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Abstract 

Background:  Oxidative stress has a determinantal effect on human dental pulp stromal cells (hDPSCs), including 
affecting their longevity and functionality. Circular RNAs (circRNAs) play an essential role in stromal cell behavior; 
however, the exact mechanism in which circRNAs functions within hDPSCs were undergoing oxidative stress remains 
unclear. The purpose of this study is to assess the global changes and characteristics of circRNAs in hDPSCs undergo-
ing oxidative stress.

Methods:  Using an oxidative stress model of hDPSCs, we applied microarray analysis to examine the circRNAs 
profiles. We confirmed the changes in circRNAs by quantitative Real-Time PCR (qRT-PCR). Furthermore, bioinformatics 
tools, including a miRcode map, TargetScan, gene ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway analysis, were reconstructed for further assessment. SIRT1 gene and protein expression were tested 
by qRT-PCR and In Cell-Western analysis.

Results:  We revealed 330 upregulated, and 533 downregulated circRNAs undergoing oxidative stress in hDPSCs and 
confirmed three circRNAs distinct expressions (hsa_circ_0000257, hsa_circ_0087354, and hsa_circ_0001946) in hDP-
SCs undergoing oxidative stress by qRT-PCR. GO, and KEGG pathway enrichment revealed the differentially expressed 
circRNAs might participate in p53 and cell cycle signaling networks associated with oxidative stress. SIRT1 gene and 
protein expression was reduced in the oxidatively stressed cells (OSC) group compared to untreated cells (UC).

Conclusions:  The findings of this study has provided new insights into circRNAs and a basis for further studies assess-
ing the potential functions of hsa_circ_0000257, hsa_circ_0087354, and hsa_circ_0001946 in oxidatively stressed 
hDPSCs.
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Highlights

Circular RNAs (circRNAs) are markedly altered in 
oxidatively stressed  hDPSCs, including 330 upregu-
lated and 533 downregulated circRNAs, respectively.
The increased expression levels of hsa_
circ_0000257, and decreased expression levels of 
hsa_circ_0001946  and hsa_circ_0087354 were veri-
fied by qRT-PCR.
The induced hsa_circ_0000257 could interact with 
the microRNAs, hsa-miR-9-5p, hsa-miR-647, hsa-

miR-653-3p, hsa-miR-212-5p, and hsa-miR-27a-5p, 
enhancing the expression levels of target genes.
KEGG annotation revealed that p53 signal path 
might be a critical pathway involved in oxidative 
stressed hDPSCs, the hsa_circ_0000257/hsa-miR-
9-5p/SIRT1/P53 regulatory axis is likely a novel 
molecular pathway regulating oxidative stress in 
hDPSCs.

Background
Human dental pulp stromal cells (hDPSCs) has attracted 
increasing attention as a mesenchymal stromal cell 
(MSC) source for regenerative therapy due to their ease 
and non-invasive acquisition, capacity to self-renew 
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and multipotency [1]. However, hDPSCs are vulnerable 
to damage by oxidative stress in cell proliferation, and 
genomic instability and cellular senescence [2]. Although 
oxidative stress is involved in a wide range of cellular 
processes, a limited number of studies have examined 
the effect of oxidative stress in stromal cells, especially in 
hDPSCs.

Recently, growing evidence has demonstrated circu-
lar RNAs (circRNAs), as non-coding RNAs which inter-
acts with microRNAs (miRNAs) [3]. Indeed, circRNAs, 
also termed miRNA sponges, exert critical functions in 
gene regulation via a circRNA-miRNA-mRNA pathway, 
in virtually all mammals [4]. Furthermore, circRNAs are 
known to participate in oxidative stress [5], which may 
play a critical role in post-transcriptional gene regulation 
in oxidative stressed stromal cells. Therefore, circRNAs 
are becoming crucial biological molecules for under-
standing the mechanisms of oxidative stress in hDPSCs.

To explore the potential roles of circRNAs in regulat-
ing oxidative stress in hDPSCs, we established an oxi-
dative stress model and performed microarray analysis 
to explore dysregulated circRNAs in oxidative stressed 
hDPSCs induced by H2O2 treatment. It will be critical for 
understanding the regulatory mechanisms of oxidative 
stress in hDPSCs for regenerative medicine.

Methods and methods
Isolation and culture of hDPSCs
Sound third molars were extracted at Affiliated Zhong 
Shan Hospital of Dalian University and were obtained 
with patients’ informed consent according to the cur-
rent study, which had approval from the Research Ethics 
Committee (No. 2017046). A total of 8 teeth were col-
lected from both male and female patients, with an aver-
age age of 24 ± 4 years (mean ± SD). Isolation of hDPSCs 
was undertaken following the procedure described by 
Tomlinson et  al. [7]. Extracted hDPSCs were cultured 
in the growth medium of alpha-modified minimum 
essential medium (α-MEM; 8118353, Gibco), containing 
10% fetal bovine serum (FBS; 7981220, NQBB) with 1% 
penicillin–streptomycin (SV30010,  HyClone), at 37  °C 
in an incubator (Binder, Germany) with 5% CO2 and 
95% air. When cells reached 80% confluence, they were 
treated with 0.25% trypsin–EDTA (10525E16,  Gibco) 
and reseeded into multiwell plates for the subsequent 
experiments.

H2O2 treatment
For the induction of oxidative stress, hDPSCs were cul-
tured with freshly prepared H2O2 in the growth medium. 
Briefly, 30% H2O2 was diluted to 1  M stock using steri-
lized ddH2O2. Following which, 1  M H2O2 was further 
diluted with growth medium at required concentrations 

and then added to cells  and incubated for 24 h. The cells 
were washed three times with growth medium to remove 
residual H2O2, cultured in fresh growth medium and sub-
jected to subsequent experiments for various durations.

Oxidative stress model of hDPSCs
CM-H2DCFDA (C-6827, Life Technologies) in 10 μL 
dimethyl sulfoxide (DMSO, CLS3085, Sigma-Aldrich) 
was further diluted in 5  mL α-MEM and added to the 
serum-free medium  at the concentration of 17.4 μM 
and incubated at 37 °C in the dark for 30 min. Cells were 
seeded onto 8-chamber culture slides (Corning, Fal-
con culture slides) at a density of 5 × 104 cells per cm2. 
After the cells were treated by H2O2 as described above, 
the cells were washed three times with PBS and assessed 
by fluorescence microscopy (AX-10, ZEISS) (Excitation/
Emission: 492-495/517-527 nm). Reactive oxygen species 
(ROS) and SOD activity were detected by Reactive Oxy-
gen Species Assay Kit (Beyotime Biotechnology, China) 
following the manufacturer’s protocol. The cells were 
stained by F-actin probe (Alexa Fluor® 568 phalloidin, 
Invitrogen™) and ProLong® Gold Antifade Mountant 
with DAPI (P36935, Invitrogen™) following the manufac-
turer’s protocol.

RNA extraction
Total RNA extraction from   oxidatively stressed cells 
(OSC) and  untreated cells (UC)  was performed with 
TRIzol (DP405-02, Tiangen) as directed by the manufac-
turer’s instructions. Following which, RNA quantity and 
purity were assessed on a NanoDrop spectrophotometer 
(DNAmaster, dynamica).

CircRNA microarray analysis
The hDPSCs (OSC and UC groups) were assessed by 
microarrays to identify differentially expressed circR-
NAs under oxidative stress. Double-stranded cDNA 
(ds-cDNA) from 5  μg total RNA was obtained with a 
SuperScript ds-cDNA synthesis kit (Invitrogen, USA) 
as instructed by the manufacturer. Following which, ds-
cDNA was then labelled with Cy3 as described by the 
NimbleGen Gene Expression Analysis protocol (Nim-
bleGen Systems, USA), using 1 μg ds-cDNA, 100 pmol of 
deoxynucleoside triphosphates and 100 U of the Klenow 
fragment (New England Biolabs, USA). Purification of 
the labeled ds-cDNA was carried out by ethanol precipi-
tation. Hybridization was performed at 42 °C for 16–20 h 
using 4  μg of Cy3 labeled ds-cDNA with NimbleGen 
hybridization buffer/hybridization component A (Nim-
bleGen Systems). Finally, slide scanning was performed 
on an Axon GenePix 4000B microarray scanner (GenePix 
4000B, US Molecular Devices) with the GenePix Pro 6.0 
software. The obtained TIFF image files were imported 
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into the NimbleScan software (v2.5) for analyzing the 
data, which were further assessed with Agilent Gene-
Spring GX (v12.1). Hierarchical clustering was carried 
out with R scripts. A fold change (FC) > 2 and p < 0.05 
were considered to indicate significant differences.

CircRNA expression by qRT‑PCR
qRT-PCR was performed to validate microarray find-
ings. Reverse transcription of 1  μg total RNA was car-
ried out with PrimeScriptTM RT reagent Kit and gDNA 
Eraser Kit (Yingjun Biotechnology). Then, qRT-PCR was 
performed with SYBR Premix Ex Taq TM (TaKaRa) as 
instructed by the manufacturer. Transcript levels of cir-
cRNAs were evaluated, with Glyceraldehyde 3-phosphate 
dehydrogenase (GAPDH) as a reference gene. The primer 
sequences were shown in Table 1.

Functional enrichment analysis and circRNAs/miRNAs 
associations
The circRNAs and miRNAs showing significant associa-
tions were analyzed. Possible response elements of miR-
NAs were searched in circRNAs and miRNAs sequences. 
Next, miRNA binding site prediction was searched with 
the miRcode map (http://www.micro​de.org/). The circR-
NAs/microRNAs interaction was searched with Array-
star’s home-made miRNA target prediction software 
based on TargetScan & MiRanda, and the differentially 
expressed circRNAs within all the comparisons were 
annotated in detail with the circRNAs/miRNAs interac-
tion information. GO and KEGG Pathway analysis was 
carried out with standard techniques. GO enrichment 
analysis was based on three aspects: biological process 
(BP), cellular component (CC), and molecular func-
tion (MF) and GO analysis was carried out to assess the 
functional roles of the top 10 significant enriched target 
genes. KEGG pathway enrichment revealed the signaling 

networks of differentially circRNAs associated with oxi-
dative stress in hDPSCs.

SIRT1 gene expression by qRT‑PCR
qRT-PCR was used to confirm the SIRT1 expression. Total 
RNA was extracted from cells using RNAiso Plus (9108Q, 
TaKaRa) and reversely transcripted into cDNA using Pri-
meScriptTM RT reagent Kit with gDNA Eraser (RR047A, 
TakaRa) following the manufacturer’s protocol. The rela-
tive gene expression was determined using Thermal cycler 
Dice Real Time System (TP800, TaKaRa) by SYBR Premix 
Ex TaqTM II  (Tli RNaseH Plus, RR820A, TaKaRa). The 
Transcript levels of SIRT1 were evaluated with β-actin 
serving as the internal control standard. The primer 
sequences were as follows: F: TGT​GGT​AGA​GCT​TGC​
ATT​GAT​CTT​, R: GGC​CTG​TTG​CTC​TCC​TCA​TT. Data 
were shown as fold change (2−∆∆Ct) and analyzed initially 
using GraphPad Prism 7 software. Triplicates  were per-
formed for each sample in three independent experiments.

In‑Cell Western analysis for SIRT1
Following treatment, the cells were washed in PBS, 
followed by fixation in 10% neutral buffered formalin 
(NBF, Cellpath) for 20 minutes. Cells were permeabi-
lized by washing five times in 0.1% Triton™ X-100 in 
PBS for 5 minutes per wash. Non-specific binding was 
blocked using the Odyssey® blocking buffer (Li-Cor 
Biosciences) for 1.5 h at room temperature. The sam-
ples were incubated with anti-SIRT1 (1:600) antibod-
ies (Abcam) in Odyssey® buffer at 4 °C overnight with 
gentle shaking. Samples were washed extensively in 
PBS containing 0.1% Tween20 five times for 5 min-
utes per wash. Cells were incubated with the IRDye® 
800CW secondary antibody (1:800) with the CellTag™ 
700 stain (1:500; Li-Cor Biosciences) in the Odyssey® 
blocking buffer for 1 hour at room temperature with 

Table 1  Primers were shown for qPCR

Gene Primer Annealing temperature (°C) Product length (bp)

GAPDH (human) F:5′GGG​AAA​CTG​TGG​CGT​GAT​3′
R:5′GAG​TGG​GTG​TCG​CTG​TTG​A3′

60 299

hsa_circ_058230 F:5′TGG​ATG​GGG​AGC​CCT​ACA​AG3′
R:5′CCA​GGT​GCG​GGT​GTA​CAG​G3′

60 94

hsa_circ_0000257 F:5′GGA​GCA​GAC​CAA​GGC​AGC​G3′
R:5′CGT​CAA​AGA​TCA​CGA​CTG​TCCC3′

60 120

hsa_circ_0061170 F:5′CCA​GAA​GCC​AAA​GAT​AAC​ACC3′
R:5′ATT​TGC​CTG​TAA​CTT​TCG​CTC3′

60 155

hsa_circ_0065217 F:5′CCA​TGC​CAA​TAT​GTG​GGT​GC3′
R:5′GCC​AGG​AGG​TTC​TTG​TGC​C 3′

60 89

hsa_circ_0087354 F:5′CTG​GAG​TAG​GAG​TTT​GGT​GGTA3′
R:5′CTT​CAC​CAG​AGG​ATG​TAT​TGCT3′

60 64

hsa_circ_0001949 F:5′GTG​CTG​ATC​TTC​TGA​CAT​TCA​GGT​3′
R:5′CTG​GAA​GCT​CAG​GAT​TAT​CTGGA3′

60 154

http://www.microde.org/
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gentle shaking. Samples were washed in PBS contain-
ing Tween20 five times  for 5 min per wash. After the 
final wash, all liquid was removed and the plate  was 
scanned on the Odyssey® SA Imaging System (Li-Cor 
Biosciences) using both 700 and 800 nm detection 
channels at a 200 nm resolution, medium quality with 
a focus offset of 3.0 mm. Quantitative In-Cell Western 
(ICW) analysis was performed using Image Studio (Li-
Cor Biosciences: version 5).

Statistical analysis
The statistical significance of microarray data was 
analyzed in terms of fold change using the Student’s 
t test, and FDR was calculated to correct the p-value. 
FC  >  2  and p < 0.05 were used to screen the differen-
tially expressed circRNAs. For the gene expression 
and activity analysis, GraphPad Prism 7 software was 
applied. Student’s t-test was applied for comparison of 
two groups and differences with p < 0.05 were consid-
ered statistically significant.

Results
The growth of hDPSCs
After 1  week of primary cell culture, the morphology 
of the extracted hDPSCs was fibroblast-like and poly-
gon (Fig. 1a). The hDPSCs were stained for F-actin and 
nuclei by red and blue fluorescence (Fig. 1b). Cytoskel-
etal fibers are parallel and evenly distributed, arranged 
in order.

Functional evaluation of the oxidative stress model 
of hDPSCs
After hDPSCs were treated by 0.2  mM H2O2 for 24  h, 
ROS levels within the cells were detected by fluorescent 
staining of ROS and activity analysis (Fig.  2a–c). From 

Fig.  2, positive ROS staining was located within both 
the nucleus and cytoplasm of the H2O2 treated cells. In 
the UC group, ROS was weekly detected compared with 
those of H2O2 treated cells. ROS activity analysis also 
provided evidence that ROS activity was increased in 
the H2O2 treated cells. Both the fluorescence and activ-
ity analysis results confirmed that 0.2  mM H2O2 treat-
ment for 24  h induced oxidative stress in cells. In the 
subsequent experiment, hDPSCs which were treated by 
0.2 mM H2O2 for 24 h was used as the model of OSCs.

Identification and quantification of human circRNAs
Hierarchical clustering revealed multiple circRNAs 
expression in the UC and OSC group (Fig. 3a). The scatter 
ad volcano plots showed the variation of circRNA expres-
sion between the UC and OSC group (Fig. 3b, c). A total 
of 863 circRNAs were identified in OSC and UC. 330 
circRNAs were upregulated, while 533 were downregu-
lation (fold change cutoff 2; p < 0.05) in OSC compared 
with UC. Among the circRNAs within OSCs, hsa_
circ_058230, hsa_circ_0061170, and hsa_circ_0000257 
were upregulated by 6.830, 2.77, and 3.26-fold, respec-
tively. While, hsa_circ_0065217, hsa_circ_0087354, 
and hsa_circ_0001946 were downregulated in OSC by 
2.04, 2.16, and 4.48-fold, respectively. The six circRNAs 
expression variation was most significant between OSC 
and UC among the 330 upregulated circRNAs, and 533 
downregulated circRNAs, which were shown in Table 2 
and Fig. 4. Therefore, we will focus the six circRNAs for 
the subsequent experiments.  

qRT‑PCR of representative circRNA
To validate the circRNA microarray results, the six 
dysregulated circRNAs were selected as the typical 
representative, which exhibited significant changes 
in expression among the differentially expressed cir-
cRNAs. qRT-PCR experiments were performed to 

Fig. 1  Morphology and F-actin staining of hDPSCs. a Brightfield of hDPSCs, b F-actin (red) & DAPI (blue) of hDPSCs
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analyze the gene expression changes between the OSC 
and UC group. Hsa_circ_058230, hsa_circ_061170, 
and hsa_circ_0000257 were selected as representatives 
of up-regulated circRNAs, while hsa_circ_0065217, 
hsa_circ_0087354, and hsa_circ_0001946 were assessed 
as down-regulated circRNAs. The circRNA’s expres-
sion of hsa_circ_0000257 was significantly up-regu-
lated (2.84-fold) in OSC compared to the UC group 
(p = 0.018) (Fig.  5), and the microarray analysis showed 
a similar trend with OSC, 6.83-fold higher than UC. 

For hsa_circ_0058230 (p = 0.341) and hsa_circ_0061170 
(p = 0.505), there were no significant differences between 
OSC and UC by qRT-PCR. For the down-regulated cir-
cRNAs, qRT-qPCR showed that hsa_circ_0087354 
(p = 0.013) and hsa_circ_0001946 (p = 0.013) were 
downregulated by 2.94 and 2.70-fold in OSC group 
compared with UC, respectively. These findings cor-
roborated the microarray data. There was no significance 
observed between the OSC and UC by qRT-PCR for hsa_
circ_0065217 (p = 0.183).

Fig. 2  Fluorescence staining of ROS (Green) and ROS activity of NC and OSC. a ROS staining of hDPSCs treated with/without H2O2 (OSC/UC) for 
24 h. b ROS activity and c SOD activity of UC and OSC. *p < 0.05, **p < 0.01, ***p < 0.001
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Fig. 3  Differential expression of circRNAs in UC and OSC. a Hierarchical clustering analysis of circRNAs that were differentially expressed between 
OSC and UC samples; each group contains three individuals (greater than two-fold difference in expression; p < 0.05). Expression values are 
represented in different colors, indicating expression levels above and below the median expression level across all samples. b The scatter plot is a 
visualization method used for assessing the variation in circRNA expression between OSC and UC. The values corresponding to the X- and Y-axes 
in the scatter plot are the normalized signal values of the samples (log2 scaled). The green lines indicate fold changes. The circRNAs above the top 
green line and below the green bottom line indicate more than twofold changes between OSC and UC samples. c Volcano plots were constructed 
using fold-change values and p-values. The vertical lines correspond to twofold up- and down-regulation between OSC and UC, and the horizontal 
line represents a p-value. The red point in the plot represents the differentially expressed circRNAs with statistical significance (OSC: hDPSCs treated 
by 0.2 mM H2O2 for 24 h. UC: untreated hDPSCs). d Classification of dysregulated circRNAs
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Prediction of the circRNA/microRNA interaction
To find the potential miRNA target, three differen-
tially expressed circRNAs (hsa_circ_0000257, hsa_
circ_0087354, and hsa_circ_0001946), which were 
confirmed by qRT-PCR were selected and the circRNA/
miRNA interaction was predicted with Arraystar’s home-
made miRNA target prediction software based on Tar-
getScan & miRanda. The potential miRNA targets of 
hsa_circ_0000257 include hsa-miR-9-5p, hsa-miR-647, 
hsa-miR-653-3p, hsa-miR-212-5p and hsa-miR-27a-5p. 
For hsa_circ_0087354, the potential miRNA targets 
include hsa-miR-199a-3p, hsa-miR-199b-3p, hsa-miR-
449a, hsa-miR-449b-5p and hsa-miR-630. Finally, hsa_
circ_0001946 could interact with microRNAs, including 
hsa-miR-7-5p, hsa-miR-3529-5p, hsa-miR-8056, hsa-
miR-1246 and hsa-miR-139-3p. These representative 
interactions of miRNAs and circRNAs were represented 
in Fig. 6.

Functional analysis of differentially expressed circRNAs
The differentially expressed circRNA genes were ana-
lyzed by GO (Fig.  7a) and KEGG (Fig.  7b) enrichment. 
Based on the results, these differentially expressed circR-
NAs may be associated with GO functional annotation 
of biological processes (e.g., mitotic cell cycle, cell cycle, 
mitotic cell cycle process), cellular components (e.g., con-
densed chromosome, condensed nuclear chromosome, 
spindle), molecular function (e.g., excitatory extracellular 
ligand-gated, gated channel activity, cation channel activ-
ity). According to KEGG analysis, the host genes of these 
differentially expressed circRNAs are associated with the 
p53 signaling pathway, cell cycle, serotonergic synapse, 
MAPK signaling pathway in oxidatively stressed hDPSCs. 
In particular, the p53 signaling pathway plays an impor-
tant role in a variety of oxidative stress.

SIRT1 gene and protein expression
The mRNA levels of SIRT1 in UC and OSC group were 
shown in Fig. 8. The SIRT1 mRNA expression exhibited 

a  0.055-fold reduction in the OSC group compared to 
that in the UC (p < 0.01). Similar findings were observed 
at the protein level, where ICW analysis confirmed a 
1.19-fold reduction in SIRT1 protein expression follow-
ing H2O2 exposure.

Discussion
hDPSCs have garnered increasing attention as a poten-
tial MSCs source for regenerative medicine due to sev-
eral advantages including increased proliferation rate and 
ease of procurement [6]. It has been shown that oxida-
tive stress impairs the capability of MSCs to proliferate 
and differentiate into multiple lineages [7, 8]. Numerous 
studies have shown the involvement of circRNAs in the 
process of oxidative stress [9, 10]. Kristensen et al. found 
that circRNAs show elevated expression levels during 
the differentiation of human epidermal stem cells [11]. 
Liu et al. reported that cZNF609 regulates MEF2A and is 
likely involved in oxidative stress [12]. Indeed, as miRNA 
sponges [13, 14], circRNAs control the expression of par-
ent genes to regulate oxidative stress in endothelial cells 
[12] and cancer cells [15]. However, the functions of 
circRNAs in oxidative stress remain undefined in hDP-
SCs. Microarray analysis showed that 330 and 533 cir-
cRNAs were markedly upregulated and downregulated 
by oxidative stress in hDPSCs compared with untreated 
cells, respectively. Of these, hsa_circ_058230, hsa_cir-
cRNA_0061170, and hsa_circ_0000257 were the most 
distinctly upregulated during oxidative stress, while hsa_
circ_0065217, hsa_circ_0087354, and hsa_circ_0001946 
exhibited the most significant degree of downregula-
tion. These findings were validated by qRT-PCR and 
suggested that hsa_circ_0000257 was upregulated, and 
hsa_circ_0087354 and hsa_circ_0001946 were downreg-
ulated involved in the post-transcriptional regulation of 
oxidative stress in hDPSCs.

Recent evidence has demonstrated that circRNAs play 
a crucial role in fine-tuning the level of miRNA mediated 
regulation of gene expression by sequestering the miR-
NAs [16, 17]. Their interaction with diseases associated 

Table 2  The list of the top three upregulated and downregulated circRNAs

Alias circRNA FC p FDR Circ Start Circ End circRNA type

hsa_circ_0000257 hsa_circRNA_100674 6.832904 0.006702 0.062766 103916775 103917971 Exonic

hsa_circ_0058230 hsa_circRNA_058230 2.772335 0.004413 0.052862 219204505 219206867 Exonic

hsa_circ_0061170 hsa_circRNA_061170 3.255504 0.002475 0.040873 62303908 62305446 Exonic

hsa_circ_0001946 hsa_circRNA_105055 4.4751 0.00395 0.049809 139865339 139866824 Antisense

hsa_circ_0087354 hsa_circRNA_104803 2.16559 5.05E−05 0.015259 86292641 86292876 Exonic

hsa_circ_0065217 hsa_circRNA_103349 2.043447 0.011242 0.079325 47468646 47470160 Exonic
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Fig. 4  Relative intensity of the top three upregulated circRNAs (hsa_circ_058230, hsa_circ_0061170, and hsa_circ_0000257) and downregulated 
circRNAs (hsa_circ_0065217, hsa_circ_0087354, and hsa_circ_0001946) *p < 0.05
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Fig. 5  qRT-PCR verification of differentially expressed circRNAs (hsa_circ_058230, hsa_circ_0061170, hsa_circ_0000257, hsa_circ_0065217, hsa_
circ_0087354, and hsa_circ_0001946), which was consistent with the sequencing results. *p < 0.05
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miRNAs indicates that circRNAs are essential for disease 
regulation. CircRNAs are considered to adversely regu-
late miRNAs, substantially contributing to the competing 
endogenous RNA (ceRNA) network [18, 19]. Research 
has demonstrated that ciRS-7, a circular miR-7 inhibitor, 
comprises > 60 popular miR-7 binding sites [14], a num-
ber substantially higher than reported for any known lin-
ear sponge. As shown above, hsa_cir_0000257 regulated 
128 microRNAs, while the downregulated circRNAs hsa_
circ_0087354 and hsa_cir_0001946 regulated 58 and 123 
microRNAs, respectively.

It is therefore essential to further assess the newly 
identified dysregulated circRNAs, and unveil their bio-
logical roles in oxidative stress. CircRNAs regulate the 
neighboring and overlapping coding genes, with effects 
embodied in the associated mRNA-producing genes. It 
has been shown that miRNAs could regulate the expres-
sion level of mRNAs on stromal cells to decrease oxi-
dative stress damage, while the function of the most 
potential miRNAs on hDPSCs are far from clear. Here, 
GO and KEGG pathway analysis was performed to 
assess the functions of associated miRNAs. GO anno-
tation showed that the identified target genes regulated 
critical biological processes, indicating that modulat-
ing genes is critical in oxidative stress. P53 signaling 

pathway, cell cycle, serotonergic synapse, MAPK signal-
ing pathway were involved in regulating oxidative stress 
in hDPSCs.

The induced pathways highlighted by KEGG analysis 
included the p53 pathway, which might be a key media-
tor of oxidative stress in hDPSCs. It was demonstrated 
that p53 signaling corresponding to repressed circR-
NAs plays essential roles in oxidative stress [20]. Vari-
ous forms of oxidative stress lead to post-translational 
modifications of p53, allowing it to regulate genes to 
cause either beneficial outcomes, such as the upregula-
tion of mitochondrial biogenesis, or more dysfunctional 
consequences such as cellular senescence and apopto-
sis [21]. Several studies in different cells systems have 
confirmed that p53 is the downstream gene of SIRT1. 
Liu et  al. demonstrated that  SIRT1 could bind to  p53, 
reduce its acetylation level by co-immunoprecipitation 
assay, and treatment with outline-3A reversed the effect 
of SIRT1 on the level of p53 in adipose-derived stromal 
cells [22]. Moreover, Shi et al. also confirmed that acti-
vation of SIRT1 using its agonist resveratrol ameliorated 
cellular apoptosis  via  deacetylating  p53 [23]. The find-
ings of this present study indicate that the p53 signaling 
pathway might play a critical role in regulating oxidative 

Fig. 6  A snippet of the detailed annotation for circRNA/miRNA interaction [a hsa_circ_0000257 vs hsa-miR-9-5p; b hsa_circ_0087354 vs 
hsa-miR-199a-3p and c hsa_circ_0001946 vs hsa-miR-7-5p)]
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stress of hDPSCs, which is consistent with previous 
studies [7, 24, 25].

Additionally, studies have reported in response to oxi-
dative stress, p38 MAPK can rapidly phosphorylate and 
activate MAP kinase-activated protein kinases [26]. It is 
well known that oxidative stress halts cell cycle progres-
sion and ultimately results in initiating cell death [26]. Du 
et al. reported that circ-FOXO3 halts cell cycle progres-
sion via interacting with P21 and CDK2 proteins [27]. 
Therefore, it is likely that circRNAs play a similar role in 
oxidative stress.

Based on the findings of this study, we hypothesize 
that hsa_cir_0000257 specifically binds and inhibits sev-
eral miRNAs such as hsa-miR-647, hsa-miR-653-3p, 
hsa-miR-9-5, and hsa-miR-27a-5p. Among them, SIRT-1 
30UTR and miR-9-5p (50eUCU​UUG​GU-30) recognized 
by the TargetScan algorithm are highly conserved com-
plementary sequences. The SIRT1 gene expression was 
downregulated in OSC compared with UC, which was 
validated by qRT-PCR. Moreover, D’ Adamo S’s group 
confirmed that SIRT1 is a direct target gene of miR-9 in 
human primary and C-28/12 chondrocytes by luciferase 
reporter assay, while  qRT-PCR and western blot analy-
sis confirmed miR-9 targeting SIRT1 regulates oxidative 
stress damage in human primary and C-28/12 chondro-
cytes [28]. Saunder et  al. also demonstrated that miR-9 
targets SIRT1 to regulate the expression of embryonic 
stem cell differentiation in mouse embryonic stem cells 
[29]. Therefore, the hsa_circ_0000257/hsa-miR-9-5p/
SIRT1/P53 regulatory axis is likely a novel molecular 
pathway regulating oxidative stress in hDPSCs. Although 
most circRNAs are not well-understood, the potential 
targets of the altered miRNAs were assessed.

Conclusions
Together, specific circRNAs are involved in oxidative 
stress of hDPSCs. Further, qRT-PCR analysis unveiled 
hsa_circ_0087354 and hsa_circ_0001946 were down-reg-
ulated circRNAs, as well as hsa_cir_0000257 was up-reg-
ulated circRNAs for the OSC comparing to UC. Pathway 
analysis revealed that p53 signaling might participate in 
oxidative stress. The hsa_circ_0000257/hsa-miR-9-5p/
SIRT1/P53 regulatory axis is likely a novel molecular 
pathway regulating oxidative stress in hDPSCs. The cur-
rent findings provide a basis for assessing circRNA func-
tions in oxidatively stressed hDPSCs.

Fig. 6  continued
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Fig. 7  GO and KEGG enrichment terms of differentially expressed circRNAs transcript genes. a Top ten enrichment score covering domains of 
biological processes, cellular components, and molecular function. b KEGG pathway enrichment analysis of with top ten enrichment score
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