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diseases
Mario Zanfardino1*†  , Monica Franzese1†, Katia Pane1, Carlo Cavaliere1, Serena Monti1, Giuseppina Esposito2, 
Marco Salvatore1 and Marco Aiello1

Abstract 

Genomic and radiomic data integration, namely radiogenomics, can provide meaningful knowledge in cancer 
diagnosis, prognosis and treatment. Despite several data structures based on multi-layer architecture proposed to 
combine multi-omic biological information, none of these has been designed and assessed to include radiomic data 
as well. To meet this need, we propose to use the MultiAssayExperiment (MAE), an R package that provides data struc-
tures and methods for manipulating and integrating multi-assay experiments, as a suitable tool to manage radiog-
enomic experiment data. To this aim, we first examine the role of radiogenomics in cancer phenotype definition, then 
the current state of radiogenomics data integration in public repository and, finally, challenges and limitations of 
including radiomics in MAE, designing an extended framework and showing its application on a case study from the 
TCGA-TCIA archives. Radiomic and genomic data from 91 patients have been successfully integrated in a single MAE 
object, demonstrating the suitability of the MAE data structure as container of radiogenomic data.
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Background
Diseases are governed by complex biological mechanisms 
requiring different levels of analyses for a comprehen-
sive interpretation of the underlying pathology. Today, 
the progress in genomics, transcriptomics, epigenom-
ics and their combination, enables the incorporation 
of different biological layers of information to predict 
phenotypic conditions (tumor/normal, early/late stage, 
survival, etc.). Multi-omics data integration is, therefore, 
one of the major challenges in the era of precision medi-
cine, particulary in oncology. With the huge increase in 
genomic data production, the need for specific models 
and methods for storing and analyzing those data has 
arisen; an example is MultiAssayExperiment (MAE) [1]. 

MAE handles multiple and heterogeneous data types 
for a set of samples of multi-assay genomic experiments 
(transcript counts, DNA variants or methylation status 
of genes or regions, etc.). However, these structures con-
sider only data produced by molecular biology experi-
ments and neglect the impact of other ‘omics which also 
deserve consideration. The progress that has been made 
in medical imaging techniques and the development of 
high-throughput algorithms to extract quantitative fea-
tures from medical images has led to the development of 
radiomics. In clinical research, radiomics is becoming a 
meaningful tool and might be considered as an additional 
and complementary source of ‘omic information, not 
achievable in a multi-omics biological environment. In 
this scenario, the growing impact of non-invasive imag-
ing techniques for disease definition, in parallel with the 
evolution of next-generation sequencing (NGS) tools, 
provides powerful methods for investigating the pheno-
type through the combination of imaging characteristics 
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(radiomic features) into a multi-omics biological frame-
work. Indeed, in recent years, correlation of radiomic fea-
tures with genomic features, rise to a new field of study 
defined “radiogenomics” [2]. The increasing scale and 
availability of a high volume of health data requires new 
and efficient strategies for data management, data linkage 
and data integration. These types of datasets are defined 
“multimodal” [3] since multimodal signals are managed 
together. In this context, there are many challenges to 
overcome: identifying relationships between data from 
different modalities, joining multimodal information to 
execute prediction, learning information to help under-
stand limited data of another modality and, crucial in our 
case, representing, integrating and summarizing multi-
modal data. Thus, in order to optimize data management 
and analysis, it is necessary to reshape the existing infor-
mation systems into innovative multi-layer data systems 
by combining statistical and computational methods. So 
far, no tools integrating genomic and radiomic data have 
been designed; therefore, consolidating single-omic data-
sets from different domains in a meaningful manner is 
an ambitious undertaking. Here, we investigated the role 
of the MAE structure as a possible bridge for integrating 
radiomics into a multi-omics framework. To this end, we 
evaluated the potential of MAE as a structure for stor-
ing and managing both imaging and biological ‘omic data 
derived from different type of experiments, while keeping 
the coordinated representation of data and ensuring con-
sistency between a single assay and clinical patient data 
during data subsetting and analysis intact. The extended 
multi-omics framework proposed here allows research-
ers to simplify the management of radiogenomic data. In 
this article, (i) we will first introduce the state of the art of 
both radiomics and biological ‘omics in the field of cancer 
research; (ii) we will then summarize the role of radiog-
enomics in cancer phenotype definition; (iii) we will 
discuss the current state of radiogenomic public reposi-
tories, their limits, challenges and limitations of includ-
ing radiomics in a multi-omics framework; (iv) finally, we 
will demonstrate the feasibility of our approach with a 
case study using The Cancer Genome Atlas (TCGA), for 
biological data, and The Cancer Imaging Archive (TCIA), 
for public medical images.

Radiomics and biological ‘omics in the field 
of cancer research: state of the art
Radiomics framework
Radiomics arises from the increasing interest in the 
development of non-invasive diagnostic tools for dis-
ease characterization and monitoring, especially in 
cancer research [4, 5]. Diagnostic images are able to pro-
vide information on the entire tumor volume, reducing 
inaccuracy due to sampling errors in histopathological 

analyses. In this scenario, radiomics, i.e. the extraction 
of a large number of quantitative features from medical 
images [6], has proved to be a key way to study the cancer 
imaging phenotypes, reflecting underlying gene expres-
sion patterns [7, 8] and revealing heterogeneous tumor 
metabolism and anatomy [9, 10]. This high-throughput 
feature extraction is typically preparatory to a data min-
ing process [11] in order to associate or predict differ-
ent clinical outcomes [12], giving important prognostic 
information about the disease. Radiomics has the poten-
tial to extensively characterize the intratumoral heteroge-
neity, and it has shown promise in predicting treatment 
response and outcome, differentiating benign and malig-
nant tumors and assessing the relationship with genetics 
in many cancer types [13–19]. The radiomic approach 
can be applied to any imaging modality, even on more 
modalities acquired at the same time point, providing 
multi-parametric features. Once the images are collected, 
the radiomic approach involves two main steps: the seg-
mentation of Region Of Interest (ROI) and the estimation 
of descriptive features. ROI segmentation consists of the 
identification of target regions of prognostic value, which 
can be performed according to different strategies. After 
ROI segmentation, an automated process extracts quanti-
tative features (descriptors) from each ROI. The descrip-
tors are designed to provide information, related to the 
tumor phenotype and the microenvironment. Radiomic 
features can be divided into four groups: shape-based 
(geometric characteristics), first-order and second-order 
statistics features (texture characteristics) and higher-
order features (impose filter grids on an image to extract 
repetitive or non-repetitive patterns to compute first- or 
second-order statistic features from). As a result, up to 
hundreds of features are obtained from a single image 
(Fig. 1). Finally, the extracted features, together with clin-
ical or pathologic outcomes, are fed into machine-learn-
ing procedures to construct classification, predictive, or 
prognostic models [20].

Biological multi‑omics integration tools
In the past several years, various methods, data structures 
and tools, related to multi-omics data integration have 
been developed. For an exhaustive review of multi-omics 
data integration methods and a list of packages using 
these methods see Huang et  al. [21]. In order to ensure 
structured relations between different layers of biological 
data, data containers are a necessary requirement. Some 
existing data structures for multi-omic assays have been 
utilized to meet this demand. Two of the most recent are 
MultiDataSet [22] and MultiAssayExperiment (MAE) 
[1] (R/Bioconductor packages). These packages manage 
several sets of biological experiments and facilitate the 
coordination of different types of operations, such as data 
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visualization, data manipulation, subsetting, data inte-
gration and reshaping. Moreover, these data containers 
enable subsetting of data by different items, such as clini-
cal or pathologic variables, genes, genomic ranges and 
assays. Additionally, data warehouses that enable users to 
dynamically interrogate clinico-pathologic data in a mul-
tidimensional manner are developed in this context. One 
such example is the Data Warehouse for Translational 
Research (DW4TR) [23].

We have chosen to test MAE as radiogenomic data 
container because  of the extensive documentation, very 
frequent updating, integration of several R and Biocon-
ductor data classes, ample set of data manipulation meth-
ods and a simplified graphical interface including many 
R/Bioconductor packages. Moreover, many of the avail-
able datasets, which include both radiomic and genomic 
data, are provided by TCGA and TCIA databases and 
the whole genomic part is already available as an MAE 

object. The structure of the MAE object makes possible 
coordinated operations through three main functions: 
i) reporting the property of sample units, such as clini-
cal, pathological, and biospecimen data; ii) containing 
the experimental data for the samples forming part of 
the study; iii) containing the representation of the rela-
tionship between sample units and experimental data. 
Another class of fundamental tools are visualization and 
analysis tools. Table 1 summarizes the main characteris-
tics of these resources. For a deeper list of tools, see Kan-
nan L [34, 35].

Challenges of radiomics in multi‑omics framework
A crucial aspect in radiogenomic data analysis is the 
very large dimensionality of the feature space; there-
fore the analyses of these data are often unreliable and 
have a high overfitting and curse of dimensionality . For 
these reasons, radiogenomic studies need a robust data 

Fig. 1  Radiomics workflow. Radiomics features can be calculated from one or more imaging modalities, e.g. computed tomography (CT), magnetic 
resonance (MR), positron emission tomography (PET), for each time point acquired. Then, regions of interest (ROIs) are segmented from the 
acquired multi-parametric images, e.g. T2 weighted MR image, Contrast Enhanced T1 weighted MR image, FDG PET image, as shown from left to 
right in the figure in a case of breast lesion. Finally, the radiomic features are estimated, providing hundreds of features that can be categorized as 
shape, first order, second order and higher order features, for each segmented ROI, for each patient in the study and for each acquired image
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structure in order to reduce difficulty and make the 
analyses efficient, scalable and reproducible. In this con-
text, some data integration and data processing chal-
lenges need to be addressed [36]. One challenge regards 
data acquisition of ‘omic experiments, since biological 
processes may be assessed in different spatial and/or 
temporal scales. Indeed there is a greater complexity in 
some type of ‘omics, such as transcriptomics (alteration 
of gene expression over time), compared to, for exam-
ple, genomic experiments (executed on a temporal/spa-
tial static substrate) [37]. Obviously, in radiogenomic 
data integration, the different and specific spatial/tem-
poral multi-dimensionality introduces an additional 
level of complexity. For instance, in patient with can-
cer, imaging is usually performed multiple times dur-
ing the course of disease and therapy whereas only one 
time and at one location genomics or transcriptomics 
profiling is not performed systematically [38]. Another 
crucial aspect in radiogenomic data analysis is the 
management of multi-sample and multi-parameters 
storage from different lesions or sub-regions of a lesion, 
for each patient. Spatial multi-dimensionality is a com-
mon event for both radiomic and biological ‘omics but, 
here too, there are cases of uniqueness. For example, in 
a proteomic experiment, which analyzes the abundance 
of proteins, their post-translational modifications and 
subcellular compartments location, does not have a   
corresponding dimensionality in radiomic experiments. 
Another intrinsic problem of multi-omics analyses is 
missing data, which may occur due to reasons such as 
data filtering (for example, low coverage of a detected 
variant) or non-execution of a specific analysis on a 
subset of samples deriving from different laboratory. 
Different machine learning approaches are used to han-
dling missing data [39] but a preliminary overview and 
quantification of these data is crucial to set a multi-
omics analysis. Therefore, from a data structure point 
of view, the challenge is to ensure structured relations 
between patient data and experiments/assays features. 
One way to ensure the alignment of data is to take into 
account: the different scales of dimensionality of het-
erogenous data, missing data and data storage. Despite 
the challenges and the limitations described above, one 
of the biggest advantages of radiogenomic studies is the 
opportunity to assess the relationships between geno-
type features (such as genomic variants), intermediate 
phenotype features (such as transcriptomics and epige-
netic variables), radiomic features (image phenotype) 
and phenotypic clinical outcome. Adding radiomic fea-
tures means adding phenotypic descriptors, which dif-
fer from phenotypic outcome, but in relation with them 
and with the multi-omic biological features.

Role of radiogenomics in cancer phenotype 
definition
Radiogenomic analyses are generally used for two main 
purposes: identifying features that might be related to 
genetic or molecular outcomes and correlating imaging 
and genomic data to identify suitable markers or pre-
dictors of a particular disease. Tipically, a radiogenomic 
dataset contains genomic (for example, gene expression) 
and imaging data, without outcomes data. A well-known 
correlation between specific imaging features and an out-
come could enable the discovery of relationship between 
those features and specific tumor molecular characteris-
tics.  Similarly, investigating a well-known correlation of 
tumor molecular characteristics related to an outcome 
may allow the detection of imaging features related with 
that outcome. Several studies, based on these approaches, 
have been published. Gevaert et al. [40] tested how well 
the imaging features, based on specific genomic char-
acteristics, predicted patient survival in non–small-cell 
lung cancer using sets of imaging and genomic (gene 
expression) data without outcomes. Other examples are 
radiogenomic studies in which correlations have been 
detected between imaging features and tumor subtypes, 
especially in breast cancer and in glioblastoma multi-
forme. Mazurowski et al. [41] demonstrated that imaging 
features describing tumor enhancement dynamics can 
differentiate breast cancer luminal B molecular subtype 
from other subtypes. Therefore, an imaging feature might 
be predictive of outcomes and might not necessitate a 
genomic analysis. However, in another study, Guo et  al. 
[42] describe that a combination of imaging and genomic 
features could be useful for better breast tumor charac-
terization. Indeed, they demonstrated that imaging fea-
tures such as tumor size outperformed genomic features 
in predicting tumor pathological stage, whereas genomic 
features outperformed imaging features in predicting 
breast cancer estrogen receptor (ER) and progesterone 
receptor (PR) status such as tumor molecular charac-
teristics. Another approach was used in Karlo et al. [43], 
where correlations between imaging features and muta-
tion of genes (related with stage and diminished survival 
prognosis) were identified. Through this evidence, imag-
ing features, potentially predictive of outcomes, have 
been identified. Furthermore, in Glioblastoma Multi-
forme, 1p/19q co-deletion, a widely used prognostic bio-
marker for brain tumors, and epidermal growth factor 
receptor (EGFR) mutations, have been correlated with a 
wide array of MRI features [44, 45]. Finally, radiogenom-
ics could potentially have an important role in targeted 
therapies and in improving the performance in cancer 
outcomes prediction. In order to identify complex pheno-
types from a radiogenomics approach, a number of chal-
lenges need to be addressed. The introduction of more 
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complex models combining multiple heterogeneous data 
sources could overcome many of these challenges. For 
further insights on state of the art of radiogenomics stud-
ies see [6, 46, 47].

Radiomics in multi‑omics framework: limits, 
challenges and limitations
Existing integrated databases
Integrated databases share data across multiple data 
types ranging from clinical to ‘omics and medical imaging 
relative to specific research area. In Table 2, we provide a 
list of discipline-specific databases covering oncological, 
neurological, neurodegenerative and cardiovascular field 
or multiple-diseases. So far, multi-omic profiles are pri-
marily available in the oncological field. Indeed, Genomic 
Data Commons (GDC) portal, which includes the TCGA 
database, and TCIA are an unprecedented source of 
biomedical data for a broad range of cancer diseases. 
Although each database possesses its own organization, 
overall, they store data sets with multiple data types 
available at different levels. In addition to multi-omic and 
imaging data, supporting data related to the images such 
as patient outcomes, treatment details, genomics, pathol-
ogy, and expert analyses are also provided when available. 
Clinical, multi-omic and pathological data stored on the 
GDC can be associated to the imaging data, stored on 
TCIA. Although both data portals allow an interactive 
navigation through different projects and their multiple 
data types, using matched TCGA patient identifiers, it 
is possible to explore the TCGA/TCIA databases with-
out the ability to automatically correlate tissue genotype, 
radiological phenotype and patient outcomes. For exam-
ple, many TCGA/TCIA studies [70–72] have published 
their radiomic data (radiomic features, radiologist fea-
tures or also segmentations) on the TCIA website. These 
data are in a simple table format, such as xls format, and 
at present there is no way to automatically explore the 
radiomic data together with the genome data available 
on TCGA portal. The current workflow consists of down-
loading imaging and genomic features separately, inte-
grating the data through a non standard way and finally 
performing a cleaning and subsetting operation. The 
results of this process are likely to result in a situation in 
which there is either little or no suitable omic data. Thus, 
there is an urgent need to link radiomic and genomic 
data globally such that data integration in achieved, facil-
itating scientists to uncover genotype–phenotype asso-
ciations/correlations. In the following section, we provide 
a case study based on breast cancer data from TCGA/
TCIA database to illustrate an example of data integra-
tion and utilization of MAE data structure for multi-
omics data management.

Statistical challenges
The increasing interest in the  development of statistical 
methodologies for multi-layers integration is due to the 
complexity of biological systems and data heterogene-
ity. In particular, to integrate heterogeneous data several 
methodological challenges must be addressed must:

1.	 different technical platforms;
2.	 different modalities and techniques used to acquire 

and measure data;
3.	 different numerical data types and scales;
4.	 large differences in the number of measured features 

for each data type.

In a multi-assay context, these factors make it difficult 
to choose the appropriate statistical approaches for data 
processing and the integration method. Each technical 
platform has its own noise level and sensitivity and, gen-
erally, it is associated with ad-hoc protocols for normali-
zation and batch effects, depending on ‘omics/radiomics 
data type. Heterogeneous data integration includes the 
following statistical issues: dimension reduction, data 
integration or data fusion and causal inference:

Dimension reduction
In multi-assays integration context, heterogeneous data 
usually increase the dimensionality and, consequently, 
increase the chance to produce false positive hypothesis 
testing results. To solve this problem, the first step is to 
identify and combine relevant features from each data 
modality, keeping known the biological dependencies. 
Dimension reduction approaches decompose data into a 
few new variables (called components) that explain most 
of the differences in observations. Dimension reduction 
approaches, widely used in exploratory analysis of sin-
gle omics datasets, are emerging also to simultaneous 
exploratory analyses of multiple datasets. These meth-
ods extract the linear relationships that better explain the 
correlated structure across datasets, the variability both 
within and between variables (or observations) and may 
highlight data issues such as batch effects or outliers. In 
the literature for integrated ‘omics, dimension reduction 
methods have presented several variations from Prin-
cipal Component Analysis (PCA) and Factor Analysis. 
These variations include Multiple Factor Analysis (MFA), 
consensus PCA (CPCA), multiple-block PCA (MBPCA) 
and non-negative matrix factorization (NMF). As ‘omics 
datasets tend to have high dimensionality it is often use-
ful to reduce the number of variables. In fact, several 
recent extensions of PCA include variable selection, often 
via a regularization step or L1 penalization (e.g. Least 
Absolute Shrinkage and Selection Operator, LASSO).
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Data integration or data fusion
Two main approaches to multi-omics data integration 
can be considered: linear or simultaneous integration. 
The linear approach to multi-omics data leads to an 
oversimplified view of biology, basing on already known 
biological processes. This is possible, in particular, when 
only two data types are considered. The complexity of 
the phenotypes suggests that they can be better explored 
by the combination of simultaneous changes across all 
‘omics data. The linear multi-omics integration does not 
consider unknown inter-omics relationships. Instead, 
simultaneous approach provides a complete and realistic 
characterization of phenotype from exploring the inter-
omics interactions. Statistical methodologies for simul-
taneous integration can be classified into supervised 
and unsupervised approaches. Unsupervised methods 
explore biological profiles from input datasets and assign 
objects into different subgroups (clusters) without labeled 
response variables. Conversely, supervised methods con-
sider the available known phenotype information from 
samples (for example disease-normal, treatment–control) 
and use this information to discover genotype–pheno-
type interactions and investigate biological processes. In 
multi-omics data integration field, there are different sta-
tistical approaches that can be classified as multivariate, 
concatenation-based and transformation-based methods. 
Multivariate methods are usually based on Partial Least 
Square Regression (PLS) or Canonical Correspondence 
Analysis (CCA). Many of them were developed and inte-
grated in multi-omics bioinformatics tools (Table  1). 
Concatenation-based integration methods are performed 
by combining multiple data matrices of different multi-
omics data types into a single combined matrix, used as 
input for constructing a predictive model. Finally, the 
transformation-based methods, such as Similarity Net-
work Fusion, before constructing a model, convert multi-
omics data types into intermediate and common form 
and integrate them into a large input matrix. The main 
advantage of a transformation step is to preserve individ-
ual ‘omics characteristics that can be lost otherwise.

Causal inference
A vital piece in understanding of the disease mechanisms. 
In genomic data analysis, we can consider different types 
of associations, such as association of discrete variables 
(DNA variations) with continuous variables (phenotypes, 
gene expression), association of discrete variables (DNA 
variations) with binary trait (disease status). In the inte-
grated ‘omics literature, the regression strategies are used 
for explaining inter- or intra-system relations and inter-
actions. One of the approaches is the parallel regression, 
used to explain intersystem responses simultaneously. 
Another possible approach is represented by Bayesian 

networks (BNs), belonging to the family of graphical 
models. BNs maintain high interpretability via graphical 
outputs and represent a way to identify possible causal 
relationships between measured variables depending 
on their conditional dependencies and independence. 
BNs explicitly model conditional statistical dependen-
cies among random variables. In the biological context, 
each random variable represents one molecular feature. 
Integration of different ‘omics data modalities can be 
performed by using a primary data source, for example 
gene expression and employing further data (i.e., his-
tone modifications or combinations of several sources) 
to construct informative network priors, which facilitate 
the identification of the true biological network from 
data. Networks represent a powerful tool in the context 
of multi-omics data integration, since they are able to 
contain heterogeneous and high-dimensional informa-
tion. Networks can characterize complex interactions, 
thus identifying the mechanism linked to different types 
of information and associated to the phenotype of inter-
est. In radiogenomics, a weighted network fusion that 
takes into account the importance of each layer could be 
considered. This approach can be applied to multi-omic 
genome-scale models where layers represent transcrip-
tomic and phenotypic information. The weight measures 
the relative importance of each layer. Then each condi-
tion is associated with a point in a multi-dimensional 
phenotypic space. In order to address knowledge from 
the dynamic nature of molecular networks under vari-
ous disease conditions, an unsupervised method, called 
DIABLO [73], was developed. DIABLO is an integrative 
classification method building predictive multi-omics 
models that can be applied to multi-omics data from new 
samples to determine their phenotype. This approach 
includes sparse generalized canonical correlation analysis 
(sGCCA) [74], multi-omics factor analysis (MOFA) [75], 
and Joint and Individual Variation Explained (JIVE) [76]. 
The latter is a component-based method: it transforms 
each ‘omic dataset into latent components and maxi-
mizes the sum of pairwise correlations between latent 
components and a phenotype of interest.

MAE framework design: a case study
As described in the previous sections, we propose the use 
of MultiAssayExperiment (MAE) object as data struc-
ture to integrate genomic, radiomic and clinical data, 
providing coordinated representation, operations on 
multiple and heterogeneous data and focusing on two 
fundamental aspects of data at stake: multisampling and 
data longitudinality. We tested this solution at first study-
ing existing MAE objects of TCGA unrestricted data of 
different cancer tissue obtained through curatedTCGA 
R package [77] and then creating a new MAE based on 
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the TCGA breast cancer data and the respective radiomic 
features, extracted from T1 weighted Dynamic Contrast 
Enhanced (DCE) MRI images of TCIA [71].

Objects from curated TCGA contain data from differ-
ent ‘omic experiments carried out on the same patient. 

Each experiment may contain different sample types 
for the same patient (for example, primary solid tumor 
and metastatic samples). To manage these data, in the 
TCGA project, a barcode is used as primary identi-
fier. The TCGA barcode consists of a sequence of values 

Fig. 2  A barcode example. An example of a The Cancer Genome Atlas barcode with a focus on the Sample Type Codes table. Some of the 
identifiers, such as Vial, Portion, Analyte and Plate, are specific for biological experiments and obviously are not usable for radiomic experiments

Fig. 3  SummarizedExperiment object schema. In yellow: a classic use of summarizedExperiment object to store biological ‘omic experiment 
data. Each assay contains data for a result of the experiment (in this case segment mean, no probes and Log X from a Copy Number Alterations 
experiment). The rows of SE represent the genes and the columns represent the samples. Data describing the samples are stored in ColData object. 
In red: a summarizedExperiment with Magnetic Resonance Time Points as different assays. Each assay of the summarizedExperiment contains data 
of a single time-point and the rows represent radiomic features
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associated to labels, each of which specifically identifies 
a TCGA data element. For example, the “Sample” label 
describes the sample type of a particular collection of 
data related to a patient and may take different value cor-
responding to a sample type according to Sample Type 
Codes table [78]. The barcode TCGA-A1-A0SB-01A 
example indicates Primary Solid Tumor data (Sample 
Type Code: 01) of the patient A0SB belonging to TCGA 
project on breast invasive carcinoma (Tissue Source Site 
Codes: A1) (Fig. 2). This nomenclature was also used by 
curated TCGA in the construction of the TCGA data 
MAE object. In more detail, the barcode is used as value 
of colname column of MAE sampleMap (a DataFrame 
that relates the “primary” data - that describes the biolog-
ical unit, which can refer to specimens, patients, etc.—to 
the experimental assays—for example, RNAseqGene). 
This DataFrame allows an unambiguous map from every 
experimental observation to one and only one biological 
unit, such as a patient, and allows different technical and 
biological replication for each assay. Moreover, identifiers 
allow consistency between data during subsetting and re-
ordering. We propose to use both MAE data structure 

and a TCGA-barcodes-like structure to manage radiomic 
experiment data, together with biological omic data, in a 
single data structure. Typically, in a radiomic workflow, 
each single ROI, and the respective features, may repre-
sent a different lesion, or a region of a lesion, and, there-
fore, may exist in multiple samples for each patient of a 
radiomic experiment. According to our proposal, this 
multi-sampling feature can be managed by using MAE 
data structure and a specific barcode, in the same way 
as genomic data. In this scenario, a key role is played by 
the ExperimentList component of MAE, which contains 
all experimental data. This component can contain dif-
ferent type of elements, two of which are Matrix (a base 
element used for ID-Based dataset) and SummarizedEx-
periment [79]. The latter may contain one or more assays 
(a matrix-like element that store the data). For each assay, 
rows represent features of interest and columns represent 
samples. For example in a genomic experiment, the rows 
of an assay represent genes or transcript, the columns 
represent the patients and each different assay in a Copy 
Number Alterations experiment may represent the val-
ues of segment mean and number of probes (Fig.  3). A 

Fig. 4  MultiAssayExperiment object schema with Magnetic Resonance Time Points as different Experiments. The second option described to 
store temporal multi-dimensionality of a radiomic experiment. Each element of Experiments (in this case a SummarizedExperiments) object of the 
MultiAssayExperiment contains data of a single time-point. TRhe radiomic features are also contained in the rows of SummarizedExperiment
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radiomic experiment differs substantially from a genomic 
experiment in that it consists of one level of data com-
plexity less than a genomic experiment. The latter is per-
formed on a set of samples (the columns of the assay) and 
the analysis is performed on a set of genes, transcripts 
or protein (the rows of the assay). Finally, the experi-
ment produces different results from the various assays. 
A radiomic experiment, instead, is performed on a set of 
samples without analysing of the molecular sub-level and 
therefore, from data structure point of view, we have two 
options:  

•	 Use assays of a summarizedExperiment to store the 
matrix-like data of each time-point. In this case, mul-
tiple time-point data are associated to a single experi-
ment, for example BRCA_T1_weighted_DCE_MRI, 
with as many assays as time-points (BRCA indicates 
breast cancer data) (Fig. 3).

•	 Use different summarizedExperiment to store dif-
ferent time-point data. In this case two experiments 
may be, for example, BRCA_T1_weighted_DCE_
MRI_TP1 and BRCA_T1_weighted_DCE_MRI_TP2 
(TP indicates Time Point) (Fig. 4).

In both cases, the rows of each assay stored radiomic 
features.

As shown in our case study, this data organization ena-
bles the use of MAE to collect, manage and then analyze 
radiomic data together with genomic and clinical data. 
In our case study the TCIA data consist of 36 quantita-
tive radiomic features extracted from primary tumor 
images of 91 patients of the BRCA study, each acquired at 
a single time point. TCGA data consist of a MAE object 
composed of several experiments. We selected RNA-seq 
(expression quantification of 20,502 genes from 878 sam-
ples) and miRNA-seq (expression quantification of 1046 
miRNA from 849 samples) experiments and integrated 
it together with TCIA data in a single MAE object. To 
do this, we first downloaded TCGA experiments, using 
curated TCGA, and TCIA features released. Subse-
quently, we created two R objects: one for TCGA and one 
for TCIA data. In the case of TCGA data we have directly 
obtained a MAE object through curated TCGA while in 
the case of TCIA, we first converted an xls file in an R 
dataframe and then in a summarizedExperiment object. 
This experiment contains two assays that represent two 
time point data, one of which is simulated. The radi-
omic experiment was subsequently integrated with the 
two pre-existing summarizedExperiment (RNA-seq and 
miRNA-seq experiment extracted from the downloaded 
MAE) using the workflow described in MAE vignettes 
on Bioconductor [80]. Figure 5 shows a generalized Venn 

Fig. 5  A generalized Venn diagram for sample membership in multiple assays. The visualization of set intersections was performed using the UpSet 
matrix design using UpSetR package
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diagram for sample membership in multiple assays. The 
visualization of set intersections was performed using 
the UpSet matrix design using UpSetR package [81]. 
The script code to reproduce above described proce-
dure is available at https​://gitla​b.com/Zanfa​rdino​/radio​
genom​ics-mae-case-study​. We also propose an architec-
ture, shown in Fig. 6, for a modular integration platform. 
Through a graphic interface, the users are able to (i) cre-
ate or upload a MAE object, (ii) summarize MAE data 
through basic statistics and plots, (iii) manage and subset 
the uploaded data and (iv) execute different type of analy-
ses (through independent modules). All the functions 
allow to work with highly complex data in an intuitive 
and simplified way. One way to manage and understand 
the meaning of large dimensional data is to place it in a 
visual context such as we have done here (Fig. 7).

Conclusions
The high-throughput production of ‘omics data has led 
to an increase of data sets of different types that need 
to be integrated in order to better understand disease 

mechanisms and how these multiple molecular data 
generate the observed phenotypes in complex diseases. 
Merging imaging phenotypes with multi-omic biologi-
cal data may lead to new prognostic cancer  models, new 
support for patient treatment strategy and development 
of improved survival predictors. Accordingly, increased 
attention is paid to statistical methods and algorithms 
to analyze and correlate multivariate imaging, clinical 
and molecular data for disease diagnosis and prognosis. 
Bringing these datasets together in a meaningful manner 
is the main goal of this study. Here, we identified three 
main challenges to overcome: the management of miss-
ing data caused by data filtering or non-execution of a 
specific analysis on a subset of samples, different spa-
tial and temporal scales of imaging data and the need to 
manage radiomic features related to multiple lesions or 
sub-regions of a lesion. Our proposal to use MAE as data 
structure to combine radiogenomic data aims to inte-
grate and facilitate the use and the exploration of het-
erogeneous and complex data derived from these deeply 
distant domains. Our integrated design enables regular 

Fig. 6  Architecture of the modular integration platform. The architecture herein proposed follows three separate modules. The first module, based 
on data uploading of a MultiAssayExperiment or from its construction from multiple SummarizedEXperiment or matrix-like data. The second 
module allows to execute different selections of data (by clinical data, such as pathological stage or histological type of cancer, by experiment/assay 
and features). Then selected data are the input of different and/or integrate data analysis module. This modular architecture simplify expansion and 
redesign of a single implementation and allow simple adding of a personal module of data preparation and/or analysis for specific tasks. Moreover, 
all modules may provide visualization of data to support the different operations (see an example of data visualization in Fig. 6)

https://gitlab.com/Zanfardino/radiogenomics-mae-case-study
https://gitlab.com/Zanfardino/radiogenomics-mae-case-study
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operations of MAE on all experiments of a radiogenomic 
dataset, including radiomic data. With our MAE design, 
operations like: (i) selecting complete cases or subset-
tings, (ii) selecting samples with information in all data-
set and/or in all ‘omics of a set of experiments (crucial to 
set a multi-omics analysis when more samples with miss-
ing data exist) and (iii) selecting subjects with specific 
phenotypes and clinical outcomes, may be carried out in 
order to ensure correct alignment of assays and patients, 
making radiogenomic integrative analysis more attain-
able. Moreover, the MAE structure, and the ability to 
organize data of different experiments in different inter-
linked data objects, has facilitated the handling of the 
additional spatial and temporal scales added by radiomic 
data. All of these operations and, therefore, our selection 

of the MultiAssayExperiment as the radiogenomic data 
container have been successfully tested with the integra-
tion of TCGA-BRCA data of 91 patients with radiomic 
features available on TCIA for the same patients. Despite 
the existence of specific software that make some of 
these functions available, such as TCGAbiolinks, RTCGA 
Toolbox and mixOmics (Table 1), none of these tools was 
designed to work on radiogenomic data. Conversely, our 
proposal facilitates radiogenomic studies since it allows 
user exploration across genomic as well as imaging data-
sets in data type independent manner. For example, the 
use of the TCGA barcode is clearly suitable for biological 
‘omics data description but not for radiomic data, except 
for “Patient ID”, “Sample” and “Center” labels. The latter 
represents an open challenge and, therefore, a possible 

Fig. 7  A screenshot of summary tab of the graphic interface prototype. The summary tab shows the MAE data of the described case study. In 
the top table the name of all MAE experiments are listed and for each of them are reported the assays (timepoint_1 and timepoint_2 in the case 
of BRCA_T1_weighted_DCE_MRI) and the sample types. For each sample type, the number of patients is specified. The number of features and 
patients for each experiment are also represented as histogram (for a simple graphic representation the number of features was limited to 36 for all 
experiments)
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future direction might be the development of a unique 
nomenclature for a new type of barcode to specifically 
describe radiogenomic data. Moreover, for data different 
from TCGA, also a custom id can be used as colName in 
SampleMap. In conclusion, understanding the relation-
ships among genomic profiles, imaging phenotypes and 
outcomes has great potential to improve cancer treat-
ment and management. In this context, genomic fea-
tures are closely related to genetic and molecular profile 
of a cancer and, consequently, to outcomes like receptor 
status, while, radiomic features characterize tumor phe-
notypes and, consequently, outcomes like tumor stage. 
Bringing radiomics and genomic data together into a 
single data structure is the first step to achieve effective 
radiogenomic analysis, integrating information arising 
from different aspects of the tumor. The use of the cur-
rent version of MAE by an interdisciplinary research 
community can pave the way to further development of 
extended MAE object for implementing new functionali-
ties specific to radiogenomic domain in order to correlate 
phenotype and genotype features.
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