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Abstract 

Background:  Secondary and retrospective use of hospital-hosted clinical data provides a time- and cost-efficient 
alternative to prospective clinical trials for biomarker development. This study aims to create a retrospective clinical 
dataset of Magnetic Resonance Images (MRI) and clinical records of neonatal hypoxic ischemic encephalopathy (HIE), 
from which clinically-relevant analytic algorithms can be developed for MRI-based HIE lesion detection and outcome 
prediction.

Methods:  This retrospective study will use clinical registries and big data informatics tools to build a multi-site 
dataset that contains structural and diffusion MRI, clinical information including hospital course, short-term outcomes 
(during infancy), and long-term outcomes (~ 2 years of age) for at least 300 patients from multiple hospitals.

Discussion:  Within machine learning frameworks, we will test whether the quantified deviation from our recently-
developed normative brain atlases can detect abnormal regions and predict outcomes for individual patients as 
accurately as, or even more accurately, than human experts.

Trial Registration Not applicable. This study protocol mines existing clinical data thus does not meet the ICMJE defini‑
tion of a clinical trial that requires registration
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Background
Hypoxic ischemic encephalopathy (HIE) affects 1–5/1000 
of live births, and is a leading cause of morbidity and 
mortality in childhood [1, 2]. Although the implemen-
tation of therapeutic hypothermia (TH) reduces infant 
mortality and chronic disability (by 2 years of age) [3–5], 
neurodevelopmental impairments are still common in 

survivors [6–8]. Specific impairments vary across sur-
viving patients, motivating the development of prognos-
tic biomarkers. There is progress in developing clinical 
[9–11], biochemical [9–12], and serum [12, 13] biomark-
ers. However, it remains unclear whether or not MRI can 
serve as a non-invasive and highly sensitive biomarker to 
improve outcome prediction in the early postnatal period 
[14–16]. Indeed, in the 108 clinical trials that are ongoing 
for HIE worldwide [17] (Fig. 1), MRI is used in over half 
of them to assess all stages of HIE management includ-
ing: diagnosis, prevention, prognosis, intervention, and 
rehabilitation.

Currently, expert scoring of neonatal MRI is used in 
clinical trials to predict 2-year outcomes [18–23], but 
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limitations exist. First, experts score MRI by looking for 
lesion presence or absence in selected key brain regions 
(e.g., thalamus, basal ganglia, etc.), and by looking at 
whether HIE lesions are unilateral or bilateral, locally 
confined or globally distributed, etc. Different scor-
ing systems range from 6 score levels [19] to recently 57 
score levels [20]. As scoring criteria get more complex, 
expert scoring takes more time, requires more training 
and becomes more uncertain (20–40% intra-/inter-reader 
variability [15]). Second, sensitivity can vary in multi-site 
data, with a detailed scoring system developed in 2018 
reporting a 92.3% sensitivity in one cohort but 42.1% in 
another cohort [20]. Third and more importantly, up to 
50% of HIE patients have MRIs visually interpreted as 
normal by experts [24, 25], despite 5–8% of them hav-
ing adverse outcomes at 18–22 months [4, 11, 26]. This 
remains unexplained to date. To address these three 
limitations in expert MRI scoring systems, our goal is to 
develop quantitative, objective and machine learning-
powered algorithms and software to detect HIE lesions 
during neonatal stages and predict 2-year HIE outcomes.

Machine learning (ML) approaches identify lesions, 
extract MRI injury features, and find the feature subset 
(i.e., patterns) that best predicts outcomes [27, 28]. Accu-
racy is measured by comparing the predicted outcome 
(assuming unknown during prediction) with the actually 

known outcome [29]. The promise has been shown in 
brain tumors [30–32], Alzheimer’s Disease (AD) [33–36], 
neuroscience [37, 38], stroke [39], epilepsy [40], psychi-
atric disorders [41–43], traumatic brain injury (TBI) [44, 
45], pediatric brain tumor [46], etc. HIE poses 3 unique 
challenges to ML: (i) lack of data: public data exists for 
hundreds of patients with brain tumors [47, 48], AD [49, 
50], etc.; however, annotated MRIs with linked clini-
cal and outcome data are rare in HIE and none exists 
publicly. (ii) unique difficulty in lesion detection: radi-
ologists look for regions of abnormal signals in T1-/
T2-weighted MRI, diffusion-weighted image (DWI) and 
Apparent Diffusion Coefficient (ADC) maps [19, 51]. 
However, HIE-induced T1, T2, DWI and ADC changes 
rapidly evolve and are entangled with rapid normal neo-
natal brain development [51–53]. This is not an issue in 
mature brains; (iii) normal MRI but adverse outcome: 
20–50% HIE patients have normal MRI (i.e., no lesion 
detected visually) [24, 25], but 5–8% of them still develop 
adverse outcomes [3, 11, 26]. This cannot be explained 
by expert scores (standard for HIE) or current ML meth-
ods (designed for other diseases), which require explicit 
lesion detection [28, 29].

Our study has three novelties to address these three 
challenges. First, we will retrospectively collect multi-site 
clinical data that can be used to develop MRI analysis 

Fig. 1  Need for MRI in HIE-related clinical trials. Each icon notes a hospital/site where at least one HIE-related clinical trial is ongoing. Red icons are 
hospitals that use MRI and blue icons are those that do not use MRI in their trials. Among 108 ongoing clinical trials pertaining to HIE at hospitals 
from 33 countries in 5 continents, roughly half of the hospitals use MRI as part of their trials, highlighting the widespread need for MRI biomarkers 
that can detect HIE lesions at infancy and predict HIE outcomes at 2 years of age. This figure was created based on searching the key word “Hypoxic 
Ischemic Encephalopathy” in the public website for clinical trial registries (https​://clini​caltr​ials.gov). The search was in June 2019. We manually added 
each site in all 108 resulting HIE trials on the Google My Map website

https://clinicaltrials.gov
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tools. Clinical data includes demographics, hospital 
assessments, treatment, MRI, as well as outcomes at neo-
natal intensive care unit (NICU) discharge and outcomes 
at 2 years. The secondary use of hospital-hosted clinical 
data has received increasing attention with value added 
clinical results [54–56]. We plan to use registry- and 
informatics-driven approaches to retrospectively pull 
and regularly update data from NICU and hospital-
hosted clinical archives at Massachusetts General Hos-
pital (MGH) and Boston Children’s Hospital (BCH). This 
is different from many clinical trials, which require sig-
nificant funding and a pre-set timeframe (often years) 
to prospectively collect patient data. In contrast, we 
anticipate a relatively low cost and shorter time frame 
for data collection; the data will be continuously evolv-
ing as new patients or visits are added. Moreover, starting 
with actual clinical data will facilitate the translation to 
clinical practice. We present our planned efforts in data 
collection and MRI analysis algorithm design. Special 
emphasis is placed on addressing the quality of the clini-
cal data, especially multi-site data. Second, we propose 
a new ML framework specific for HIE lesion detection, 
where the uniqueness is to disentangle HIE-induced and 
normal-development-related ADC signals in ML. The 
specific hypothesis we plan to test is that the quantita-
tive deviation from normative neonatal brain Apparent 
Diffusion Coefficient (ADC) atlases, which we devel-
oped recently [57], can facilitate quantitative and auto-
mated HIE lesion detection and outcome prediction at an 
accuracy comparable or higher than experts. We will use 
ADC maps derived from diffusion tensor MRI [58, 59], 
as they are commonly used to identify HIE lesions clini-
cally in the first week of age [24, 60]. Radiologists iden-
tify lesions by searching for regions of abnormally low 
ADC values corresponding to decreased water diffusion 
[24, 60]. However, the normal ranges of ADC variations 
vary in space (different brain regions) and in time (as the 
brain develops rapidly in infancy), making expert inter-
pretation error-prone [15, 61]. We recently developed the 
first-of-its-kind normative ADC atlases, which quantified 
the normal range of ADC variations in space and in time 
[57] (see Figs. 4 and 5). Based on this, we can objectively 
quantify the deviation of a patient’s ADC values from 

normal variations at every voxel (i.e., 3D pixel) in the 
brain [62]. Deep learning lesion detection frameworks 
still apply. But, instead of using voxels from training 
patients that ignored the normal variations in their spa-
tiotemporal locations, which is not a problem in mature 
brains, we will feed new channels (we term ZADC map) 
to specifically separate HIE-related ADC changes from 
spatiotemporal ADC changes from normal neonatal 
brain development. Third, other than current radiomics 
approaches that mostly rely on explicit lesion detection, 
we will develop a novel “radiomics without lesion detec-
tion” approach, which relies on regional and tract-wise 
MRI features throughout the brain to address the unique 
issue in HIE that some neonates with clinically-normal 
MRI (no detectable lesions) may still develop adverse 
2-year outcome.

Methods and design
Overview
This study is approved by the Institutional Review Board 
at MGH and BCH. Figure 2 outlines the three key com-
ponents in our study.

Part 1. Data collection
Figure 2 (Part 1) shows the major steps in data collection.

Part1.1. Find candidate patients
We will use two sources to find candidate patients. Our 
primary source is the NICU registry. The NICU registry 
contains patient’s diagnosis, medical record numbers 
(MRNs), and demographic information (birth weight, 
gestational age, etc.). We will query the NICU registries 
for patients who

a.	 were term born (> 36 weeks gestation);
b.	 had a clinical diagnosis of HIE and were free of other 

major neurological disorders.

A second source is the hospital-wide database. In the 
big data era, an increasing number of hospitals around 
the world have informatics tools that allow authorized 
personnel to search patients by diagnosis, or by the Inter-
national Classification of Diseases (ICD) codes [63–65]. 

Fig. 2  Overview of the three key pillars of our study
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From our registry data, we identified a list of ICD codes 
commonly used for HIE (Table 1). We will use these ICD 
codes to search patients that are not captured in the 
registry.

Part1.2. Download MRI data and quality control
We will use medical record numbers (MRNs) of can-
didate patients to search and download their MRI data. 
MGH’s mi2b2 workbench [66] allows authorized users to 
find and copy DICOM-format MRIs from the Radiology 
archives to a local cache. BCH’s ChRIS platform offers 
the same function [103, 104]. From the candidate patients 
identified in the previous step, we will include those with:

a.	 both structural and diffusion MRIs. At BCH and 
MGH, the T1-weighted MPRAGE sequence typi-
cally has a 1 mm isotropic high resolution. Diffusion 
MRI typically has a 2 mm isotropic resolution, with 
at least 6 (often 20–35) gradient directions at b value 
1000 s/mm2.

b.	 reasonable image quality (e.g., no severe motion 
or artifacts in either MRI sequences), as visually 
reviewed by a trained assistant.

Part1.3. Fetch clinical data, define outcomes
Clinical variables  We will include the following mater-
nal variables: maternal demographics, parity, signifi-
cant medical history, prescription medications during 
pregnancy, alcohol/tobacco/elicit substance use, mode 
of delivery, complications around delivery (e.g. chorio-
amnionitis, prolonged 2nd stage of labor), or a sentinel 
event (e.g. fetal bradycardia, uterine rupture, umbilical 
cord prolapse), and placental pathology, if available. We 
will also include the following infant data: anthropometric 
measurements, APGAR scores, umbilical cord gas and/
or the infant’s initial blood gas (if available), medications 
administered during the initial hospitalization, the pres-
ence of clinical or electrographic seizures, mode of feed-
ing at hospital discharge, abnormalities on the discharge 
physical examination, length of stay, and discharge dispo-

sition (e.g. deceased, home, transferred). A trained expert 
will obtain this information from the electronic health 
records (EHRs). Absence of explicit information will not 
be used as a negative finding.

Outcomes  We will also retrieve from EHR:

a.	 outcome at NICU discharge: deceased or survival;
b.	 outcomes at 2  years of age: neurocognition at 

18–24  months, including both continuously-valued 
developmental assessments and categorical out-
comes, as listed in Table 2.

Part1.4. Manage data
We will use REDCap [67], a HIPAA-compliant, secure, 
and user-friendly web application, to facilitate man-
ual entry of clinical variables from the EHR and expert 
review. Entries into REDCap will be reviewed by collabo-
rating neonatologists.

MRI data will be anonymized, stored, and analyzed 
using HIPAA-compliant computers and high-perfor-
mance computer clusters as provided by MGH and BCH.

Part 2. Multi‑expert annotation and scoring
Expert opinions will serve as references to validate the 
proposed MRI analysis tools (Fig. 2, Part 2).

Part 2.1. Annotations of lesions
We will use expert consensus as the Ref. [68], since 
postmortem histologic specimens are rarely available. 
We plan to have 3 experts (> 5 years of clinical pediatric 
neuroradiology experience) independently annotate HIE 
lesions on each ADC map. While there may be uncer-
tainties among experts [15, 61], the consensus will be 
more accurate compared to individual expert annota-
tion. We define consensus as found by the STAPLE tool, 
which, loosely speaking, is an improvement of major-
ity voting by computing a probabilistic estimate of the 
true regional annotation from multiple experts’ annota-
tions [69]. Given that up to 50% of HIE patients may not 

Table 1  ICD codes for HIE as a secondary source to query candidate patients

Italic plain font for ICD-9 (left half of the table) and italic font for ICD-10 codes (right half of the table)

ICD-9 Meaning ICD-10 Meaning

768.70 Hypoxic-ischemic encephalopathy, unspecified P91.60 Hypoxic ischemic encephalopathy [HIE], unspecified

768.71 Mild hypoxic-ischemic encephalopathy P91.61 Mild hypoxic ischemic encephalopathy [HIE]

768.72 Moderate hypoxic-ischemic encephalopathy P91.62 Moderate hypoxic ischemic encephalopathy [HIE]

768.73 Severe hypoxic-ischemic encephalopathy P91.63 Severe hypoxic ischemic encephalopathy [HIE]

779.2 Cerebral depression, coma, and other abnormal cerebral 
signs in fetus or newborn

P91.4 Neonatal cerebral depression
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have clinically-detectable lesions in the neonatal MRI, an 
expert will leave a blank annotation if he/she does not 
find lesions in a patient.

Part 2.2. Expert scores to predict outcomes
Predicting outcomes requires a different approach. The 
“ground truth” is available from the clinical records. We 
will use at least 2 experts to score the severity of the neo-
natal MRI and to test whether the proposed algorithms/
tools outperform expert scores in predicting the “ground-
truth” outcomes. The expert scores will be based on the 
NICHD–NRN scoring criteria [19] (National Institute 
of Children Health and Human Development, Neonatal 
Research Network), as listed in Table 3.

Part 3. Developing machine learning algorithms/tools 
for lesion detection and outcome prediction
Figure  3 shows the flowchart of Part 3. We start from 
feature extraction (Part 3.1, ZADC calculation). The raw 
ADC map and the novel ZADC feature map will be fed 
to ML-based lesion detection (Part 3.2). Depending 

on whether there are detectable lesions in the patient, 
ML-driven outcome prediction (Part 3.3) will either go 
through lesion-based outcome prediction, which will use 
ADC, ZADC and detected lesions as input (Part 3.3a), or 
go through lesion-free outcome prediction, which will 
use ADC and ZADC for outcome prediction (Part 3.3b).

Part3.1. Feature extraction—introducing the ZADC 
measurement
Uncertainty in the visual interpretation of neonatal brain 
ADC maps arises for a number of reasons including the 
rapidity of brain development during infancy (i.e., tempo-
ral uncertainty) and the variation of normal ADC values 
across different brain regions (i.e., spatial uncertainty). 
Our recently developed normative ADC atlases quantified 
the mean and standard deviation (stdev) ADC values at 
every voxel in the brain in a normative cohort of 13 term-
born neonates who were scanned in the first 2  weeks, 
with a median age of 4 days at the time of MRI scan (see 
Fig.  4a) [57]. This allows us to quantitatively compare a 

Table 2  Definition of long-term neurocognitive outcomes at ~ 2 years of age

i. Continuously-valued outcome Numerical domain scores

BSID-III (Bayley Scale of Infant Development, Version III) Cognitive (ranging 50–150)
Language (ranging 50–150)
Motor (ranging 50–150)

ii. Binary-valued outcome Definition

Developmental delay YES (1) if BSID-III ≤ 85 in any domain OR any documentation by a physician that there is a significant delay in motor, 
cognitive, or language development that requires intervention; otherwise NO (0)

Cerebral palsy As documented in the EHR by the medical provider

Motor impairment YES (1) if BSID-III ≤ 85 in the motor domain OR any noted motor abnormality documented in the EHR by a medical 
provider; or NO (0)

Visual/hearing impairment As documented in the EHR by a medical provider

Table 3  The NICHD–NRN scoring system [19]

NICHD–NRN Scores, 
2012 [19]

Criteria

0 Normal

1A Minimal cerebral lesions only, without basal 
ganglia thalamus (BGT), anterior limb of inter‑
nal capsule (ALIC), posterior limb of internal 
capsule (PLIC) or watershed (WS) infarction

1B More extensive cerebral lesions, without BGT, 
ALIC, PLIC or WS infarction

2A Any BGT, ALIC, PLIC or WS infarction without any 
other cerebral lesions

2B Either BGT, ALIC, PLIC or WS infarction AND any 
other cerebral lesions

3 Hemispheric devastation

Fig. 3  Flowchart for ML-driven lesion detection and outcome 
prediction
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patient’s ADC value y(u) at a voxel u (first row of panel 
b) to the mean μ(v) and standard deviation σ(v) ADC val-
ues at the anatomically-corresponding location v on the 
atlas (Fig. 4a). Here the correspondence will be found by 
the extensively-validated [70] patient-to-atlas DRAMMS 
deformable registration [71]. This will convert a patient’s 
ADC value into a ZADC value, i.e., ZADC(u) = [y(u) − μ(v)]/
σ(v), for each voxel u in the patient space (second row of 
panel 7b). The ZADC value quantifies the deviation from 
normal at every voxel in a patient [62].

Our pilot results in 8 patients showed that regions 
with ZADC < − 2 (i.e., last row in Fig.  4b) identified HIE 
lesions at an accuracy comparable to consensus of time 
consuming expert labelling (between experts Dice over-
lap at 71% and the average algorithm-and-expert Dice 
overlap at 69%) [72, 73]. The next steps will include test-
ing the effects of the novel ZADC map for lesion detection 
in larger cohorts and in data from more institutions, as 
enabled by the planned dataset. Finding spatial lesions 
patterns informative of outcomes, and eventually, 
patient-centered outcome prediction is the goal (Fig. 4). 
Machine learning (ML) is well suited for these tasks.

Part3.2. Machine learning of ZADC and ADC for automated 
lesion detection
Preprocessing  We will convert series of 2D DICOM files 
into an integral 3D NIfTI file for each MR sequence. We 
will anonymize the patient name and the date of birth in 
the NIfTI header. We will perform N4 to correct for the 
inhomogeneity of MRI signals caused by inhomogene-
ity of the magnetic field in the scanner [74], we will do 
field-of-view normalization to make sure brain MRIs are 
of the same scope (from brain stem to the top of the brain, 
excluding any neck, shoulder or even upper chest that 
were included in the raw scan) [75], we will skull strip the 
brain MRI to keep only the brain and remove the eyes, 
faces, skull, etc. [76, 77]; we will do automated segmenta-
tion [78] on the MPRAGE structural image to parcellate 
the brain into 62 anatomic structures, and we will non-
rigidly map the segmented anatomic regions to the diffu-
sion MRI space [71] so that diffusion MRI including the 
ADC maps will also be segmented into structures.

Question 1: Can ZADC detect HIE lesions more accu‑
rately than single experts?  The calculation of ZADC map 
is essentially a feature calculation or feature extraction 
step, which we consider as part of machine learning in 
this paper. We will test the accuracy of atlas-based lesion 
detection by the sensitivity, specificity and Dice over-

Fig. 4  ZADC map as a new MRI measurement to quantify the voxel-wise deviation from normal. a From ADC maps of normative neonates (left, 
upper part), we constructed the mean ADC (left) and standard deviation (stdev) of the ADC map (left, lower part). b Demonstration of ZADC maps 
in four neonates with HIE. The top image of each column is a representative axial ADC map through areas of injury. The color coding indicates the 
Z-score relative to the age matched normative atlas in a. This approach allows us to detect regions of decreased ADC, which have been associated 
with outcome, as well as explore the relevance of high ADC values, which occur with vasogenic edema



Page 7 of 16Weiss et al. J Transl Med          (2019) 17:385 

lap between computer-generated and expert consensus 
labelled lesion regions [72, 73]. One way of using our 
novel ZADC feature map is to simply threshold ZADC val-
ues at each voxel (Fig. 4). This is analogous to a Bayesian 
classifier—from normal controls we have built a Gauss-
ian model of normal distributions of ADC values at each 
voxel, and given a new patient’s ADC value at this value, 
ZADC is related to the likelihood of this patient’s this voxel 
being lesioned or not. We will first test simply threshold-
ing the ZADC map at various threshold values (e.g., − 1, 
− 1.5, − 2, − 2.5). Another way of using the novel ZADC 
map is to use more complex machine classifiers to iden-
tify whether every voxel in the brain is affected by HIE 
lesions (e.g., voxel-wise normal-vs-lesion machine clas-
sification), given the ADC and ZADC values at this voxel 
and in the geometric neighborhood of this voxel. We will 
test whether deep learning classifiers [79, 80] (e.g., 2D and 
3D U-Net [81], V-Net [82]), which is free of hand-crafted 
features and characterizes each voxel by its multi-scale 
neighborhood information, offer additional advantages 
over classic classifiers that rely on hand-crafted features 
of a voxel (e.g., Support Vector Machine [30], and Ran-
dom Forest [68]). We will test the effect of using the ZADC 
value at each voxel as inputs with and without the ADC 
values of the voxel, and quantify whether this improves 
lesion detection accuracy compared with using the ADC 
values alone [68]. We also plan to test whether post-pro-
cessing based on prior knowledge can further improve the 
accuracy of lesion segmentation. One post-processing can 
be the opening (i.e., dilation) and/or closing (i.e., erosion) 
morphological operations. Another post-processing is 
to regularize the computer-detected regions with voxel-
wise probability of lesion occurrence in HIE populations 
(see Question 4 and Fig. 5a). Frameworks for lesion-atlas 
guided/regularized lesion detection can be used [83].

We will use Dice overlap and receiver-operating-curves 
(ROCs) to quantify the accuracy with regard to expert 
consensus labelled lesion regions. We will compare 
our accuracy with the literature [68] and with multiple 
experts. We will conclude that our algorithm is more 
accurate than single experts if it achieves a higher Dice 
overlap with expert consensus than the Dice overlap 
between single experts and expert consensus [30, 84]. 
Here, the average Dice accuracy from leave-one-out cross 
validation will be used—training the algorithm on all but 
one subject and testing it on the left-out one to compute 
the algorithm-to-consensus Dice overlap of segmented 
lesion regions, and iterating until every patient has been 
left out once and only once.

Question 2: Can ZADC detect lesions in multi‑site/scanner/
protocol data?  A fundamental problem is that the tar-
get patient may have very different distribution of ADC 

and ZADC values than the training populations. We will 
design a self-adaptive mechanism to deal with differences 
of ADC maps acquired from different sites or scanners. 
The mechanism will first detect regions of abnormally 
ADC and ZADC values in the target patient using infor-
mation learned from other patients. Then we will re-train 
the machine classifier on the ADC and ZADC maps from 
the target patient, using the tentatively-detected regions 
as training samples. The assumption is that, the knowl-
edge of lesion voxel appearance as learned from training 
patients may not be completely suitable for a specific target 
patient, because of individual differences and sites/scan-
ner/protocol differences. This is especially true for target 
image voxels that have probabilities of being lesioned just 
at the border line (e.g., those voxels that computer algo-
rithm thought of having 49% or 51% percent of probabili-
ties being lesioned). On the other hand, the target image 
voxels that computer algorithms assign very high prob-
abilities of being lesioned (e.g., > 75%) are more reliable. 
These voxels can serve as “silver standard” to re-train the 
voxel-wise classifier, using the target image’s features. Re-
training using target image voxels for which the tentative 
results have high confidence to be lesioned or normative 
voxels can reduce bias in the classifier arising from train-
ing on other patients or other imaging protocols, as those 
“silver standard” voxels are from the same target patient 
and the same imaging protocol.

Part3.3. Machine learning of ZADC and ADC patterns 
for outcome prediction
Part3.3a. Lesion‑based outcome prediction
Question 3: What are lesion patterns that are associated 
with  neurocognitive outcomes at  2  years of  age?  The 
MRI scoring systems currently used in the hospital set-
ting focus on injuries in certain key brain regions such as 
the thalamus, basal ganglia, internal capsules, etc. [19, 20, 
85]. While the scores reflect the severity of HIE during 
infancy, the predictive power for outcomes by 2 years of 
age is not established.

We hypothesize that through machine learning we can 
find a specific combination of sub-regions with abnor-
mal ZADC values that better inform outcomes compared 
to expert scoring systems. One rationale comes from our 
preliminary results in Fig. 5, which show that injury may 
involve brain structures not specifically assessed in the 
current expert scoring systems. In Fig.  5a, we generated 
probabilistic lesion atlases for HIE. This was based on 
using our extensively-validated [70] non-rigid registration 
tool [71] to map individual patients’ lesions into a neona-
tal atlas [57], where the lesion loads among 141 patients 
were averaged at the voxel level. For example, a voxel the 
constructed probabilistic HIE lesion atlas having a value of 
0.1 means that 10% of the patients in our cohort had HIE 
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lesions at the same anatomical location. We further used 
voxel-wise lesion symptom mapping (VLSM [86]) to sta-
tistically test whether lesion occurrence in each voxel was 
significantly associated with treatment (Fig. 5b) and with 
motor impairment at 2  years (Fig.  5c). The significance 
was defined as p < 0.05 after 10,000 permutations correct-
ing for potential false positives in multiple comparisons 

[86]. Panel b shows the lesion atlases in patients who were 
treated without therapeutic hypothermia (N = 56, mean 
age at scan = 4  days) and with therapeutic hypothermia 
(N = 85, mean age at scan = 4 days), and the regions of sig-
nificant difference between these two cohorts. This quan-
tified the regional reduction in lesion load and shows a 
larger impact of treatment in the deep gray and posterior 
structures. Panel c shows atlases in cohorts with (N = 17, 
mean age 4 days at scan) and without (N = 39, mean age 
5  days at scan) clinically-documented motor impairment 
at 2  years, highlighting that key brain regions associ-
ated with adverse motor outcomes involve the anatomic 
regions mainly along the corticospinal tract (CST) and 
other cortical structures in occipital and parietal lobes that 
are not specifically scored in many expert scoring systems.

Our second motivation is that machine learning algo-
rithms can capture subtle patterns that may not be scored 
in expert scoring systems. For example, two patients 
may both have injury in thalamus, but may have differ-
ent outcomes due to slight differences in the volume and 
location of the injury, in the actual ADC and ZADC distri-
butions within the injured regions (e.g., whether average 
ZADC = − 3 or − 6 in the detected lesion regions as stated 
under Question 1), in the slight differences in the bi-lat-
eralization, etc. These subtle patterns are not in current 
expert scoring systems, but can be captured by computer 
algorithms. In addition, regions that inform outcomes 

Table 4  A list features to  be used for  lesion-based 
outcome prediction

Categories Details of features

I. Lesion 
anatomy

I.1. Mass center in standard neonatal atlas space
I.2. Percentage of the whole-brain volume and the 

volume of each of the 61 auto-segmented brain 
structures being injured [76, 78, 122]

I.3. Ratios of volumetric injury in the same brain struc‑
tures between the left and right hemisphere

I.4. Percentage and distribution of HIE lesions in 28 
major fiber tracts as defined in the JHU atlas [123]

II. Lesion geom‑
etry

II.1. Lesion volume
II.2. Maximum diameter along different orthogonal 

directions, maximum surface of lesion, lesion com‑
pactness, lesion spherecity, surface-to-volume ratio

III. Lesion het‑
erogeneity

III.1. Histogram analysis (0, 25, 50, 75 and 100-percen‑
tile) of T1, T2, DWI, ADC, ZT1, ZT2, ZDWI, ZADC signal 
values within the lesion regions

III.2. Skewness (asymmetry), kurtosis (flatness), uniform‑
ity and randomness (entropy and standard devia‑
tions) of T1, T2, DWI, ADC, ZT1, ZT2, ZDWI, ZADC signal 
values within the lesion regions

IV. Lesion 
texture

IV.1. gray-level co-occurrence matrix (GLCM) features 
and gray-level run-length matrix (GLRLM) of T1, T2, 
DWI, ADC, ZT1, ZT2, ZDWI, ZADC signal values within 
lesion regions

IV.2. fractal analysis, Minkowski functionals, wavelet 
transform and Laplacian transforms of Gaussian-
filtered images for the lesion regions

Fig. 5  Probabilistic lesion frequency atlases to quantify key brain 
regions associated with treatment and outcome. a Lesion atlas in 
141 patients; b lesions atlases in patients having not undergone 
therapeutic hypothermia (left) and having undergone therapeutic 
hypothermia (middle), and the brain regions that show significant 
decreases in lesion frequency with treatment (right); c lesion atlases 
in patients with (left) and without (middle) motor impairment 
at ~ 2 years, and the regions that were more often injured with this 
outcome. In the second row of a and first two columns in b and c, 
the color at a voxel denotes the frequency of lesions (i.e., percentage 
of patients in our cohort having lesions at this voxel), which is 
indexed by the color bar at the bottom of each panel. In the right 
column of b and c, the red color shows the voxels where the two 
sub-cohorts in the left and middle columns of each panel have 
significant differences in lesion occurrence. That is, in b, the red in 
the right column shows the regions where patients having received 
hypothermia have significantly lower frequencies of lesions than 
patients not undergoing hypothermia
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may include both regions with ZADC < − 2 (abnormally 
low ADC, possibly ischemic necrosis) as well as regions 
with ZADC > 2 (abnormally high ADC, possibly vasogenic 
edema), but the latter is not considered in expert scoring 
systems. Table 4 lists all the MRI features (predictive var-
iables extracted from MRI) we propose to use for lesion-
based outcome prediction.

Part3.3b. Lesion‑free outcome prediction
Question 4: Can the magnitude and pattern of ZADC aug‑
ment outcome prediction?  We hypothesize that out-
comes are associated with the magnitude and pattern of 
ZADC values. For example, a patient with ZADC = − 5 in 
every voxel in a region may have a worse outcome than 
another patient with values ranging between − 5 and − 2 
in the same region.

To test this hypothesis, we will include textures of ZADC 
in the multivariate predictive model. The texture will 
include the entropy, skewness, kurtosis, and histogram 
analysis (0, 25, 50, 75, 100-percentile) of ADC and ZADC 
values in the injured regions. Each patient will be repre-
sented as a high-dimensional feature vector. Classifica-
tion models (e.g., support vector machine (SVM) [87] or 
random forest (RF) [88]) will be explored for their ability 
to predict categorical outcomes, and regression models 
(e.g., support or relevance vector regression (SVR, RVR) 
[89]) to predict the continuous outcomes [29].

To reduce the risk of over-fitting, our iterative for-
ward inclusion and backward elimination (FIBE) fea-
ture selection algorithm will be used [71, 90] to select 
the most informative subset of features. The FIBE fea-
ture selection algorithm will start from the single most 
informative feature (one with the smallest prediction 
error in the training set), and iteratively add one feature 
into the subset at a time, such as adding this feature 
leads to the maximum decrease of prediction errors 
with Support Vector Regression compared to add-
ing any other feature, until no features can be added 
that further reduces the prediction error. The algo-
rithm will then exclude features from the subset, one 
at a time, such that removing this feature leads to the 
maximum decrease of prediction errors compared to 
removing any other feature, until no other features can 
be removed from the subset that further reduces pre-
diction error. The algorithm iterates between forward 
inclusion and backward elimination until no feature 
can be added or remove. The final subset is the selected 
subset of features that leads to the minimum predic-
tion error. The FIBE algorithm does not start from the 
full feature set. At any time, the subset only contains a 
small fraction of all features, therefore it reduces the 
risk for overfitting.

One merit of using texture features of ADC and ZADC 
maps is that we may be able to predict outcomes in 
ADC maps that are read as clinically normal. It is well 
known that 30–50% of patients affected by HIE do not 
show visually explicit lesions [24, 25], which may be 
due to mild injury, pseudo-normalization (ADC values 
returning to normal, hiding the lesions before the lesion 
actually resolves [52]), the use of TH, or other reasons. 
In these scenarios, voxels may not survive the thresh-
old of ZADC map by − 2 (since lesions are invisible), but 
subtle pattern abnormalities can still be captured in the 
texture of ADC and ZADC and these patterns may con-
tribute to outcome prediction. Table 5 lists all the MRI 
features (predictive variables extracted from MRI) that 
we plan to use for lesion-free outcome prediction. No 
explicit lesion detection is needed.

For both Part3.3a and Part3.3b
Question 5: Generality to multi‑site data?  We will test 
the hypothesis that certain predictive variables that are 
more robust to multi-site data will achieve more stable 
prediction accuracy. For example, lesion volume might be 
a more stable variable than the boundary irregularity, and 
the standard deviation of ADC and ZADC values should 
be more stable than the actual mean or median values. 
We will rank variables and variable combinations by their 
predictive power in data across sites and encourage the 
auto-selection of stable variable combinations for multi-
site generalization.

Table 5  A list features to  be used for  lesion-free outcome 
prediction

Categories Details of features

I. Fiber tract features I.1. Histogram analysis (0, 25, 50, 75 and 100-per‑
centile) of T1, T2, DWI, ADC, ZT1, ZT2, ZDWI, ZADC 
signal values within each of the 28 major fiber 
bundles as defined in the JHU atlas [123]

I.2. Skewness (asymmetry), kurtosis (flatness), uni‑
formity and randomness (entropy and standard 
deviations) of T1, T2, DWI, ADC, ZT1, ZT2, ZDWI, 
ZADC signal values in each brain structures

II. Regional anatomy 
features

II.1. Histogram analysis (0, 25, 50, 75 and 100-per‑
centile) of T1, T2, DWI, ADC, ZT1, ZT2, ZDWI, ZADC 
signal values within the brain and each of the 61 
auto-segmented brain structures/regions

II.2. Skewness (asymmetry), kurtosis (flatness), 
uniformity and randomness (entropy) of T1, T2, 
DWI, ADC, ZT1, ZT2, ZDWI, ZADC signal values in the 
brain and 61 auto-segmented regions

II.3. Volume of the 61 auto-segmented structures/
regions as measured in T1 image

II.4. Left/right asymmetry in features II.1–II.3
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Question 6. Can clinical variables augment MRI metrics 
and  further improve outcome prediction?  We will test 
this by combining the MRI metrics mentioned above with 
clinical variables, such as: EEG [91], 1- and 5-min APGAR 
scores [92], umbilical cord arterial pH value [93], length of 
stay in neonatal intensive care unit (NICU) [94], as listed 
in Part 1.3. The combination of MRI and clinical variables 
will increase the length of the patient-wise feature vector. 
However, the same feature selection (prediction and accu-
racy assessment) will still apply.

Accuracy evaluation For predicting binary outcomes, 
we will measure accuracy by sensitivity and specificity 
in leave-one-out cross validations. That is, we will divide 
N patients into a cohort of (N − 1) training patients and 
1 testing patient. We learn the MRI signatures from 
known outcomes in the training patients, apply the 
learned model to predict outcome in the testing patient, 
and then check whether the predicted outcome for the 
testing patient is correct or false compared to the actual 
outcome of this testing patient. We iterate this process 
N times, such that every patient has been left out once 
and only once as the testing patient. Sensitivity is meas-
ured as the percentage of patients who had adverse out-
comes has been correctly predicted, and specificity is 
measured as the percentage of patients who had normal 
outcomes has been correctly predicted. Similarly, accu-
racy for predicting continuously-valued outcomes (Bay-
ley scores) will be measured via the root mean squared 
error (RMSE) between the predicted and actual scores 
in cross validations. That is, in a leave-one-out cross 
validations, ML learns the predictive model from (N − 1) 
training patients and predicts the Bayley score of a test-
ing patient. We will repeat this N times such that each 
patient has been left out once and only once as the test-
ing patient. The average RMSE between the predicted 
and the actual Bayley scores will be used to quantify pre-
diction accuracy. A smaller RMSE means a higher accu-
racy in prediction.

We will evaluate the accuracies mentioned above for 
different strategies (lesion-based and lesion-free out-
come prediction), for different classifiers during binary 
outcome prediction (for comparing the accuracies of dif-
ferent classifiers such as SVM, RF, etc.), and for different 
regressors in during continuous-valued outcome pre-
diction (for comparing the accuracies among regressors 
such as SVR, RVR, etc.).

Comparison with expert scoring systems We will quan-
titatively compare our ZADC-based predictive model 
with expert scores, in terms of the accuracy in predict-
ing outcomes in a k-fold or leave-one-out cross valida-
tion. Expert scores will be independently determined by 
2 pediatric neuroradiologists, using the NICHD–NRN 
scoring criteria [19].

Expected sample size and power analysis
The expected sample size is 300 patients with a com-
plete set of MRI and clinical variables, including out-
comes. Approximately 440 cases of neonatal HIE cases 
with accompanying MRI scans have been identified 
from patients treated in MGH and BCH during 2009–
2019 thus far, and our ongoing expert review of clinical 
records has found that roughly 50–60% of them had out-
come data. MGH and BCH admit ~ 50–60 HIE patients 
annually.

When developing ZADC-based thresholding and 
machine learning to detect HIE lesions, we will quantify 
the Dice overlap, sensitivity and specificity of the detected 
lesion with regard to expert consensus in the leave-one-
out manner (under Question 1). Recent machine learning 
driven HIE lesion detection has a median algorithm-and-
expert Dice overlap at 0.52 and from 20 HIE patients 
(2017) [68]. We can loosely consider their mean Dice as 
0.52 (actually not reported [68]). Given a desired power of 
0.8, and alpha = 0.05, and assuming the standard deviation 
of Dice overlaps at 0.15 (which is the case in our pilot data 
[72]), we need 56 (or 13) patients to say our algorithm has 
achieved a significantly higher Dice accuracy if our mean 
Dice is 0.6 (or 0.69 as in our pilot data [72]).

When correlating each MRI metric with outcome 
scores. We need 46 or 71 subjects to test whether two 
variables (MRI and outcome) are significantly correlated 
with a power at 0.95 (beta = 0.05) and 0.995 (beta = 0.005) 
respectively (|PCC| > 0.5, p < 0.05, where PCC is Pearson’s 
Correlation Coefficient).

In developing multi-variate prediction models, the one-
in-ten-rule [95, 96] states a minimum risk of over-fitting 
if the algorithm selects, from the anticipated cohort of 
300 patients, no more than 30 features that jointly pre-
dict outcomes. This is often the case in our similar stud-
ies and can be strictly enforced by our feature selection 
tool [35, 42, 43, 90].

Discussion
This protocol describes our plans to build on our ZADC 
measurement, and to develop machine learning tools to 
detect lesions and predict outcomes for neonatal HIE 
patients.

Secondary use of hospital-hosted data has received 
increasing attention [54–56]. Recent years have seen 
a harmonization of public informatics platforms that 
facilitate the mining of clinical databases for big data 
research [97]. Retrospective data collection is possible 
because of the now mature hospital data registries and 
the dissemination of clinical informatics tools. NICU 
registries record comprehensive clinical information on 
infant patients. Complementary to registry data, big data 
search engines allow us to query hundreds of thousands 
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of patients by ICD codes and keywords [98]. Tools for 
this purpose include i2b2 [99], SHRINE [100], HiGHmed 
[101], tranSMART [102], etc.; many of which are being 
adopted in healthcare settings through the world [63–
65]. Publicly available platforms such as mi2b2 [66] and 
ChRIS [103, 104] permit the download of MRI data from 
Radiology archives with patient MRNs obtained from 
registry or hospital-wide searches [66]. Experts further 
filter cases for eligibility and quality control, and review 
clinical records to ascertain clinical information (e.g. 
entering outcomes into the REDCap database) [105]. The 
registries in hospital departments and the public avail-
ability of hospital-wide search tools foster data collection 
that is reproducible among hospitals.

A typical clinical trial often requires significant fund-
ing and years to collect data. In contrast, we plan to use 
existing clinical database. With 1–2  years of effort and 
limited resources we have identified 440 candidates (141 
from MGH and 299 from BCH), the equivalent of 10+ 
years of active enrollment at the two hospitals. While 
not all of these candidate patients have a full spectrum of 
data, the process demonstrates the feasibility of the pro-
posed study to aggregate the necessary cohort from our 
two hospitals. In contrast, the “Whole Brain Cooling” 
trial collected data from 208 HIE patients over a 3–4 year 
time frame (2000–2003) across 16 sites [5, 106–108], the 
“Optimizing Cooling” trial collected data from 364 HIE 
patients over 6–7  years (2010–2016) from 19 sites [22, 
109–111], the “Late Hypothermia” trial collected data 
from 168 HIE patients over 8–9 years (2008–2016) from 
22 sites [112], and the BABY BAC II trial is aiming to col-
lect data for 160 HIE patients over 3–4 years (2017–2020) 
from 12 sites [113]. The time and resources saved in data 
collection makes our protocol a useful complement to 
existing clinical trials.

Of specific utility to HIE investigations, we recently 
developed the first-of-its-kind normative pediatric ADC 
atlases. This valuable resource allows for the quantifica-
tion of the deviation from normal at the voxel level. We 
will develop machine learning tools to fully explore and 
test this new MRI measurement (voxel-wise ZADC) in 
lesion detection and outcome prediction. This will sup-
plement the interpretation of neonatal brain MRIs, 
which is currently a subjective assessment performed 
by experts, by adding data that is quantitative, objective, 
consistent, anatomically-created and generalizable across 
multiple sites (Fig.  4). Once validated, the novel and 
machine-learning-powered tools that build on our new 
ZADC measurement will pave the way for future preclini-
cal trials involving patients with HIE (Fig. 1).

Another novelty in the study is to use statistically-
rigorous lesion-symptom mapping to quantify key 
neural substrate for treatment and outcomes (Fig.  5). 

We do note that the results in Fig.  5 are preliminary 
(N = 141) and will be updated when more retrospec-
tive data is gathered (N = 300 as planned). The update 
is needed in at least two aspects. The first is to have a 
larger sample size ideally more balanced between sub-
cohorts. Right now, N = 17 patients with and N = 39 
without motor impairment (not big number, and imbal-
anced) had led to findings of the red regions (right col-
umn of Fig.  5c) not fully within known motor tracts. 
The second improvement when sample size is bigger is 
to purify the data. Neurocognitive outcomes at ~ 2 years 
are often multifactorial, including impairment in mul-
tiple sub-domains that exceed motor and include hear-
ing, visual, memory, development delay, etc. We will 
start from sub-cohorts with the overall normative ver-
sus adverse outcomes. When it comes to sub-domains, 
simply stratifying them into with and without impair-
ment in one specific sub-domain function may be 
contaminated but comorbidities. For example, Fig.  5c 
the red regions in the right column are not all within 
known motor tracts. We will likely need to use cluster-
ing approaches of outcomes to find major branches of 
multifactorial outcomes, or, to factor out (statistically 
control for) comorbidities in outcomes. Nevertheless, 
Fig.  5, especially panels (a) and (b), has shown prom-
ise of quantitative and rigorous analysis of lesions and 
lesion-outcome mapping at the voxel level, which may 
add knowledge to the current experience-based subjec-
tive scoring systems.

Special attention has been paid to the importance of 
fostering multi-site collaborations and generalizabil-
ity. We will design specific image analysis algorithms to 
deal with differences in imaging data from multiple sites 
(Questions 2 and 5). One example of multi-site/scanner 
differences is in the diffusion parameters and the num-
ber of diffusion directions. An ideal number of diffu-
sion directions is a topic under investigation and some 
suggested at least 45 directions to construct satisfactory 
fibers in high-angular-resolution diffusion-weighted 
imaging (HARDI) [114]. However, existing clinical diffu-
sion MRI protocols in our hospitals used 24–32 diffusion 
directions. Similar settings are adopted in other hospi-
tals or clinical database for HIE populations [115–117]. 
One reason is that the purpose is not to construct high 
angular resolution fibers, but to only create ADC and FA 
maps for clinical neuroradiology interpretation [24, 60]. 
For another reason, not having more directions in clinical 
settings is not to extend MRI scan time on neonates (non-
sedation) [24, 60]. The purpose of our study is to retro-
spectively gather data that has been acquired clinically. 
So, we cannot change the clinical imaging protocol for 
neonates. Nevertheless, we plan to record the accuracies 
of lesion detection and outcome prediction as a function 
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of different sites/scanners, different imaging parameters 
(b values, number of diffusion directions, etc.). This will 
provide new and quantitative evidence for future search 
of an optimal imaging protocol that balances between 
the clinical considerations (scan time especially for non-
sedated neonates, sufficiency for neuroradiology reads of 
ADC/FA maps, etc.) and higher quality and accuracy of 
diffusion tensor reconstruction.

When it comes to multi-site data, harmonizing diffu-
sion protocols or images has received increasing interest, 
especially for normative data [118, 119]. Our study is to 
retrospectively gather existing data from clinical data-
bases from multiple sites. As the data is from patients, 
and lesions can appear at varying locations and sizes 
in the patient data, we used an alternative approach to 
deal with multi-site data differences. The approach is to 
design an adaptive lesion segmentation algorithm (see 
Question 2), which first learns the appearances of lesion 
voxels from other patients, and re-trains itself using the 
target patient’s own image voxels that have been deem 
highly probable to be lesioned or normative. The re-
training phase is directly on the target patient, not on 
training patients which may be scanned in a different site. 
We will test whether this improves the lesion detection 
accuracy for multi-site data.

Future larger-scale collaborations and pre-clinical tri-
als across more sites will need to address the limitations 
of this current protocol. These limitations include: sam-
ple size, the need to further test multi-site compatibility, 
retrospective versus prospective suitability, dealing with 
variability in treatment guidelines and protocols, and 
standardization of outcome definitions across institution. 
In addition, we recognize the need for a secure and sta-
ble data warehouse, free release and dissemination of the 
planned algorithms and software tools; inclusion of addi-
tional MRI sequences (e.g., spectroscopy [120, 121]); the 
exploration and incorporation of other clinical [9–11], 
biochemical [9–12], and serum [12, 13] biomarkers; and 
so on. Nevertheless, the current protocol is a novel and 
needed approach that will provide a basis for larger-scale, 
multi-site studies.

In summary, this paper describes a registry- and 
informatics-driven clinical dataset collection protocol 
to power next-generation machine-learning-based MRI 
analytics for HIE lesion detection and outcome predic-
tion. This study should benefit HIE clinical trials that 
incorporate brain MRI. The same technical framework 
can be used for data collection and biomarker develop-
ment in other pediatric and adult cohorts, such as those 
with stroke, tumor and other non-brain disorders.
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