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Abstract

Genomic and radiomic data integration, namely radiogenomics, can provide meaningful knowledge in cancer
diagnosis, prognosis and treatment. Despite several data structures based on multi-layer architecture proposed to
combine multi-omic biological information, none of these has been designed and assessed to include radiomic data
as well. To meet this need, we propose to use the MultiAssayExperiment (MAE), an R package that provides data struc-
tures and methods for manipulating and integrating multi-assay experiments, as a suitable tool to manage radiog-
enomic experiment data. To this aim, we first examine the role of radiogenomics in cancer phenotype definition, then
the current state of radiogenomics data integration in public repository and, finally, challenges and limitations of
including radiomics in MAE, designing an extended framework and showing its application on a case study from the
TCGA-TCIA archives. Radiomic and genomic data from 91 patients have been successfully integrated in a single MAE
object, demonstrating the suitability of the MAE data structure as container of radiogenomic data.
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Background

Diseases are governed by complex biological mechanisms
requiring different levels of analyses for a comprehen-
sive interpretation of the underlying pathology. Today,
the progress in genomics, transcriptomics, epigenom-
ics and their combination, enables the incorporation
of different biological layers of information to predict
phenotypic conditions (tumor/normal, early/late stage,
survival, etc.). Multi-omics data integration is, therefore,
one of the major challenges in the era of precision medi-
cine, particulary in oncology. With the huge increase in
genomic data production, the need for specific models
and methods for storing and analyzing those data has
arisen; an example is MultiAssayExperiment (MAE) [1].
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MAE handles multiple and heterogeneous data types
for a set of samples of multi-assay genomic experiments
(transcript counts, DNA variants or methylation status
of genes or regions, etc.). However, these structures con-
sider only data produced by molecular biology experi-
ments and neglect the impact of other ‘omics which also
deserve consideration. The progress that has been made
in medical imaging techniques and the development of
high-throughput algorithms to extract quantitative fea-
tures from medical images has led to the development of
radiomics. In clinical research, radiomics is becoming a
meaningful tool and might be considered as an additional
and complementary source of ‘omic information, not
achievable in a multi-omics biological environment. In
this scenario, the growing impact of non-invasive imag-
ing techniques for disease definition, in parallel with the
evolution of next-generation sequencing (NGS) tools,
provides powerful methods for investigating the pheno-
type through the combination of imaging characteristics
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(radiomic features) into a multi-omics biological frame-
work. Indeed, in recent years, correlation of radiomic fea-
tures with genomic features, rise to a new field of study
defined “radiogenomics” [2]. The increasing scale and
availability of a high volume of health data requires new
and efficient strategies for data management, data linkage
and data integration. These types of datasets are defined
“multimodal” [3] since multimodal signals are managed
together. In this context, there are many challenges to
overcome: identifying relationships between data from
different modalities, joining multimodal information to
execute prediction, learning information to help under-
stand limited data of another modality and, crucial in our
case, representing, integrating and summarizing multi-
modal data. Thus, in order to optimize data management
and analysis, it is necessary to reshape the existing infor-
mation systems into innovative multi-layer data systems
by combining statistical and computational methods. So
far, no tools integrating genomic and radiomic data have
been designed; therefore, consolidating single-omic data-
sets from different domains in a meaningful manner is
an ambitious undertaking. Here, we investigated the role
of the MAE structure as a possible bridge for integrating
radiomics into a multi-omics framework. To this end, we
evaluated the potential of MAE as a structure for stor-
ing and managing both imaging and biological ‘omic data
derived from different type of experiments, while keeping
the coordinated representation of data and ensuring con-
sistency between a single assay and clinical patient data
during data subsetting and analysis intact. The extended
multi-omics framework proposed here allows research-
ers to simplify the management of radiogenomic data. In
this article, (i) we will first introduce the state of the art of
both radiomics and biological ‘omics in the field of cancer
research; (ii) we will then summarize the role of radiog-
enomics in cancer phenotype definition; (iii) we will
discuss the current state of radiogenomic public reposi-
tories, their limits, challenges and limitations of includ-
ing radiomics in a multi-omics framework; (iv) finally, we
will demonstrate the feasibility of our approach with a
case study using The Cancer Genome Atlas (TCGA), for
biological data, and The Cancer Imaging Archive (TCIA),
for public medical images.

Radiomics and biological ‘omics in the field

of cancer research: state of the art

Radiomics framework

Radiomics arises from the increasing interest in the
development of non-invasive diagnostic tools for dis-
ease characterization and monitoring, especially in
cancer research [4, 5]. Diagnostic images are able to pro-
vide information on the entire tumor volume, reducing
inaccuracy due to sampling errors in histopathological
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analyses. In this scenario, radiomics, i.e. the extraction
of a large number of quantitative features from medical
images [6], has proved to be a key way to study the cancer
imaging phenotypes, reflecting underlying gene expres-
sion patterns [7, 8] and revealing heterogeneous tumor
metabolism and anatomy [9, 10]. This high-throughput
feature extraction is typically preparatory to a data min-
ing process [11] in order to associate or predict differ-
ent clinical outcomes [12], giving important prognostic
information about the disease. Radiomics has the poten-
tial to extensively characterize the intratumoral heteroge-
neity, and it has shown promise in predicting treatment
response and outcome, differentiating benign and malig-
nant tumors and assessing the relationship with genetics
in many cancer types [13—19]. The radiomic approach
can be applied to any imaging modality, even on more
modalities acquired at the same time point, providing
multi-parametric features. Once the images are collected,
the radiomic approach involves two main steps: the seg-
mentation of Region Of Interest (ROI) and the estimation
of descriptive features. ROI segmentation consists of the
identification of target regions of prognostic value, which
can be performed according to different strategies. After
ROI segmentation, an automated process extracts quanti-
tative features (descriptors) from each ROIL The descrip-
tors are designed to provide information, related to the
tumor phenotype and the microenvironment. Radiomic
features can be divided into four groups: shape-based
(geometric characteristics), first-order and second-order
statistics features (texture characteristics) and higher-
order features (impose filter grids on an image to extract
repetitive or non-repetitive patterns to compute first- or
second-order statistic features from). As a result, up to
hundreds of features are obtained from a single image
(Fig. 1). Finally, the extracted features, together with clin-
ical or pathologic outcomes, are fed into machine-learn-
ing procedures to construct classification, predictive, or
prognostic models [20].

Biological multi-omics integration tools

In the past several years, various methods, data structures
and tools, related to multi-omics data integration have
been developed. For an exhaustive review of multi-omics
data integration methods and a list of packages using
these methods see Huang et al. [21]. In order to ensure
structured relations between different layers of biological
data, data containers are a necessary requirement. Some
existing data structures for multi-omic assays have been
utilized to meet this demand. Two of the most recent are
MultiDataSet [22] and MultiAssayExperiment (MAE)
[1] (R/Bioconductor packages). These packages manage
several sets of biological experiments and facilitate the
coordination of different types of operations, such as data
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Fig. 1 Radiomics workflow. Radiomics features can be calculated from one or more imaging modalities, e.g. computed tomography (CT), magnetic
resonance (MR), positron emission tomography (PET), for each time point acquired. Then, regions of interest (ROls) are segmented from the
acquired multi-parametric images, e.g. T2 weighted MR image, Contrast Enhanced T1 weighted MR image, FDG PET image, as shown from left to
right in the figure in a case of breast lesion. Finally, the radiomic features are estimated, providing hundreds of features that can be categorized as
shape, first order, second order and higher order features, for each segmented RO|, for each patient in the study and for each acquired image

visualization, data manipulation, subsetting, data inte-
gration and reshaping. Moreover, these data containers
enable subsetting of data by different items, such as clini-
cal or pathologic variables, genes, genomic ranges and
assays. Additionally, data warehouses that enable users to
dynamically interrogate clinico-pathologic data in a mul-
tidimensional manner are developed in this context. One
such example is the Data Warehouse for Translational
Research (DW4TR) [23].

We have chosen to test MAE as radiogenomic data
container because of the extensive documentation, very
frequent updating, integration of several R and Biocon-
ductor data classes, ample set of data manipulation meth-
ods and a simplified graphical interface including many
R/Bioconductor packages. Moreover, many of the avail-
able datasets, which include both radiomic and genomic
data, are provided by TCGA and TCIA databases and
the whole genomic part is already available as an MAE

object. The structure of the MAE object makes possible
coordinated operations through three main functions:
i) reporting the property of sample units, such as clini-
cal, pathological, and biospecimen data; ii)) containing
the experimental data for the samples forming part of
the study; iii) containing the representation of the rela-
tionship between sample units and experimental data.
Another class of fundamental tools are visualization and
analysis tools. Table 1 summarizes the main characteris-
tics of these resources. For a deeper list of tools, see Kan-
nan L [34, 35].

Challenges of radiomics in multi-omics framework

A crucial aspect in radiogenomic data analysis is the
very large dimensionality of the feature space; there-
fore the analyses of these data are often unreliable and
have a high overfitting and curse of dimensionality . For
these reasons, radiogenomic studies need a robust data
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structure in order to reduce difficulty and make the
analyses efficient, scalable and reproducible. In this con-
text, some data integration and data processing chal-
lenges need to be addressed [36]. One challenge regards
data acquisition of ‘omic experiments, since biological
processes may be assessed in different spatial and/or
temporal scales. Indeed there is a greater complexity in
some type of ‘omics, such as transcriptomics (alteration
of gene expression over time), compared to, for exam-
ple, genomic experiments (executed on a temporal/spa-
tial static substrate) [37]. Obviously, in radiogenomic
data integration, the different and specific spatial/tem-
poral multi-dimensionality introduces an additional
level of complexity. For instance, in patient with can-
cer, imaging is usually performed multiple times dur-
ing the course of disease and therapy whereas only one
time and at one location genomics or transcriptomics
profiling is not performed systematically [38]. Another
crucial aspect in radiogenomic data analysis is the
management of multi-sample and multi-parameters
storage from different lesions or sub-regions of a lesion,
for each patient. Spatial multi-dimensionality is a com-
mon event for both radiomic and biological ‘omics but,
here too, there are cases of uniqueness. For example, in
a proteomic experiment, which analyzes the abundance
of proteins, their post-translational modifications and
subcellular compartments location, does not have a
corresponding dimensionality in radiomic experiments.
Another intrinsic problem of multi-omics analyses is
missing data, which may occur due to reasons such as
data filtering (for example, low coverage of a detected
variant) or non-execution of a specific analysis on a
subset of samples deriving from different laboratory.
Different machine learning approaches are used to han-
dling missing data [39] but a preliminary overview and
quantification of these data is crucial to set a multi-
omics analysis. Therefore, from a data structure point
of view, the challenge is to ensure structured relations
between patient data and experiments/assays features.
One way to ensure the alignment of data is to take into
account: the different scales of dimensionality of het-
erogenous data, missing data and data storage. Despite
the challenges and the limitations described above, one
of the biggest advantages of radiogenomic studies is the
opportunity to assess the relationships between geno-
type features (such as genomic variants), intermediate
phenotype features (such as transcriptomics and epige-
netic variables), radiomic features (image phenotype)
and phenotypic clinical outcome. Adding radiomic fea-
tures means adding phenotypic descriptors, which dif-
fer from phenotypic outcome, but in relation with them
and with the multi-omic biological features.
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Role of radiogenomics in cancer phenotype
definition

Radiogenomic analyses are generally used for two main
purposes: identifying features that might be related to
genetic or molecular outcomes and correlating imaging
and genomic data to identify suitable markers or pre-
dictors of a particular disease. Tipically, a radiogenomic
dataset contains genomic (for example, gene expression)
and imaging data, without outcomes data. A well-known
correlation between specific imaging features and an out-
come could enable the discovery of relationship between
those features and specific tumor molecular characteris-
tics. Similarly, investigating a well-known correlation of
tumor molecular characteristics related to an outcome
may allow the detection of imaging features related with
that outcome. Several studies, based on these approaches,
have been published. Gevaert et al. [40] tested how well
the imaging features, based on specific genomic char-
acteristics, predicted patient survival in non—small-cell
lung cancer using sets of imaging and genomic (gene
expression) data without outcomes. Other examples are
radiogenomic studies in which correlations have been
detected between imaging features and tumor subtypes,
especially in breast cancer and in glioblastoma multi-
forme. Mazurowski et al. [41] demonstrated that imaging
features describing tumor enhancement dynamics can
differentiate breast cancer luminal B molecular subtype
from other subtypes. Therefore, an imaging feature might
be predictive of outcomes and might not necessitate a
genomic analysis. However, in another study, Guo et al.
[42] describe that a combination of imaging and genomic
features could be useful for better breast tumor charac-
terization. Indeed, they demonstrated that imaging fea-
tures such as tumor size outperformed genomic features
in predicting tumor pathological stage, whereas genomic
features outperformed imaging features in predicting
breast cancer estrogen receptor (ER) and progesterone
receptor (PR) status such as tumor molecular charac-
teristics. Another approach was used in Karlo et al. [43],
where correlations between imaging features and muta-
tion of genes (related with stage and diminished survival
prognosis) were identified. Through this evidence, imag-
ing features, potentially predictive of outcomes, have
been identified. Furthermore, in Glioblastoma Multi-
forme, 1p/19q co-deletion, a widely used prognostic bio-
marker for brain tumors, and epidermal growth factor
receptor (EGFR) mutations, have been correlated with a
wide array of MRI features [44, 45]. Finally, radiogenom-
ics could potentially have an important role in targeted
therapies and in improving the performance in cancer
outcomes prediction. In order to identify complex pheno-
types from a radiogenomics approach, a number of chal-
lenges need to be addressed. The introduction of more
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complex models combining multiple heterogeneous data
sources could overcome many of these challenges. For
further insights on state of the art of radiogenomics stud-
ies see [6, 46, 47].

Radiomics in multi-omics framework: limits,
challenges and limitations

Existing integrated databases

Integrated databases share data across multiple data
types ranging from clinical to ‘omics and medical imaging
relative to specific research area. In Table 2, we provide a
list of discipline-specific databases covering oncological,
neurological, neurodegenerative and cardiovascular field
or multiple-diseases. So far, multi-omic profiles are pri-
marily available in the oncological field. Indeed, Genomic
Data Commons (GDC) portal, which includes the TCGA
database, and TCIA are an unprecedented source of
biomedical data for a broad range of cancer diseases.
Although each database possesses its own organization,
overall, they store data sets with multiple data types
available at different levels. In addition to multi-omic and
imaging data, supporting data related to the images such
as patient outcomes, treatment details, genomics, pathol-
ogy, and expert analyses are also provided when available.
Clinical, multi-omic and pathological data stored on the
GDC can be associated to the imaging data, stored on
TCIA. Although both data portals allow an interactive
navigation through different projects and their multiple
data types, using matched TCGA patient identifiers, it
is possible to explore the TCGA/TCIA databases with-
out the ability to automatically correlate tissue genotype,
radiological phenotype and patient outcomes. For exam-
ple, many TCGA/TCIA studies [70-72] have published
their radiomic data (radiomic features, radiologist fea-
tures or also segmentations) on the TCIA website. These
data are in a simple table format, such as xls format, and
at present there is no way to automatically explore the
radiomic data together with the genome data available
on TCGA portal. The current workflow consists of down-
loading imaging and genomic features separately, inte-
grating the data through a non standard way and finally
performing a cleaning and subsetting operation. The
results of this process are likely to result in a situation in
which there is either little or no suitable omic data. Thus,
there is an urgent need to link radiomic and genomic
data globally such that data integration in achieved, facil-
itating scientists to uncover genotype—phenotype asso-
ciations/correlations. In the following section, we provide
a case study based on breast cancer data from TCGA/
TCIA database to illustrate an example of data integra-
tion and utilization of MAE data structure for multi-
omics data management.
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Statistical challenges

The increasing interest in the development of statistical
methodologies for multi-layers integration is due to the
complexity of biological systems and data heterogene-
ity. In particular, to integrate heterogeneous data several
methodological challenges must be addressed must:

—_

different technical platforms;

2. different modalities and techniques used to acquire
and measure data;

different numerical data types and scales;

4. large differences in the number of measured features
for each data type.

w

In a multi-assay context, these factors make it difficult
to choose the appropriate statistical approaches for data
processing and the integration method. Each technical
platform has its own noise level and sensitivity and, gen-
erally, it is associated with ad-hoc protocols for normali-
zation and batch effects, depending on ‘omics/radiomics
data type. Heterogeneous data integration includes the
following statistical issues: dimension reduction, data
integration or data fusion and causal inference:

Dimension reduction

In multi-assays integration context, heterogeneous data
usually increase the dimensionality and, consequently,
increase the chance to produce false positive hypothesis
testing results. To solve this problem, the first step is to
identify and combine relevant features from each data
modality, keeping known the biological dependencies.
Dimension reduction approaches decompose data into a
few new variables (called components) that explain most
of the differences in observations. Dimension reduction
approaches, widely used in exploratory analysis of sin-
gle omics datasets, are emerging also to simultaneous
exploratory analyses of multiple datasets. These meth-
ods extract the linear relationships that better explain the
correlated structure across datasets, the variability both
within and between variables (or observations) and may
highlight data issues such as batch effects or outliers. In
the literature for integrated ‘omics, dimension reduction
methods have presented several variations from Prin-
cipal Component Analysis (PCA) and Factor Analysis.
These variations include Multiple Factor Analysis (MFA),
consensus PCA (CPCA), multiple-block PCA (MBPCA)
and non-negative matrix factorization (NMF). As ‘omics
datasets tend to have high dimensionality it is often use-
ful to reduce the number of variables. In fact, several
recent extensions of PCA include variable selection, often
via a regularization step or L1 penalization (e.g. Least
Absolute Shrinkage and Selection Operator, LASSO).
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Data integration or data fusion

Two main approaches to multi-omics data integration
can be considered: linear or simultaneous integration.
The linear approach to multi-omics data leads to an
oversimplified view of biology, basing on already known
biological processes. This is possible, in particular, when
only two data types are considered. The complexity of
the phenotypes suggests that they can be better explored
by the combination of simultaneous changes across all
‘omics data. The linear multi-omics integration does not
consider unknown inter-omics relationships. Instead,
simultaneous approach provides a complete and realistic
characterization of phenotype from exploring the inter-
omics interactions. Statistical methodologies for simul-
taneous integration can be classified into supervised
and unsupervised approaches. Unsupervised methods
explore biological profiles from input datasets and assign
objects into different subgroups (clusters) without labeled
response variables. Conversely, supervised methods con-
sider the available known phenotype information from
samples (for example disease-normal, treatment—control)
and use this information to discover genotype—pheno-
type interactions and investigate biological processes. In
multi-omics data integration field, there are different sta-
tistical approaches that can be classified as multivariate,
concatenation-based and transformation-based methods.
Multivariate methods are usually based on Partial Least
Square Regression (PLS) or Canonical Correspondence
Analysis (CCA). Many of them were developed and inte-
grated in multi-omics bioinformatics tools (Table 1).
Concatenation-based integration methods are performed
by combining multiple data matrices of different multi-
omics data types into a single combined matrix, used as
input for constructing a predictive model. Finally, the
transformation-based methods, such as Similarity Net-
work Fusion, before constructing a model, convert multi-
omics data types into intermediate and common form
and integrate them into a large input matrix. The main
advantage of a transformation step is to preserve individ-
ual ‘omics characteristics that can be lost otherwise.

Causal inference

A vital piece in understanding of the disease mechanisms.
In genomic data analysis, we can consider different types
of associations, such as association of discrete variables
(DNA variations) with continuous variables (phenotypes,
gene expression), association of discrete variables (DNA
variations) with binary trait (disease status). In the inte-
grated ‘omics literature, the regression strategies are used
for explaining inter- or intra-system relations and inter-
actions. One of the approaches is the parallel regression,
used to explain intersystem responses simultaneously.
Another possible approach is represented by Bayesian
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networks (BNs), belonging to the family of graphical
models. BNs maintain high interpretability via graphical
outputs and represent a way to identify possible causal
relationships between measured variables depending
on their conditional dependencies and independence.
BNs explicitly model conditional statistical dependen-
cies among random variables. In the biological context,
each random variable represents one molecular feature.
Integration of different ‘omics data modalities can be
performed by using a primary data source, for example
gene expression and employing further data (i.e., his-
tone modifications or combinations of several sources)
to construct informative network priors, which facilitate
the identification of the true biological network from
data. Networks represent a powerful tool in the context
of multi-omics data integration, since they are able to
contain heterogeneous and high-dimensional informa-
tion. Networks can characterize complex interactions,
thus identifying the mechanism linked to different types
of information and associated to the phenotype of inter-
est. In radiogenomics, a weighted network fusion that
takes into account the importance of each layer could be
considered. This approach can be applied to multi-omic
genome-scale models where layers represent transcrip-
tomic and phenotypic information. The weight measures
the relative importance of each layer. Then each condi-
tion is associated with a point in a multi-dimensional
phenotypic space. In order to address knowledge from
the dynamic nature of molecular networks under vari-
ous disease conditions, an unsupervised method, called
DIABLO [73], was developed. DIABLO is an integrative
classification method building predictive multi-omics
models that can be applied to multi-omics data from new
samples to determine their phenotype. This approach
includes sparse generalized canonical correlation analysis
(sGCCA) [74], multi-omics factor analysis (MOFA) [75],
and Joint and Individual Variation Explained (JIVE) [76].
The latter is a component-based method: it transforms
each ‘omic dataset into latent components and maxi-
mizes the sum of pairwise correlations between latent
components and a phenotype of interest.

MAE framework design: a case study

As described in the previous sections, we propose the use
of MultiAssayExperiment (MAE) object as data struc-
ture to integrate genomic, radiomic and clinical data,
providing coordinated representation, operations on
multiple and heterogeneous data and focusing on two
fundamental aspects of data at stake: multisampling and
data longitudinality. We tested this solution at first study-
ing existing MAE objects of TCGA unrestricted data of
different cancer tissue obtained through curatedTCGA
R package [77] and then creating a new MAE based on
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the TCGA breast cancer data and the respective radiomic
features, extracted from T1 weighted Dynamic Contrast
Enhanced (DCE) MRI images of TCIA [71].

Objects from curated TCGA contain data from differ-
ent ‘omic experiments carried out on the same patient.
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Each experiment may contain different sample types
for the same patient (for example, primary solid tumor
and metastatic samples). To manage these data, in the
TCGA project, a barcode is used as primary identi-
fier. The TCGA barcode consists of a sequence of values

[

Sample
Patient ID Portion Plate
[ : \ /J_\ l—*_\
TCGA-A1-A0SB-01A-11R-A144-07

— —pd bt el -
Project Participant Vial Analyte Center

TSS

Fig. 2 A barcode example. An example of a The Cancer Genome Atlas barcode with a focus on the Sample Type Codes table. Some of the
identifiers, such as Vial, Portion, Analyte and Plate, are specific for biological experiments and obviously are not usable for radiomic experiments

Code  Definition Short Letter
Code
> 01 Primary Solid Tumor P
02 Recurrent Solid Tumor TR
03 Primary Blood Derived B
Cancer - Peripheral Blood
04 Recurrent Blood Derived TRBM
Cancer - Bone Marrow
05 Additional - New Primary TAP

1

A

3

SAMPLE 1

SAMPLE 2

SAMPLE 3

SAMPLE 4

SAMPLE 5

ColData

of a single time-point and the rows represent radiomic features

SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE
1 2 3 4 5
GENE A RMSV |
GENE B EnergyV
GENE C EntropyV
SEGMENT MEAN / TIME POINT 1
‘ n° PROBES / TIME POINT 2
‘ LOG X/ TIME POINT 3
Assays

Fig. 3 SummarizedExperiment object schema. In yellow: a classic use of summarizedExperiment object to store biological ‘omic experiment

data. Each assay contains data for a result of the experiment (in this case segment mean, no probes and Log X from a Copy Number Alterations
experiment). The rows of SE represent the genes and the columns represent the samples. Data describing the samples are stored in ColData object.
In red: a summarizedExperiment with Magnetic Resonance Time Points as different assays. Each assay of the summarizedExperiment contains data

SummarizedExperiment
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Experiments (SummarizedExperiments)

BRCA_RNASeqGene

BRCA_T1_weighted_ DCE_MRI_TP2

BRCA_T1_weighted_ DCE_MRI_TP1
TCGA-A1-A0SB-01X-X-X-07
feature 1
feature 2
feature 3
ASSAY PRIMARY ColName

BRCA_RNASeqGene | TCGA-A1-A0OSB ‘TCGA-Al-AOSB—OlA-llR—A144-07
BRCA_T1..TP1 TCGA-A1-AOSB | TCGA-A1-A0SB-01X-X-X-07

BRCA_T1..TP2

SampleMap

Fig. 4 MultiAssayExperiment object schema with Magnetic Resonance Time Points as different Experiments. The second option described to
store temporal multi-dimensionality of a radiomic experiment. Each element of Experiments (in this case a SummarizedExperiments) object of the
MultiAssayExperiment contains data of a single time-point. TRhe radiomic features are also contained in the rows of SummarizedExperiment

TCGA-A1-A0SB

ColData

MultiAssayExperiment

associated to labels, each of which specifically identifies
a TCGA data element. For example, the “Sample” label
describes the sample type of a particular collection of
data related to a patient and may take different value cor-
responding to a sample type according to Sample Type
Codes table [78]. The barcode TCGA-A1-A0OSB-01A
example indicates Primary Solid Tumor data (Sample
Type Code: 01) of the patient AOSB belonging to TCGA
project on breast invasive carcinoma (Tissue Source Site
Codes: Al) (Fig. 2). This nomenclature was also used by
curated TCGA in the construction of the TCGA data
MAE object. In more detail, the barcode is used as value
of colname column of MAE sampleMap (a DataFrame
that relates the “primary” data - that describes the biolog-
ical unit, which can refer to specimens, patients, etc.—to
the experimental assays—for example, RNAseqGene).
This DataFrame allows an unambiguous map from every
experimental observation to one and only one biological
unit, such as a patient, and allows different technical and
biological replication for each assay. Moreover, identifiers
allow consistency between data during subsetting and re-
ordering. We propose to use both MAE data structure

and a TCGA-barcodes-like structure to manage radiomic
experiment data, together with biological omic data, in a
single data structure. Typically, in a radiomic workflow,
each single ROI, and the respective features, may repre-
sent a different lesion, or a region of a lesion, and, there-
fore, may exist in multiple samples for each patient of a
radiomic experiment. According to our proposal, this
multi-sampling feature can be managed by using MAE
data structure and a specific barcode, in the same way
as genomic data. In this scenario, a key role is played by
the ExperimentList component of MAE, which contains
all experimental data. This component can contain dif-
ferent type of elements, two of which are Matrix (a base
element used for ID-Based dataset) and SummarizedEx-
periment [79]. The latter may contain one or more assays
(a matrix-like element that store the data). For each assay,
rows represent features of interest and columns represent
samples. For example in a genomic experiment, the rows
of an assay represent genes or transcript, the columns
represent the patients and each different assay in a Copy
Number Alterations experiment may represent the val-
ues of segment mean and number of probes (Fig. 3). A
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291

Intersection Size

BRCA_T1_WEIGHTED_DCE_MRI
« il
BRCA_miRNASeqGene

BRCA_RNASeqGene

878

Set Size

matrix design using UpSetR package

286

Fig. 5 A generalized Venn diagram for sample membership in multiple assays. The visualization of set intersections was performed using the UpSet

radiomic experiment differs substantially from a genomic
experiment in that it consists of one level of data com-
plexity less than a genomic experiment. The latter is per-
formed on a set of samples (the columns of the assay) and
the analysis is performed on a set of genes, transcripts
or protein (the rows of the assay). Finally, the experi-
ment produces different results from the various assays.
A radiomic experiment, instead, is performed on a set of
samples without analysing of the molecular sub-level and
therefore, from data structure point of view, we have two
options:

+ Use assays of a summarizedExperiment to store the
matrix-like data of each time-point. In this case, mul-
tiple time-point data are associated to a single experi-
ment, for example BRCA_T1_weighted DCE_MRI,
with as many assays as time-points (BRCA indicates
breast cancer data) (Fig. 3).

« Use different summarizedExperiment to store dif-
ferent time-point data. In this case two experiments
may be, for example, BRCA_T1_weighted DCE_
MRI_TP1 and BRCA_T1_weighted_ DCE_MRI_TP2
(TP indicates Time Point) (Fig. 4).

In both cases, the rows of each assay stored radiomic
features.

As shown in our case study, this data organization ena-
bles the use of MAE to collect, manage and then analyze
radiomic data together with genomic and clinical data.
In our case study the TCIA data consist of 36 quantita-
tive radiomic features extracted from primary tumor
images of 91 patients of the BRCA study, each acquired at
a single time point. TCGA data consist of a MAE object
composed of several experiments. We selected RNA-seq
(expression quantification of 20,502 genes from 878 sam-
ples) and miRNA-seq (expression quantification of 1046
miRNA from 849 samples) experiments and integrated
it together with TCIA data in a single MAE object. To
do this, we first downloaded TCGA experiments, using
curated TCGA, and TCIA features released. Subse-
quently, we created two R objects: one for TCGA and one
for TCIA data. In the case of TCGA data we have directly
obtained a MAE object through curated TCGA while in
the case of TCIA, we first converted an xls file in an R
dataframe and then in a summarizedExperiment object.
This experiment contains two assays that represent two
time point data, one of which is simulated. The radi-
omic experiment was subsequently integrated with the
two pre-existing summarizedExperiment (RNA-seq and
miRNA-seq experiment extracted from the downloaded
MAE) using the workflow described in MAE vignettes
on Bioconductor [80]. Figure 5 shows a generalized Venn
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Fig. 6 Architecture of the modular integration platform. The architecture herein proposed follows three separate modules. The first module, based
on data uploading of a MultiAssayExperiment or from its construction from multiple SummarizedEXperiment or matrix-like data. The second
module allows to execute different selections of data (by clinical data, such as pathological stage or histological type of cancer, by experiment/assay
and features). Then selected data are the input of different and/or integrate data analysis module. This modular architecture simplify expansion and
redesign of a single implementation and allow simple adding of a personal module of data preparation and/or analysis for specific tasks. Moreover,

all modules may provide visualization of data to support the different operations (see an example of data visualization in Fig. 6)

diagram for sample membership in multiple assays. The
visualization of set intersections was performed using
the UpSet matrix design using UpSetR package [81].
The script code to reproduce above described proce-
dure is available at https://gitlab.com/Zanfardino/radio
genomics-mae-case-study. We also propose an architec-
ture, shown in Fig. 6, for a modular integration platform.
Through a graphic interface, the users are able to (i) cre-
ate or upload a MAE object, (ii) summarize MAE data
through basic statistics and plots, (iii) manage and subset
the uploaded data and (iv) execute different type of analy-
ses (through independent modules). All the functions
allow to work with highly complex data in an intuitive
and simplified way. One way to manage and understand
the meaning of large dimensional data is to place it in a
visual context such as we have done here (Fig. 7).

Conclusions

The high-throughput production of ‘omics data has led
to an increase of data sets of different types that need
to be integrated in order to better understand disease

mechanisms and how these multiple molecular data
generate the observed phenotypes in complex diseases.
Merging imaging phenotypes with multi-omic biologi-
cal data may lead to new prognostic cancer models, new
support for patient treatment strategy and development
of improved survival predictors. Accordingly, increased
attention is paid to statistical methods and algorithms
to analyze and correlate multivariate imaging, clinical
and molecular data for disease diagnosis and prognosis.
Bringing these datasets together in a meaningful manner
is the main goal of this study. Here, we identified three
main challenges to overcome: the management of miss-
ing data caused by data filtering or non-execution of a
specific analysis on a subset of samples, different spa-
tial and temporal scales of imaging data and the need to
manage radiomic features related to multiple lesions or
sub-regions of a lesion. Our proposal to use MAE as data
structure to combine radiogenomic data aims to inte-
grate and facilitate the use and the exploration of het-
erogeneous and complex data derived from these deeply
distant domains. Our integrated design enables regular
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Assays: timepoint_1, timepoint_2

Sample.Types:  Primary Solid Tumor (91 patients)

Show 10 v entries Search:
Name Type Class Numb.Of.Assays Numb.Of.Sample.Types Numb.Of.Patients Numb.Of.Features
©  BRCA_miRNASeqGene SummarizedExperiment 1 3 849 36
Assays: Name Not Setted
Sample.Types:  Primary Solid Tumor (755 patients), Metastatic (7 patients), Solid Tissue Normal (87 patients)
©  BRCA_RNASeqGene SummarizedExperiment 1 8 878 36
Assays: Name Not Setted
Sample.Types:  Primary Solid Tumor (775 patients), Metastatic (3 patients), Solid Tissue Normal (100 patients)
©  BRCA_T1_weighted_DCE_MRI SummarizedExperiment 2 1 91 36
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Fig. 7 A screenshot of summary tab of the graphic interface prototype. The summary tab shows the MAE data of the described case study. In

the top table the name of all MAE experiments are listed and for each of them are reported the assays (timepoint_1 and timepoint_2 in the case
of BRCA_T1_weighted_DCE_MRI) and the sample types. For each sample type, the number of patients is specified. The number of features and
patients for each experiment are also represented as histogram (for a simple graphic representation the number of features was limited to 36 for all
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operations of MAE on all experiments of a radiogenomic
dataset, including radiomic data. With our MAE design,
operations like: (i) selecting complete cases or subset-
tings, (ii) selecting samples with information in all data-
set and/or in all ‘omics of a set of experiments (crucial to
set a multi-omics analysis when more samples with miss-
ing data exist) and (iii) selecting subjects with specific
phenotypes and clinical outcomes, may be carried out in
order to ensure correct alignment of assays and patients,
making radiogenomic integrative analysis more attain-
able. Moreover, the MAE structure, and the ability to
organize data of different experiments in different inter-
linked data objects, has facilitated the handling of the
additional spatial and temporal scales added by radiomic
data. All of these operations and, therefore, our selection

of the MultiAssayExperiment as the radiogenomic data
container have been successfully tested with the integra-
tion of TCGA-BRCA data of 91 patients with radiomic
features available on TCIA for the same patients. Despite
the existence of specific software that make some of
these functions available, such as TCGAbiolinks, RTCGA
Toolbox and mixOmics (Table 1), none of these tools was
designed to work on radiogenomic data. Conversely, our
proposal facilitates radiogenomic studies since it allows
user exploration across genomic as well as imaging data-
sets in data type independent manner. For example, the
use of the TCGA barcode is clearly suitable for biological
‘omics data description but not for radiomic data, except
for “Patient ID”, “Sample” and “Center” labels. The latter
represents an open challenge and, therefore, a possible
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future direction might be the development of a unique
nomenclature for a new type of barcode to specifically
describe radiogenomic data. Moreover, for data different
from TCGA, also a custom id can be used as colName in
SampleMap. In conclusion, understanding the relation-
ships among genomic profiles, imaging phenotypes and
outcomes has great potential to improve cancer treat-
ment and management. In this context, genomic fea-
tures are closely related to genetic and molecular profile
of a cancer and, consequently, to outcomes like receptor
status, while, radiomic features characterize tumor phe-
notypes and, consequently, outcomes like tumor stage.
Bringing radiomics and genomic data together into a
single data structure is the first step to achieve effective
radiogenomic analysis, integrating information arising
from different aspects of the tumor. The use of the cur-
rent version of MAE by an interdisciplinary research
community can pave the way to further development of
extended MAE object for implementing new functionali-
ties specific to radiogenomic domain in order to correlate
phenotype and genotype features.
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