
Xu et al. J Transl Med          (2019) 17:255  
https://doi.org/10.1186/s12967-019-2010-4

RESEARCH

Identifying subpathway signatures 
for individualized anticancer drug response 
by integrating multi‑omics data
Yanjun Xu†, Qun Dong†, Feng Li†, Yingqi Xu†, Congxue Hu, Jingwen Wang, Desi Shang, Xuan Zheng, 
Haixiu Yang, Chunlong Zhang, Mengting Shao, Mohan Meng, Zhiying Xiong, Xia Li* and Yunpeng Zhang*

Abstract 

Background:  Individualized drug response prediction is vital for achieving personalized treatment of cancer and 
moving precision medicine forward. Large-scale multi-omics profiles provide unprecedented opportunities for preci-
sion cancer therapy.

Methods:  In this study, we propose a pipeline to identify subpathway signatures for anticancer drug response of 
individuals by integrating the comprehensive contributions of multiple genetic and epigenetic (gene expression, 
copy number variation and DNA methylation) alterations.

Results:  Totally, 46 subpathway signatures associated with individual responses to different anticancer drugs were 
identified based on five cancer-drug response datasets. We have validated the reliability of subpathway signatures 
in two independent datasets. Furthermore, we also demonstrated these multi-omics subpathway signatures could 
significantly improve the performance of anticancer drug response prediction. In-depth analysis of these 46 sub-
pathway signatures uncovered the essential roles of three omics types and the functional associations underlying 
different anticancer drug responses. Patient stratification based on subpathway signatures involved in anticancer drug 
response identified subtypes with different clinical outcomes, implying their potential roles as prognostic biomarkers. 
In addition, a landscape of subpathways associated with cellular responses to 191 anticancer drugs from CellMiner 
was provided and the mechanism similarity of drug action was accurately unclosed based on these subpathways. 
Finally, we constructed a user-friendly web interface-CancerDAP (http://bio-bigda​ta.hrbmu​.edu.cn/Cance​rDAP/) avail-
able to explore 2751 subpathways relevant with 191 anticancer drugs response.

Conclusions:  Taken together, our study identified and systematically characterized subpathway signatures for indi-
vidualized anticancer drug response prediction, which may promote the precise treatment of cancer and the study 
for molecular mechanisms of drug actions.
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Background
Due to the extensive genetic heterogeneity in human can-
cer, patients with seemingly the same tumor type always 
manifest widely variable responses to anticancer thera-
pies [1–3]. Despite great effort to the development of 
cancer treatment, often these therapies are effective only 
in quite a few patients and the remaining will miss the 
best treatment time. One approach to settle this problem 
is to identify and apply molecular biomarkers to accu-
rately predict anticancer drug response for individuals. 
The rapid advances and reduced costs of high throughput 
technologies open the door for researchers to evaluate 
the effects of multiple molecular features of gene on drug 
responses, identify reliable biomarkers and further build 
efficient predictors [4–6].

In the past decades, much effort has been devoted to 
the development of drug response prediction by means of 
genomic characterizations. Based on gene expression [7, 
8], copy number variation (CNV) [9–12] and methylation 
[13, 14], a variety of approaches for screening biomark-
ers of drug response have been developed. For example, 
Zhang et  al. [8] presented a method to identify signifi-
cantly associated biomarkers and then developed ordinal 
genomic classifier using the hierarchical ordinal logistic 
model for predicting drug response. He et  al. [11] pro-
vided a comprehensive review of the clinical relevance 
of CNVs to drug efficacy. There are also some existing 
data resources such as CancerDR [15], GEAR [16] and 
CARD [17] covering molecular signatures responsible 
for drug response. Despite the remarkable contribution 
to preclinical research, most of methods identifying bio-
markers and predicting drug response with assumptions 
that genes act independently mainly, focused on single or 
multiple molecular alterations of patients while ignored 
functional relationships among genes within biological 
pathways. Drug response is not decided by several inde-
pendent genes. It has been broadly accepted that altera-
tions in signaling pathways largely determine the efficacy 
of kinase inhibitors used in the clinic [18], and in fact, the 
significance of pathways on drug efficacy has been recog-
nized in recent pharmaceutical research [19]. Ammad-
Ud-Din et  al. [20] predicted drug response by inferring 
pathway-response associations with kernelized Bayesian 
matrix factorization. Wang et  al. [21] constructed path-
way-based models with four approaches inferring path-
way activity derived from gene expression to predict drug 
response of cancer cells. Whereas the entire pathway is 
often too large to accurately interpret relevant pathologi-
cal phenomena, a pivotal subpathway region representa-
tive of the corresponding entire pathway may be more 
effective and sensitive for dissecting the related phe-
nomena [22, 23]. Furthermore, these existing methods 
mainly focused on only single omics data. Genome-wide 

multi-omics profiling of human cancers provides com-
prehensive information to identify biomarkers for 
improving the prediction of drug responses and to 
deepen our understanding of molecular mechanisms 
underlying drug actions. A few large scale cancer genome 
projects not only provide diverse molecular data but also 
drug response information of cancer patients such as The 
Cancer Genome Atlas (TCGA) (https​://gdc-porta​l.nci.
nih.gov/) and cancer cell lines [24], which provide new 
opportunities to identify signatures for individualized 
drug response prediction.

In this study, we aimed to identify reliable subpathway 
signatures for predicting anticancer drug response in can-
cer patients by simultaneously considering genetic and 
epigenetic (gene expression, CNV and DNA methylation) 
changes on the molecular states of pathway. By apply-
ing our method to five datasets, 46 subpathway signa-
tures were identified to be associated with the responses 
to four drugs in different cancer types, the reliability of 
which has been demonstrated. Molecular characteriza-
tions of these subpathway signatures revealed essential 
roles of three omics types and the functional associations 
underlying different anticancer drug responses. Survival 
analysis suggested the clinical relevance of these sub-
pathway signatures. Then, we applied the method to 191 
anticancer drugs from CellMiner and uncovered their 
mechanism similarity based on subpathways we identi-
fied. Finally, the resource called CancerDAP (http://bio-
bigda​ta.hrbmu​.edu.cn/Cance​rDAP/) storing associations 
between these 191 anticancer drugs and 2751 subpath-
ways at multi-omics levels, provides a flexible platform to 
explore molecular mechanisms of these anticancer drug 
responses from subpathway perspectives.

Materials and methods
Anticancer drug response datasets from TCGA​
We collected the records of drug treatment in each 
cancer type from TCGA clinical data and manually 
standardized the drug names according to NCI drug 
dictionary and DrugBank [25]. In total, 46 candidate 
cancer-drug response datasets after the initial screen-
ing process were obtained, where the drug was antineo-
plastic agent based on DrugBank with usage frequency 
more than 50 individuals in corresponding cancer type. 
According to the RECIST standard [26], we classified the 
patients as responder (with complete response and par-
tial response) and non-responder (with stable disease 
and progressive disease) for the specific drug (Additional 
file  1: Table  S1). Given that imbalanced data could sig-
nificantly compromise the performance of most stand-
ard learning algorithms [27], five cancer-drug response 
datasets were left, bladder urothelial carcinoma (BLCA)-
cisplatin, BLCA-gemcitabine, Brain Lower Grade Glioma 

https://gdc-portal.nci.nih.gov/
https://gdc-portal.nci.nih.gov/
http://bio-bigdata.hrbmu.edu.cn/CancerDAP/
http://bio-bigdata.hrbmu.edu.cn/CancerDAP/
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(LGG)-temozolomide, pancreatic adenocarcinoma 
(PAAD)-gemcitabine, stomach adenocarcinoma (STAD)-
fluorouracil after excluding serious imbalanced datasets.

Multi‑omics data from TCGA​
We collected three types molecular profiles, gene expres-
sion, CNV and DNA methylation, denoted as diverse 
molecular features of a gene from TCGA data portal 
(https​://tcga-data.nci.nih.gov/tcga) for 4 cancer types 
(BLCA, LGG, PAAD, STAD). All molecular profiles for 
five datasets were level 3 data from TCGA. For each can-
cer type, we removed the sample without any one of three 
molecular features data or drug response record. Based 
on the fact that a single patient in TCGA may have been 
genomically profiled more than once, we calculated mean 
value of each gene in all for the patient in this condition. 
For expression, genes whose expression values were zero 
in more than 20% samples for each cancer type were 
removed. CNV profiles were the “all_data_by_genes.txt” 
tables from GISTIC 2.0 [28] applying to the masked copy 
number segment with default parameters. As regards 
DNA methylation from the Illumina Human Methyla-
tion 450 platform, we first excluded the CpG sites whose 
β-values had ‘NA’ greater than 20% in each cancer and 
filled using ‘impute’ package [29] for the remaining. Then, 
we calculated mean value and obtained a single value per 
gene if multiple CpG sites mapped to the same gene [30].

Molecular profiles collection and preprocessing 
from CellMiner
The molecular profiles (gene expression, CNV and DNA 
methylation) of NCI-60 cell lines were downloaded from 
CellMiner [24] and preprocessing was similar to the 
above. In the project, cell line drug sensitivity was meas-
ured as negative log10 of the concentration at which the 
drug inhibited 50% of the cellular growth (processed 
GI50), and higher processed GI50 value indicates a bet-
ter sensitivity of the cell line to a given drug. In total, 191 
anticancer drugs were left for analysis after discarding 
the drugs where processed GI50 were ‘NA’ in more than 
20% cell lines. For each anticancer drug, we divided cell 
lines into two groups (responder group with top 25% pro-
cessed GI50 and non-responder with bottom 25% pro-
cessed GI50) except the cell lines with ‘NA’ as processed 
GI50.

Cancer hallmark dataset
We downloaded cancer hallmark gene sets from Gene 
Ontology (GO) Consortium [31] according to Plaisier 
et al. [32]. There are 35 GO sets that could be categorized 
into 10 cancer hallmarks. The GO data were downloaded 
from MSigDB database (http://softw​are.broad​insti​tute.
org/gsea/msigd​b).

Identifying subpathway signatures for anticancer drug 
response based on muti‑omics data
We first integrated multi-omic data and drug response 
records from TCGA. For a given drug-cancer response 
dataset, we distinguished the responders and non-
responders into two groups equally at random, one for 
training set and the other for test set. The process of 
randomly grouping samples was repeated 100 times. For 
each sample grouping repeat, we first assessed the cor-
relation of each gene with drug response at multi-omics 
level based on the corresponding training set. Next, we 
extracted subpathways associated with anticancer drug 
response by considering correlation between gene and 
anticancer drug response at multi-omics levels and path-
way topologies. Then, we used multi-omics features of 
these subpathways as input into random forest model 
to predict drug response. The selected model was used 
to predict drug response in the corresponding test set 
and the area under the curve (AUC) of receiver operat-
ing characteristic (ROC) was calculated. Finally, subpath-
ways used in the repeat with the highest AUC value were 
identified as subpathway signatures and the correspond-
ing model was selected for predicting individualized 
response of the anticancer drug. The schematic overview 
of pipeline to identify subpathway signatures for predict-
ing anticancer drug responses was shown in Fig.  1. For 
each grouping samples repeat of a given cancer-drug 
response dataset, the detailed processes are as follows.

Evaluating the correlation score between gene and drug 
response based on multi‑omics data
We measured the correlation between each gene and 
response to the given drug by taking into account all 
three molecular features (mRNA expression, CNV, DNA 
methylation). We first fitted the univariate logistic regres-
sion model to evaluate the correlation between drug 
response and the gene at different omics levels respec-
tively. Then, we derived a combined score for each gene, 
which was summarized as the sum negative natural loga-
rithm of single molecular feature P-values [33]. The for-
mula is as follows:

Pm represents the P value from the univariate logistic 
regression based on gene expression, CNV and methyla-
tion respectively.

Locating subpathways most relevant to drug response
Next, the score list and KEGG [33] pathway data (pre-
processing as we previously described [34]) were used as 

Score = −

∑

m

loge (Pm),

m = gene expression, CNV, methylation

https://tcga-data.nci.nih.gov/tcga
http://software.broadinstitute.org/gsea/msigdb
http://software.broadinstitute.org/gsea/msigdb
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the input into signet [35], which searches for high-scor-
ing subpathway regions of genes within pathways based 
on simulated annealing algorithm and test their signifi-
cance. Only the subpathways whose P values from signet 
passed the cutoff of P < 0.05 and members contained at 
least three connected genes were identified as candidates 
to construct predictive model of drug response.

Inferring patient‑specific subpathway activities at different 
omics levels
To weight each of these selected subpathways in 
training set, we introduced a measure to infer 

patient-specific subpathway activities at different omics 
levels. Activity of subpathways associated with drug 
response in patient p was assessed according to the 
function [36, 37].

where n is the number of genes in the subpathway and N 
is the number of all genes detected in sample p. Xi repre-
sents the expression value (CNV and methylation value 
respectively) of the gene i in sample p. βi represents the 

Zsp =

(∑n
i Xiβi

n
−

∑N
i Xiβi

N

)
√

|n|

σp

Fig. 1  Schematic overview of the method to identify subpathway signatures for individualized anticancer drug response prediction by integrating 
multi-omics data
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estimated regression coefficient of gene i in the univariate 
logistic regression model. σp is the standard deviation of 
all the genes values Xi multiplying βi in sample p.

We therefore could acquire three activity matrixes from 
gene expression, CNV and DNA methylation of subpath-
ways-associated drug response in training set.

Identification of the subpathway signatures
The integrated matrix that combined above three activity 
matrixes was used as features to construct random for-
est model for predicting drug response of cancer patients 
with the R package randomForest [38]. For each random 
forest, 10,000 decision trees were generated. This model 
was further employed to predict the drug response of 
patients in test set based on integrated matrix using the 
estimated regression coefficients of genes and selected 
subpathways from training set. Performance evaluation 
of prediction model was displayed using receiver oper-
ating characteristic (ROC) curve and assessed by the 
area under the curve (AUC) of ROC with the R package 
pROC [39]. Finally, subpathways used in the repeat with 
the highest AUC value in test set were identified as sub-
pathway signatures and the corresponding model was 
selected for predicting individualized drug response of 
cancer patient.

Construction of models to validate the prediction power 
of subpathway signatures
To evaluate whether combining multi-omics and sub-
pathway information could improve the prediction 
power of drug sensitivity, we constructed two additional 
models, ‘Gene with pathway’ and ‘Gene without pathway’ 
models. Gene with pathway model was only based on 
gene expression. The gene score as input into signet was 
negative natural logarithm of P-values from the univari-
ate logistic regression and subpathway activity matrix for 
random forest was from gene expression. Gene without 
pathway model was constructed just using genes whose P 
values were less than 0.05 and the value in activity matrix 
for random forest is expression value multiplying corre-
sponding estimated regression coefficient from the uni-
variate logistic regression.

Survival analysis
For evaluating the associations of subpathways related 
to drug response with patients’ overall survival at three 
omics levels, we applied Cox proportional hazards model 
to subpathway activity from gene expression (CNV, DNA 
methylations respectively). When exploring the prog-
nostic value of subpathways as a whole, we grouped 
patients using K-means algorithm based on combined 
subpathway activity matrixes (k = 2). Then, we used 

Kaplan–Meier survival curve and log-rank test to assess 
the survival difference.

Results
The performance of subpathway signatures for predicting 
individualized drug response
We applied our method to five anticancer drug response 
datasets. In total, 46 subpathway signatures were iden-
tified for four anticancer drugs in different cancer 
types (Additional file  2: Table  S2). We first examined 
the predictive performance of these subpathway signa-
tures. Figure 2 shows the ROC curves of these subpath-
way signatures for predicting drug response of cancer 
patients in test sets of the five datasets using random 
forest model. We found that all five datasets show rela-
tive high predictive performances. The AUC values 
range from 0.73 to 0.83 and the highest AUC value is 
0.83 in BLCA-gemcitabine and STAD-fluorouracil 
datasets. We next investigated how the member genes 
within subpathway signatures used to construct drug 
response prediction model differ between responder 
and non-responder groups in three molecular feature 
types (Additional file  3: Figure S1). As seen in the fig-
ure, there is nearly no difference between responder 
and non-responder groups in whichever molecule fea-
ture of three, implying that pathway data could provide 
additional information to infer the individual’s drug 
response. The result suggests that pathway topological 
structure embracing some hidden meaningful informa-
tion could be utilized to explore associations between 
genomic data and drug response.

Then, we further validated the prediction power 
of these subpathway signatures in two independent 
datasets from CellMiner, considering the availability 
of data (seen in “Materials and methods”). We evalu-
ated the predictive performances of subpathway sig-
natures of two anticancer drugs including cisplatin 
and fluorouracil. For the cell line datasets, the top 15 
cell lines with the largest GI50 values were assigned to 
the “responder” group and 15 cell lines with the lowest 
GI50 values were defined as “non-responder”. We used 
subpathway signatures and the corresponding random 
forest model selected in TCGA datasets of these two 
drugs to predict cellular responses based on the above 
independent datasets respectively. The results showed 
that our identified subpathway signatures also exhib-
ited relative high predictive power in both cisplatin 
(AUC = 0.78) and fluorouracil (AUC = 0.80) datasets 
(Fig.  3). Taken together, these results demonstrate the 
reliability of these identified subpathway signatures for 
individualized anticancer drug response prediction.
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Fig. 2  Predictive power of subpathway signatures across five cancer-drug response datasets from TCGA, including a BLCA-cisplatin, b 
BLCA-gemcitabine, c PAAD-gemcitabine, d STAD-fluorouracil and e LGG-temozolomide

Fig. 3  Validation of the predictive power of identified subpathway signatures in two independent datasets from CellMiner by training on datasets 
from TCGA, including a cisplatin and b fluorouracil



Page 7 of 16Xu et al. J Transl Med          (2019) 17:255 

Comparisons of the predictive power of the multi‑omics 
subpathway signatures with single omics and gene‑based 
signatures
Since many existing drug response prediction 
approaches based on gene expression, to investi-
gate whether the identified signatures based on our 
method combining multi-omics data and subpathway 
information adds predictive power, we challenged our 
multi-omic subpathway signatures for drug response 
prediction against other three models: (1) gene without 
pathway model constructed based on only gene expres-
sion data (details in “Materials and methods”), (2) gene 
with pathway model constructed from gene expres-
sion data and pathway information (details in “Mate-
rials and methods”) and (3) pRRophetic [40], which 
was an existing method for predicting clinical chemo-
therapeutic response based on tumor gene expression 
data. As a result, all these three models show limited 
performances compared with our multi-omics subpath-
way signatures based model in seven datasets (Fig.  4). 
The subpathway signature-based model significantly 
outperformed Gene with Pathway model which incor-
porated pathway topological structure but focused 
on single omics, pRRophetic and Gene without Path-
way model which ignored pathway information with 
maximum P value = 0.00019 among the paired t-test 
(Fig. 4h). In addition, the Gene with Pathway is signifi-
cantly better than Gene without Pathway (paired t-test: 
P-value = 0.039) and pRRophetic [40] method (paired 
t-test: P-value = 0.035) (Fig.  4h). Obviously, combin-
ing multi-omic data and pathway topological structure 
information could improve the performance on pre-
dicting anticancer drug responses. These above results 
confirm the superiority of our subpathway signatures 
and the significance of integrating multi-omics and 
subpathway information for predicting drug response 
of cancer patients.

Dissecting subpathway signatures related to anticancer 
drug response
We then explored the correlation between subpathways 
and anticancer drug response at molecular level. In total, 
46 subpathway signatures associated with anticancer 
drug response, were identified from five datasets, BLCA-
cisplatin, BLCA-gemcitabine, LGG-temozolomide, 
PAAD-gemcitabine, STAD-fluorouracil. Several entire 
pathways in which these subpathways are located, are 
well-known to mediate antidrug response, such as Wnt/
β-catenin signaling pathway [41, 42], Ras signaling path-
way [43–45], PI3K-Akt signaling pathway [46, 47], MAPK 
signaling pathway [48], Jak-STAT signaling pathway [49] 
and AMPK signaling pathway [50]. Figure  5a provides 
the summary of these 46 subpathway signatures. Calcium 

signaling pathway which has been reported to play essen-
tial roles in acquired multidrug resistance of cancer cells 
[51] is the first top-scoring subpathway location, followed 
by neurotrophin signaling pathway (Fig.  5a). Overall, 
subpathway signatures are associated with diverse drug 
response differed greatly. Focal adhesion is most com-
monly found only in BLCA-cisplatin, BLCA-gemcitabine, 
PAAD-gemcitabine. In addition, while some anticancer 
drugs are widely used in multiple cancers just like gem-
citabine in BLCA and PAAD, there are considerable dif-
ferences in between 18 and 2 subpathway signatures in 
BLCA-gemcitabine and PAAD-gemcitabine respectively. 
This suggested that the mechanism of drug response may 
differ across diverse cancer types due to variable levels of 
genomic instability and heterogeneity.

To further characterize how these subpathways could 
contribute to drug response at multiple molecular layers 
(gene expression, CNV and methylation), the topological 
structures of some pathways were extracted (Fig. 5b–g). 
Subpathway signatures covering important genes, inter-
action partners and regulation patterns could provide 
potential insights into mechanisms underlying drug 
response. These subpathways reflect the diverse cellular 
events associated with anticancer drug response, such as 
cell survival, cell growth, cell cycle, apoptosis, autophagy, 
metabolism, immuno-regulation, DNA repair (Fig.  5b–
g), consistent with our prior knowledge. More details, we 
dissected the correlation between member genes within 
subpathway and drug response at multi-omics levels. 
In each subpathway, the correlations between the same 
member gene and drug response are different or even 
opposite on three molecular features, gene expression, 
CNV and methylation. For example, RasGAP in subpath-
way from Ras signaling pathway, PKB/Akt in subpathway 
from ERBB signaling pathway, AKT in subpathway from 
PI3K-AKT signaling pathway, AMPK in subpathway 
from FOXO signaling pathway. These findings indicate 
that both genetic and epigenetic events play consider-
able roles in anticancer drug response and combining 
data from different omics may provide more accurate and 
comprehensive information to predict drug response of 
individuals.

In addition, we constructed a subpathway functional 
similarity network to systematically understand the 
linkage of drug response mechanisms. We inferred 
functional similarity between two subpathways in vir-
tue of semantic similarity acquired from R package 
GOSemSim [52]. Two subpathways were connected 
if the semantic similarity of subpathway–subpathway 
reached 0.6 (Additional file  4: Figure S2A). There are 
strong connections between subpathways associated 
with different anticancer drug responses, especially the 
subpathway derived from MAPK signaling pathway in 
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Fig. 5  Molecular characterization of subpathway signatures. a Dot plot of scores and P values from signet for each of 46 subpathway signatures 
associated with the responses of different drugs, with y-axis representing entire pathways in KEGG where subpathways are located in. Each node 
represents the subpathway derived from entire pathway in corresponding dataset. The node size indicates the score of subpathway. Color intensity 
of node corresponds to negative natural logarithm of P-value, and redder represents the more statistically significant. b–g Structure visualization 
of several subpathway signatures. The rectangle symbolizing gene is divided into three parts, representing left to right: CNV, gene expression, 
methylation. The number and color intensity of subrectangle correspond to correlation degree of gene with drug response estimated by univariate 
logistic regression model. Red depicts positive and blue depicts negative correlation
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STAD-fluorouracil (inter: 97%, intra: 3%) (Additional 
file 4: Figure S2B). This suggests that despite relatively 
small intersection in subpatwhay locations (Fig.  5a), 
there are similar cellular functions underlying differ-
ent drug responses, providing opportunity for devel-
oping drug repositioning. We also dissected relations 
between subpathways associated with drug sensitivity 
and hallmarks of cancer. Most subpathways related to 
at least one hallmark are identified (32/46), suggesting 
that some subpathways influence on drug sensitivity as 
well as mediating the development of cancer.

Prognostic potential of the subpathway signatures 
involved in drug response
We examined whether these subpathway signatures 
could help to stratify patients into distinct clusters or 

subtypes that were linked to survival. We first collected 
four datasets consisting of the same three omics data 
consistent with previous of patients with their survival 
information from TCGA, including BLCA, LGG, PAAD, 
STAD, and followed previous steps to infer activity of 
subpathway signatures identified in corresponding drug 
sensitivity analysis. Then, we fit cox proportional hazards 
regression model for each subpathway based on inferred 
activity. The hazard ratio (HR) is a measure of the rela-
tive survival relevance for each molecular feature of sub-
pathway, where an HR > 1 represents a risk factor and 
indicates that the higher level activity of subpathway is 
associated with shorter survival. There are 36 subpath-
ways (including the same subpathway at different molec-
ular features) with a hazard ratio (HR) > 1 and 102 with a 
HR < 1, 19 significantly associated with survival outcome 

Fig. 6  Discriminative prognosis power of the identified subpathway signatures. Left: Forest plot shows HR and 95% CI from univariate Cox 
proportional hazards model of the subpathway signatures at three omic level from LGG-temozolomide and PAAD-gemcitabine. Right: Kaplan–
Meier survival plots of patients grouped by K-means based on combined activities with multi-omics of subpathway signatures in LGG and PAAD. 
The P values were estimated based on log rank test
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(P < 0.05) (Fig.  6a and Additional file  5: Figure S3), such 
as subpathways involved in Wnt signaling pathway on 
expression level, Ras signaling pathway on methylation 
level, ErbB signaling pathway on copy number variation 
level from BLCA-cisplatin. Then, to investigate if com-
bined activities with multi-omics of subpathway could 
contribute to predict clinical outcome, we performed 
Kaplan–Meier survival analysis based on the groups 
divided by K-means using the multi-omics activities 
matrix of corresponding subpathways. It’s worth to note 
that combining all subpathway signatures could be used 
as prognostic biomarkers for better patient stratification 
with increased significance in LGG (P = 1.28 × 10−4) and 
PAAD (P = 8.43 × 10−3) (Fig.  6b). These results indicate 
that potential uses of subpathway signatures involved 
in anticancer drug response as prognostic markers and 
provide novel insights for future development of survival 
prediction and patient stratification.

A landscape of subpathway for 191 anticancer drug 
responses in cancer cell lines
The availability of public pharmacogenomic resources 
with drug response information has made it possible 
to large scale screen subpathways associated with drug 
response and further guide the early phase clinical tri-
als of anticancer drugs development. CellMiner is such 
a database that makes available multiple genomic and 
pharmacological data sets for the NCI-60 cell lines. 
Then, we identified subpathways associated with the 
responses to anticancer drugs from CellMiner based 
on multidimensional molecular profiles (gene expres-
sion, CNV, methylation) and drug activities data of 60 
diverse human cancer cell lines. In all, 2751 subpath-
ways from 141 entire KEGG pathways were identified to 
be associated with 191 anticancer drug responses. Then, 
a landscape of subpathways related to anticancer drug 
responses was constructed (Fig. 7). Most entire pathways 
(116 out of 141 pathways) are related with responses of 
more than one anticancer drug. There are five path-
ways associated with more than 100 anticancer drug 
responses, including Jak-STAT signaling pathway (111), 
FoxO signaling pathway (112), pyrimidine metabolism 
(114), focal adhesion (138) and purine metabolism (176). 
In contrast, some pathways are specifically related with 
anticancer drug response, such as amphetamine addic-
tion in cabozantinib, and mRNA surveillance pathway in 
gefitinib. Next, we dissected associations between these 
subpathway and the development of cancer. The seman-
tic similarity between pathways and cancer hallmarks 
were calculated. We found that most of these pathways 
from which subpathway originated, were functionally 
related with cancer hallmarks including ‘reprogramming 
energy metabolism’, ‘tissue invasion and metastasis’ and 

‘sustained angiogenesis’ (Fig. 7). Furthermore, we focused 
on the roles of pathways related to more than 25% anti-
cancer drug responses in tumorigenesis and found that 
some of them were experimentally validated to be asso-
ciated with many cancer types according to a reliable 
database CPAD [53]. Especially, some notable oncogenic 
pathways are consistently implicated in most cancers, for 
example, AMPK signaling pathway, p53 signaling path-
way, Jak-STAT signaling pathway and MAPK signaling 
pathway. This is consistent with the above mentioned 
result that some pathways affect drug response as well 
as mediate tumorigenesis and cancer progression. Their 
oncogenic roles have been well-reported but much less 
known about their effects in drug response, and these 
pathways involved in cancers are worthy to be further 
investigated in drug response.

Evaluation of clinical drug–drug similarity has many 
potential applications in various fields, such as mecha-
nism of drug action, drug response prediction and drug 
repositioning [54]. Here, we assessed drug–drug simi-
larity based on subpathway identified for these 191 anti-
cancer drug responses. First, we constructed a similarity 
matrix by calculating the mean semantic similarity score 
between subpathways for drug A and subpathways for 
drug B as similarity score between two drugs, and then 
performed hierarchical clustering (Additional file 6: Fig-
ure S4). We found that some anticancer drugs with iden-
tical mechanism of action recorded in CellMiner tended 
to be clustered together (arrow in Additional file 6: Fig-
ure S4). For example, most anticancer drugs whose 
mechanisms of action are topoisomerase 2 inhibitor are 
assigned to the same cluster. This finding suggests the 
subpathway could unclose drug similarity, facilitate the 
mechanism study of drug response and further provide 
guidance for individualized treatment of cancer.

CancerDAP: an online database molecularly characterizing 
subpathways involved in cellular response to 191 
anticancer drugs
To further promote investigating mechanism of drug 
response, we constructed a convenient and friendly data-
base called CancerDAP (The Anticancer Drug Active 
subPathway database), which provides detailed char-
acterization of the effects of subpathways and member 
genes in anticancer drug response from a multi-dimen-
sional perspective. The database stores 2751 subpathways 
associated with 191 anticancer drug responses. All data 
in CancerDAP were organized using MySQL. The Can-
cerDAP database is available at http://bio-bigda​ta.hrbmu​
.edu.cn/Cance​rDAP/.

CancerDAP provides a user-friendly interface mainly 
consisting of three modules: Search, Browse and Down-
load (Fig. 8). The “Search” module allows users to search 

http://bio-bigdata.hrbmu.edu.cn/CancerDAP/
http://bio-bigdata.hrbmu.edu.cn/CancerDAP/
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by pathways of interest, anticancer drugs of interest, or 
both. In the “Browse” module, when selecting a specific 
pathway or drug, query result presents basic annotations 
for each entry, including drug name, FDA status and 
attributes of subpathway (entire pathway name, subpath-
wayID, size, score and P value). Besides, two hyperlinks 

to KEGG and Cytoscape to get subpathway structure 
visualizations. Furthermore, there is a hyperlink named 
“details” in this module providing data visualization 
for multi-omic subpathway activity and the correlation 
between member genes and corresponding anticancer 
drug response across NCI-60 cell lines. Intuitive images 

Fig. 7  The landscape of subpathways associated with the response of 191 anticancer drugs in CellMiner. Overview of the 141 entire pathways 
embracing all subpathways related with the responses of 191 anticancer drugs. Each sector indicates a hallmark of cancer with pathways related to 
that hallmark listed. The top right sector shows the associations between top 25% pathways ranking by the number of anticancer drugs affected 
and TCGA cancer types. Blue compartment indicates that the association between pathway and cancer has been verified by experiments. The next 
ring and histogram (where the y axis limit is 23) illustrate the number of anticancer drug affected
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in CancerDAP can offer insights into the effects of sub-
pathway and member genes on anticancer drug sensitiv-
ity at molecular level. The “Download” module allows 
users to freely obtain the comprehensive data of all 
subpathways for analysis. Besides, there is also a “Help” 
module. For the first-time user, the module provides a 
detailed guide to search and browse through the resource 
to retrieve the desired information.

Discussion
Identifying biomarkers for clinical anticancer drug 
response prediction based on molecular data is an essen-
tial step for personalized medicine [55–58]. Although a 
number of methods for identifying signatures and pre-
dicting drug response were proposed, many of them have 
been limited to overlook interaction of genes in biologi-
cal pathway or only focus on one aspect of gene altera-
tions [4, 6, 59–62]. Here, we proposed a computational 
method to identify subpathway signatures for predicting 
anticancer drug response based on multi-omic data. Our 
method not only identified subpathway signatures which 

incorporate functional interactions between genes but 
also simultaneously considered the multi-omic effects 
(gene expression, CNV and methylation) of genes on 
drug responses.

The method was applied to identify subpathway sig-
natures associated with the responses of four anticancer 
drugs (cisplatin, gemcitabine, temozolomide and fluoro-
uracil) in different cancer types. In total, 46 subpathway 
signatures were identified and the predictive powers of 
these signatures for individual drug responses were vali-
dated. We first compared the predictive power of these 
subpathway signatures with gene signatures, which is one 
of the most commonly used strategies for drug response 
prediction. Subpathway signatures exhibited better pre-
dictive performance across seven drug response datasets 
used in this study. Then, we also validated the necessity 
of integrating multi-omics data to identify drug response 
signature. All these results highlight the superiority and 
reliability of drug response related subpathway signa-
tures we identified, suggesting that incorporating multi-
omic data with pathway topological structure embracing 

Fig. 8  A schematic workflow of CancerDAP
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some hidden meaningful information could improve the 
performance of individualized drug response prediction. 
These reliable subpathway signatures reported here have 
profound implications for personalized medicine and 
drug development, where our approach may have the 
potential to be used for evaluating the patient’s response 
to medications prior to carrying out clinical trials.

Analysis of 46 subpathway signatures provides novel 
insights into the underlying mechanisms of anticancer 
drug response. We found that three molecule features 
(expression, CNV, methhylation) of genes exhibited 
essential but inconsistent effect modes on drug response. 
This finding reveals that different molecular aberrations 
can give rise to a single clinical phenotype, proving the 
necessity and validity of integrating multi-omic data 
[63, 64]. Moreover, strong functional similarity between 
subpathway signatures from different drug response 
datasets despite locating to different entire pathways, 
indicates that subpathways may play similar roles across 
tumor types under different medication. Most subpath-
ways are related to at least one hallmark, suggesting that 
some subpathways influence on drug sensitivity as well 
as mediating the development of cancer. Some of 46 sub-
pathways showed prognostic power, and the subpathways 
from LGG-temozolomide and PAAD-gemcitabine as a 
whole could discriminate patients with significantly dif-
ferent outcomes.

Large scale screening the subpatwhays associated with 
anticancer drug sensitivity provides global insights and 
facilitates to unclose link among drug response mecha-
nisms. We also provided an important resource of 2751 
subpatwhays related to all 191 anticancer drugs docu-
mented in CellMiner. Drug similarity analysis based on 
these subpathways efficiently identified the anticancer 
drugs with similar mode of action and hence exhibited 
many potential applications in drug development. To fur-
ther facilitate the translational application of study, the 
comprehensive information about 191 anticancer drugs 
and their response related 2751 subpathways have been 
compiled, curated, and presented in a freely accessible 
resource named CancerDAP (http://bio-bigda​ta.hrbmu​
.edu.cn/Cance​rDAP/).

Conclusions
In summary, our study identified and dissected sub-
pathway signatures for individualized anticancer drug 
response, which provides useful resources to promote 
the precision cancer therapy and molecular mechanism 
study for drug responses.
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Additional file 1: Table S1. The number of responders and non respond-
ers in TCGA datasets. 

Additional file 2: Table S2. The subpathway signatures associated with 
four anticancer drugs response. 

Additional file 3: Figure S1. Multi-omics characterization of member 
genes involved in the 46 subpathway signatures. The three molecular 
omics of genes, which always appear in the same order, are, from top to 
bottom: gene expression (GeneExp), CNV and methylation. The entries in 
heatmap are expression (CNV or methylation) levels of genes from TCGA. 

Additional file 4: Figure S2. Functional connections between subpath-
way signatures associated with the responses of different drugs. (A) Func-
tional similarity network of subpathway signatures identified for different 
anticancer drugs in various tumor types. Node indicates subpathway and 
edge indicates the semantic similarity score greater than 0.6 from GOSem-
Sim between two subpatwhays. Pie chart in the node indicates pathway 
related cancer hallmarks. (B) The degree distribution of nodes in (A). Dark 
blue represents the number of intra connections between subpathway 
signatures from the same dataset. Light blue indicates the number of inter 
connections between subpathway signatures from different datasets. 

Additional file 5: Figure S3. Discriminative prognosis power of the 
identified subpathway signatures. (A) Forest plot indicates HRs and 95% 
CI from univariate Cox proportional hazards model of the subpathway 
signatures at three omic level from BLCA-Cisplatin, BLCA-Gemcitabine and 
STAD-Fluorouracil. 

Additional file 6: Figure S4. Unsupervised hierarchical clustering of 
drugs based on the mean semantic similarity scores of subpathways 
related with their responses.
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