large scale. In addition, 
two case studies on obesity and asthma illustrate the 
outstanding performance of SKCNN to predict poten-
tial drug lists that is associated with specific diseases. 
Considering that the data we used to train our model is 
still relatively limited in number, we anticipate that the 
prediction of our model could be further improved by 
using more large data and other different types of side 
information in the future.
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