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REVIEW

Smoking and microbiome in oral, airway, gut 
and some systemic diseases
Chunrong Huang1,2 and Guochao Shi1,2*

Abstract 

The human microbiome harbors a diverse array of microbes which establishes a mutually beneficial relation with the 
host in healthy conditions, however, the dynamic homeostasis is influenced by both host and environmental factors. 
Smoking contributes to modifications of the oral, lung and gut microbiome, leading to various diseases, such as peri-
odontitis, asthma, chronic obstructive pulmonary disease, Crohn’s disease, ulcerative colitis and cancers. However, the 
exact causal relationship between smoking and microbiome alteration remains to be further explored.
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Background
Approximately 2 billion people worldwide use tobacco 
products, mostly in the form of cigarettes, with tobacco 
smoking-related diseases resulting in at least 4 million 
global deaths per year [1]. Dramatic rise of diseases asso-
ciated with cigarette smoke or tobacco use, including 
cardiovascular disease, chronic obstructive pulmonary 
diseases (COPD), Crohn’s disease, and various forms 
of cancer [2], implying the potential detrimental role of 
smoking in occurrence of human diseases. Emerging 
evidence suggests that environmental factors play an 
influential role in shaping human-associated microbial 
communities and immune responses. Either active smok-
ing or exposure to secondhand smoke is associated with 
colonization by potentially pathogenic bacteria [3–5]. 
Yet, in an era where microbes not only cause acute infec-
tious illnesses but also are increasingly being recognized 
as etiologic agents or risk factors for chronic diseases 
including cancers [6–8] and neurologic disorders [9, 10], 
it is important to have a profound understanding of the 
effect of smoking on microbiome in diseases.

The microbiome refers to a community of microbes 
residing in a defined environment, comprising of bac-
teria, viruses, fungi, and protozoa, together with their 

genes and genomes in a given locus. The gastrointes-
tinal microbiome is the most complex echo-system of 
10–100 trillion microorganisms, in which the amount 
of bacteria was the most, in the next place was that of 
fungi and virus [11]. The oral communities come as the 
second in the human body [12]. With the initiation of the 
Human Microbiome Project in 2007, the use of culture-
independent methods allied with next generation DNA 
sequencing methods to identify the composition of the 
human microbiome, is providing a far deeper analysis 
than hitherto possible [13], including 16S ribosomal-
RNA (rRNA) sequencing, metagenomic sequencing, 
and microbial metatranscriptomics [14]. The once called 
sterile lung based on conventional culture methods was 
unraveled to contain variable microbiomes depending 
on health and specific disease states [15, 16]. The human 
microbiome has the stability and resilience to restore 
themselves after perturbation maintains homeostasis in 
health, but its composition is susceptible to many fac-
tors such as antibiotics, diet, alcohol, and smoking [17] 
(Table 1). It has become clear that the microbiome is not 
a passive victim in many pathological processes, but its 
modification often play a contributive or causative role 
in pathophysiological processes [18]. Thus far, most stud-
ies have described the microbial composition of healthy 
or diseased organs, and smoking associated alterations 
of microbiome in different sites were demonstrated 
in a variety of diseases (Table 2). In this review, we will 
summarize the current understanding of the impact of 
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smoking on microbiome and its involvement in various 
diseases, and thereby highlighting important research 
questions that require further investigation. 

Possible mechanism of the impact of smoking 
on microbiome
Massive studies demonstrated the adverse health impacts 
of tobacco on systemic pathophysiologic changes that 
can lead to disease, were associated with the chemicals, 
heavy metals, particulate matter and other constituents 
in tobacco [19–27]. However, a paucity of studies inves-
tigated the microbes in tobacco recent years, and this 
may be incriminated as causative factors in smoking-
associated diseases. Before advances in DNA sequenc-
ing technology, the golden standard of identification of 
microbes-culture method, was used to identify the Pan-
toea agglomerans, Acinetobacter calcoaceticus, and spe-
cific Pseudomonadaceae species such as P. fluorescens and 
Stenotrophomonas maltophilia in fresh tobacco leaves 
or other species in single tobacco flakes or fine tobacco 
particles [24, 26]. With the advent of high-throughput 
sequencing technology, a 16S rRNA-based taxonomic 
microarray and cloning and sequencing were utilized to 
identify a variety of uncultured species. Cigarettes made 
in the European Union contained 15 different classes 
of bacteria. Sapkota et  al. revealed extensive bacterial 
diversity in cigarettes, ranging from soil microorganisms 
and commensals to potential human pathogens, includ-
ing Acinetobacter, Bacillus, Burkholderia, Clostridium, 
Klebsiella, and Pseudomonas aeruginosa. Many of the 
detected organisms are capable of causing pneumonia, 
bacteremias, foodborne illnesses, meningitis, endocardi-
tis, and urinary tract infections [28]. Therefore, mecha-
nism that may lead to different bacteria profiles among 
smokers may be due to exposure to bacteria in cigarettes, 
leading to bacterial acquisition and colonization.

Another possibility for the mechanism through which 
current smokers may have different bacteria commu-
nity may be related to impaired antimicrobial defenses 
due to the immunosuppressive nature of tobacco. 
Tobacco smoking has been observed to affect the 
peripheral immune system on several levels, including 
a decrease in the activity of natural killer cells, increase 
in white blood cell counts, and a higher susceptibil-
ity to infection [29]. Smoking increases the number of 
macrophages, neutrophils, eosinophils, and mast cells, 
decreases the number of airway dendritic cells, and 
alters macrophage and neutrophil function [30, 31]. 
Expanding macrophages and neutrophils demonstrated 
impaired phagocytic functions to the efficient clearance 
of bacteria or pathogen, as evidenced by reduced bac-
terial-stimulated production of superoxide and surface 
receptor expression, (e.g. TLR2) which is important for 

the recognition and response to gram-positive bacteria 
[32, 33]. Therefore, smoking related immunosuppres-
sion could permit novel bacteria colonization.

It is also possible that metabolic advantages of bio-
film formation and increased adherence to the epi-
thelium are conferred to certain taxa expansion in a 
smoky environment. Exposure to cigarette smoke could 
increase biofilm formation by specific bacteria [34, 35]. 
Biofilm is a self-generated polymer matrix that insu-
lates the pneumococcus and other microbial pathogens 
from host defense and antibiotics, promoting bacterial 
persistence [36]. Mutepe et al. found that increased bio-
film formation of Streptococcus pneumoniae and inacti-
vation of pneumolysin induced by exposure to cigarette 
smoke condensate are likely to favor microbial colo-
nization and persistence, both being essential precur-
sors of pneumococcal disease [35]. Similarly, in another 
study, observations of increased biofilm formation of 
Staphylococcus aureus and human cell adherence in 
the presence of cigarette smoke (CS) indicate the role 
of bioactive effects of CS on resident microbiota in the 
pathogenesis of respiratory infection in CS-exposed 
humans [34]. These findings suggest that cigarette 
smoke may promote colonization and persistence of 
specific bacterial taxa in the human body through the 
biofilm formation, contributing to infections in differ-
ent parts of the body.

“Microenvironment” may also be relevant regarding 
the influence of smoking on particular members of the 
microbiota, such as oxygen, pH, and acid production. 
Oxygen tension is an important promoter of the changes 
in bacterial community, with microaerophilic and anaer-
obic bacteria able to predominate due to lower oxygena-
tion [37, 38]. Shanahan et  al. demonstrated a reduction 
of the relative abundance Prevotella and Neisseria spp. 
and an increased relative abundance of Firmicutes, prin-
cipally Streptococcus spp., and Veillonella spp., along with 
the genus Rothia (Actinobacteria) in the upper GI tract 
from current smokers, compared with that from persons 
who have never smoked [39]. The differences observed 
in Neisseria, Streptococcus, and Rothia spp. in current 
smokers indicated the implication of changes in oxygen 
tension. In that study, alterations in duodenal bicarbo-
nate secretion [40] and lower pH [41] in smokers may 
also provide selective pressure on the growth of Neisse-
ria, which is one of the capnophiles and sensitive to acid 
conditions [42], whereas Streptococcus and Rothia spp. 
are acidogenic and acid tolerant.

According to above discussion, we could reach the con-
clusion of mechanisms of cigarette smoking to influence 
the microbiome via changes to immune homeostasis, 
biofilm formation, oxygen tension, or through direct con-
tact with microbes it contained, and these mechanisms 



Page 3 of 15Huang and Shi  J Transl Med          (2019) 17:225 

may be involved in the occurence of various diseases 
(Fig. 1).

Smoking and oral microbiome in diseases
The oral microbiome, comprising more than 2000 bac-
terial species [43], plays an important role in the main-
tenance of oral health [44]. Dysbiosis of oral microbiota 
has been associated locally with periodontal, respiratory, 
cardiovascular and systemic cancers, including head and 
neck cancer [45], pancreatic cancer [46], and esophageal 
cancer [47], yet regarding factors that influence the oral 
microbiome composition are poorly understood. Smok-
ing is a major environmental factor that influences oro-
dental pathophysiology [48]. Toxic components and 
bacteria in cigarette impact oral bacteria directly or indi-
rectly through immunosuppression, oxygen deprivation, 
biofilm formation, or other potential mechanisms [49], 
leading to loss of beneficial oral species and pathogen 
colonization, ultimately to disease [50]. Despite of differ-
ent sampling sites or laboratory methodologies, numer-
ous studies have shown predominant or inhibited genera 
in oral from smokers compared with non-smokers. Cul-
ture results of smokers showed less numerous Neisse-
ria species or Branhamella [51, 52]. Due to limitations 
on bacterial profiling of traditional method, recently, 
sequence analysis of bacterial 16S rRNA-encoding genes 
was performed to identify the different mouth commu-
nities between nonsmokers and smokers in species such 
as Porphyromonas, Neisseria, and Gemella [53]. Mason 
et al. revealed the microbial profiles of subgingival plaque 
samples from 200 systemically and periodontally healthy 
smokers and never-smokers were different at all taxo-
nomic levels, and principal coordinate analysis revealed 
distinct clustering of the microbial communities based on 
smoking status. Smokers demonstrated a highly diverse, 
pathogen-rich, commensal-poor, anaerobic microbiome 
that is more closely aligned with a disease-associated 
community in clinically healthy individuals, suggesting 
that it creates an at-risk-for-harm environment that is 
primed for a future ecological catastrophe [37].

Periodontitis
Evidences indicate that periodontitis was associated 
with smoking and complex microbial communities in 
the subgingival sulcus [54–56], and cigarette smok-
ers were found to have a statistically significant higher 
risk of severe periodontitis than non-tobacco users 
[57]. More and more researchers focused on the asso-
ciations between smoking and sub-gingival bacterial 
species in the pathogenesis of periodontitis. Smoking-
associated periodontitis is less diverse and distinct 
from that of non-smokers. Shchipkova et  al. explored 

that the microbial profile of smokers with moderate 
to severe chronic periodontitis and demonstrated sig-
nificant differences in the prevalence and abundance of 
disease-associated and health-compatible organisms, 
with greater abundance of Parvimonas, Fusobacte-
rium, Campylobacter, Bacteroides, and Treponema and 
lower levels of Veillonella, Neisseria, and Streptococ-
cus [58]. The differences existed in the composition of 
the subgingival microbiome between smoker and non-
smoker patients with chronic moderate periodontitis 
were also elucidated in other studies [59–61]. In addi-
tion, smokers are at high risk for other oral diseases, 
such as peri-implant mucositis and peri-implantitis 
[62, 63]. Tsigarida et al. demonstrated smoking shapes 
the peri-implant microbiome of peri-implant biofilm 
samples from patients with peri-implant health, peri-
implant mucositis, and peri-implantitis [63], paralleled 
with studies depicting that the underlying mechanism 
is through depleting commensals from this niche and 
favoring colonization of pathogens [63].

Infective endocarditis
In recent years, significant associations have been 
elucidated between periodontitis and other systemic 
diseases [64, 65], and the bacterial flora of the mouth 
entering the bloodstream may potentially be involved 
in the pathogenesis of invasive infections such as infec-
tive endocarditis, and the bacterial flora of the mouth 
entering the bloodstream may potentially be involved 
in the pathogenesis of invasive infections such as infec-
tive endocarditis [66]. Oral bacteria of endocarditis 
patients have been reported to be shown different com-
munity compositions from that of healthy individuals 
[67, 68]. Staphylococcus aureus, viri-dans Streptococci 
and Enterococcus spp. are the most common patho-
gens identified [69]. Gemella sanguine, Streptococ-
cus tigurinus, L. goodfellowi were also found to be the 
cause of infective endocarditis [70–72]. However, there 
was barely study about the effect of smoking on infec-
tive endocarditis regarding oral microbiome. Biofilm 
formation, complex mechanisms with other bacteria 
might play a crucial role in the occurrence of invasive 
infections [71]. Indeed, endocarditis is also considered 
an example of a biofilm-mediated disease [73]. Given 
the importance of biofilm formation for adhesion in 
the oral cavity [70], and the fact that cigarette smoke 
increased biofilm formation by specific bacteria and 
promoted colonization [34], it would be reasonable to 
suspect that oral microbiome might be the missed con-
nectivity between smoking and infective endocarditis. 
Further studies on whether smoking could increase the 
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incidence of infectious endocarditis through altering 
oral micro-organisms remains to be elucidated.

Other
In addition to local health, oral microbiome also plays an 
important role in other systemic diseases, including HIV 
infection, gastrointestinal cancer, even immune diseases. 
HIV infection has been associated with dysbiosis of oral 
microbiome, with increased levels of pathogenic bacte-
ria and fungi [74, 75], HIV-infected smokers showed rich 
abundance of specific bacterial taxa compared to infected 
non-smokers, including Granulicatella, Lactobacillus, 
Veillonella, Enhydrobacter, Streptococcaceae and Coma-
monadaceae, moreover, abundance of the fungal genus 
Candida was also increased in HIV-infected smokers 
[76]. Oral microbiome was also corroborated to be asso-
ciated etiologically with gastrointestinal cancer in virtue 
of composition concordance among sites within the oral 
cavity and gut, and anatomical acquirement of gut micro-
biome from mouth. In colorectal cancer participants, 
current smoking was associated with a 33% decrease in 
relative counts of Betaproteobacteria (primarily Neisse-
ria) and 23% increase in relative abundance of Veillonel-
laceae family [77]. These data indicated that community 
composition of oral microbiome may be associated with 
numerous diseases such as periodontitis, cancer, and dia-
betes, however, it remains to elucidate the causative rela-
tionship between a specific bacterium and the disease, 
and future work may also wish to consider this potential 
association.

Smoking and airway microbiome
Because of the presence of a sparse microbiome, espe-
cially in healthy conditions, traditional standard micro-
biological culture-based methods can hardly detect 
microbes in healthy individuals, so the lung has his-
torically been presumed as sterile. Over the past several 
years, culture-independent molecular methods spring-
ing up, lung microbial communities in healthy individu-
als showed a phenotype predominant by Proteobacteria, 
Firmicutes and Bacteroidetes, as evidenced by bronchoal-
veolar lavage samples of healthy adults, bacterial com-
munities vary with different airways in terms of different 
airway microarchitecture, and documented changes in 
the lung microbiome in several lung diseases have been 
uncovered [78, 79].

Smoking, cigarette smoke exposure, tobacco smoke 
or pollutants in the air contact directly with the airway, 
through the way to the lungs, causing a variety of airway 
diseases, such as COPD, asthma, cystic fibrosis and lung 
cancer. In recent years, the effect of smoking on microbi-
ome of lower respiratory tract attracted increasing atten-
tion. Mammen and Aethi proposed a revised “Vicious 

Circle”, suggesting that insults such as tobacco smoke 
impairs innate immune defenses, causing variations in 
the abundance, taxonomic composition and phylogenetic 
diversity of the lung microbiome. This, in turn, leads to 
maladaptive inflammatory responses, further impair-
ment of lung defenses and further dysbiosis of the lung 
microbiome, setting up the vicious circle with its atten-
dant consequences [80].

COPD
COPD is a chronic airway inflammatory disease that 
can be prevented and treated lung disease, character-
ized by a largely irreversible chronic obstruction of air-
flow. The course of the disease is featured and frequently 
aggravated by intermittent exacerbations, acute changes 
in the airway microbiome, for example by introduction 
of a new strain of a respiratory pathogen, lead to larger 
inflammatory responses, which present clinically as 
exacerbations of COPD [80], so changes in the compo-
sition and activity of the microbiome may be implicated 
in their appearances. Pragman et al., once described the 
lung microbiome in moderate and severe COPD patients, 
with the former dominated by Actinobacteria and Pro-
teobacteria, the later by Actinobacteria and Firmicutes, 
and they also found a trend without significant difference 
that severe subjects contained more Firmicutes and less 
Actinobacteria and Proteobacteria than the moderate 
subjects [81]. However, in another cohort study, in both 
stable and exacerbated samples, the most prevalent phyla 
were Proteobacteria, Firmicutes and Actinobacteria, the 
most prevalent genera were Streptococcus and Haemo-
philus, exceeding half of the abundance of present bac-
terial microbiome [82]. Although these researchers also 
found no significant differences in bronchial microbi-
ome between stability and exacerbation using 16S rRNA 
sequencing and shotgun metagenomic sequencing, func-
tional metabolic capabilities showed significant changes 
in several pathways, indicating specific changes in the 
lung microbiome in the progression of COPD [82].

Smoking is the principal cause or initiating fac-
tor responsible for the development of the disease in 
COPD patients. It alters host–microorganism interac-
tion dynamics in the airways, contributing to COPD [83]. 
The influence of cigarette smoke on the microbiome and 
the role of the microbiome in COPD are relatively new 
field with limited data. Erb-Downward et al. showed the 
diversity of bacterial communities in bronchoalveolar 
lavage fluid (BALF) from healthy smokers was similar to 
that from healthy never-smokers, and COPD patients, 
however, further results from obtained lung tissues of 
COPD patients unraveled the heterogeneity and diversity 
in the bacterial microbiota across different regions of the 
abnormal lung [79], suggesting specific changes in lung 
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microbiome resulted from smoking in COPD patients 
participate in the occurrence of COPD or exacerbation. 
Respiratory tract infections, either viral or bacterial, are 
major causes of acute exacerbation of COPD (AECOPD) 
[84]. Cigarette smoke exposure is a well-known risk fac-
tor for important bacterial and viral infections in the 
respiratory tract [85]. In the lung ecosystem, virus also 
plays a pivotal roles in lung diseases, for example, phages 
could lead to immune-mediated microbial competition 
[86], opportunistic infection [87], therefore, alterations 
of lung viral communities could change the bacteriome 
leading to dysbiosis and disease progression in indi-
viduals (e.g., COPD). Gregory et  al. performed the first 
study of the effects of smoking on the lung DNA virome, 
lung viromes profiles were statistically indistinguishable 
across smokers and nonsmokers, and viral diversity was 
significantly lower in the lungs of healthy smokers [88]. 
Statistical analyses revealed that changes in viral com-
munities correlate most with changes in levels of arachi-
donic acid and IL-8, both potentially relevant for COPD 
pathogenesis [88]. These data imply the potential role of 
changes in viral communities induced by smoking in the 
development of COPD. Although the role of smoking on 
microbiome in COPD needs to be further investigated, 
early studies have suggested an association between lung 
microbiota and the clinical outcomes of disease.

Asthma
Asthma is a chronic airway inflammatory disease, char-
acterized by reversible airway obstruction, chronic air-
way inflammation, and airway hyper-responsiveness 
[89–91]. There are an emerging number of studies shown 
the correlations between airway microbiome and the 
incidence, severity or reactivity of corticosteroid medi-
cations of asthma [92–95]. Asthmatic patients harbored 
higher abundance of Proteobacteria and lower Bacteroi-
detes phylum compared to healthy control as evidenced 
from samples of bronchial epithelial brushings [96], and 
the sputum microbiota in severe asthma patients dif-
fers from healthy controls and non-severe asthmatics, 
with a significant correlation between Streptococcus spp. 
and eosinophilia in severe asthma patients [94]. Airway 
colonization with distinct specific bacteria were also 
associated with the severity of airways obstruction, neu-
trophilic airway inflammation [97] and corticosteroid 
resistance in asthma [98]. While the bacterial communi-
ties in airway inflammatory disease have been extensively 
studied, fungal microbiota is still poorly characterized. 
The analysis of induced sputum revealed that 90 fungal 
species were more abundant in asthmatics [99], of which 
members of genera Aspergillus and Penicillium were sig-
nificantly associated with impaired post-bronchodila-
tor expiratory volume in 1  s in asthmatics [100]. Severe 

asthmatics were characterized by enrichment of Asper-
gillus; the relative abundance of Aspergillus increased 
approximately 15-fold compared to mild asthmatics 
[101]. However, whether these organisms are cause or 
result of the pathophysiology or medications in asthma 
remains to be determined.

As the main source of indoor air pollution, tobacco 
smoking, mostly in the form of cigarette smoking, is an 
important environmental factor influencing the out-
comes of asthma. Smoking (including active and passive 
smoking) can not only cause frequent attacks of asthma, 
lead to rapid decline of lung function in asthmatic 
patients, but also reduce the therapeutic effect of gluco-
corticoid in asthmatic patients, making the condition of 
asthmatic patients difficult to control [102]. Microbial 
colonization of the lower airway may be shaped by smok-
ing in asthma, accordingly, some of the increased risk 
and severity of pulmonary disorders in tobacco smokers 
with asthma [103] could still be mediated through smok-
ing-induced changes in the lung microbiome. Simpson 
et  al. extracted DNA from induced sputum in asthma 
patients and profiled microbial communities using 16S 
rRNA pyrosequencing, the results showed ex-smokers 
have a higher prevalence of phylum Fusobacteria, the 
phyla Firmicutes and Bacteroidetes, and a lower abun-
dance of bacteria from phylum Proteobacteria compared 
with never-smokers. They also revealed an association 
between smoking and increased diversity of bacteria 
[104]. However, another study failed to demonstrate the 
association, because of no difference in bacterial domi-
nance from induced sputum in asthma patients between 
ex-smokers and non-smokers, this lack of difference may 
be explained by the small sample size and different sam-
ples in that study [97]. More studies examining effect 
of smoking on airway microbiome in individuals with 
asthma are warranted.

Cystic fibrosis
Cystic fibrosis (CF) is a multi-organ disease with vari-
able clinical characteristics, with pulmonary manifesta-
tions (e.g. bronchiectasis and chronic infection) being 
the prominent feature [105, 106]. Progressive lung dis-
ease driven by microbial colonization and inflammation 
remains the leading cause of morbidity and mortality in 
CF patients [106]. The lung environment in cystic fibro-
sis patients, characterized by depletion of the airway sur-
face liquid layer leading to impediment of mucociliary 
clearance, is ideal for microbial colonization [107]. Cul-
ture-independent molecular methods allowed emerging 
threads of the features of the respiratory microbiome in 
CF to be gradually discovered in recent years. The lung 
microbiota fluctuated in a chronological way and asso-
ciated with clinical states. In CF patients aged < 2 years, 
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nontraditional taxa (e.g. Streptococcus, Prevotella and 
Veillonella) predominated, these species shifted to tra-
ditional CF taxa (Pseudomonas, Staphylococcus, Haemo-
philus, Stenotrophomonas and Burkholderia) [108] and 
remained relatively stable in older children (>  6  years) 
and adults, especially in clinical stability [109–111]. With 
improvement of biological diagnosis, fungal and viral 
colonization in CF moved into the focus. Candida albi-
cans and Aspergillus fumigatus are commonly detected in 
CF sputum cultures and have also been associated with 
acute pulmonary exacerbations [112], and the number of 
fungal species detected in sputum fluctuated over time 
[113]. As for respiratory “virome” in CF, precious few 
data reported distinct phage communities in CF com-
pared with non-CF patients [114].

Mutations of cystic fibrosis transmembrane conduct-
ance regulator (CFTR), an epithelial anion channel, are 
predominant in the cause of CF [115]. Smoking is one 
of the most important adverse factors affecting respira-
tory health. Recent researches pay close attention to the 
issue related to the impact of smoking in the pathology 
of CF and clinical outcomes. Campbell et al. [116] found 
tobacco smoke in patients with CF exhibited poor clini-
cal status, including reduced lung function, and a higher 
number of pulmonary-related hospitalizations. Some 
other studies focus on the variations of genes within the 
context of tobacco smoking and detected the associations 
between smoke exposure and CTFR dysfunction [117, 
118], which could in turn lead to deleterious effects on 
airway surface liquid secretion, enhanced mucus expres-
sion, reduced mucociliary clearance, chronic bacterial 
infection, and excess inflammation [119], rendering the 
main morbidity and mortality in CF patients because of 
the fact that lung inflammation and chronic respiratory 
infections alone account for nearly 95% of the morbid-
ity and mortality in patients with CF [120]. In addition, 
smoking is known to stimulate mucosal linings and 
increase sputum production in the respiratory tract, rais-
ing the possibility of bacterial infections. Yet, there is no 
evidence to investigate the microbiome (e.g. bacteria) in 
CF patients in the context of smoking. Both the effect of 
smoking on microbiome in CF patients and the possible 
causal relationship between smoking-induced variations 
of microbiome, possibly through CTFR dysfunction, and 
the clinical manifestations of CF, could not be proved. 
We may assume the possible mechanism of detrimental 
effect of smoking on CF may be because the alterations 
in microbiome due to airway surface liquid secretion, 
enhanced mucus expression, reduced mucociliary clear-
ance induced by loss of CTFR functions.

Smoking and gut microbiome
The gastrointestinal microbiome is a complex echosys-
tem of 10–100 trillion microorganisms composed of bac-
teria, virus and fungal species, that develops immediately 
after birth depending on multiple factors, and fluctuates 
or changes resulted from affection of a number of factors 
such as age, drugs (especially antibiotics), diet, alcohol, 
and smoking throughout the whole time growing up [11, 
17]. In virtue of the most extensively focus on microbiota 
colonizing the intestinal tract, it has become clear that in 
healthy individuals, the microbiome is inclined to remain 
rather stable, with Bacteroides, Faecalibacterium, and 
Bifidobacterium being the most prevalent genera [121], 
and disturbance of the microbial equilibrium is associ-
ated with a variety of local and systemic diseases [17, 18].

Smoking prevalence is the leading cause responsible 
for developing Crohn’s disease (CD), colonic carcinoma, 
and systemic disease [122, 123]. The vulnerability of 
intestinal microbiome provokes interest in microbiome 
alterations in smoking environment. In animal mod-
els, cigarette smoke decreases organic acids levels and 
population of bifidobacterium in the caecum of rats 
[124]. Side-stream smoking increased the abundance 
of Clostridium and decreased the amount of Lactoc-
coci, Ruminococcus, Enterobacteriaceae and segmented 
filamentous bacteria (SFB) in the cecal microflora [125]. 
In human studies, smoking increased the probability of 
developing Clostridium difficile infection [126]. Current 
smokers displayed increased Bacteroidetes and decreased 
Firmicutes and Proteobacteria in gut microbiota compo-
sition community compared with never smokers [127]. 
Another study also revealed healthy smokers harbour 
higher Bacteroides–Prevotella (34.8%) than nonsmokers 
(24.1%) [128]. In addition, smoking status is also con-
nected with variations in gut microbiome, as reported 
by Biedermann et al. that healthy individuals undergoing 
smoking cessation increased Firmicutes and Actinobac-
teria, while decreasing Bacteroidetes and Proteobacteria 
[129]. Many researchers investigated the role of smoking 
in gut microbiome in inflammatory bowel disease, we 
will discuss the effects of smoking on gut microbiome in 
several diseases.

Crohn’s disease
Crohn’s disease (CD) is a type of inflammatory bowel dis-
ease that mainly affect gastrointestinal tract, character-
ized by chronic inflammation due to defective mucosal 
barrier and greater intestinal permeability [130]. While 
the cause of CD is multifactorial, a combination of envi-
ronmental, immune, and bacterial factors in genetically 
susceptible individuals [131–133]. Microbial dysbio-
sis is thought to be associated with either development 
or exacerbation of underlying Crohn’s disease [134]. CD 
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patients have a relevant dysbiosis of the gastrointestinal 
microbiome, including reduction of normal commensal 
phyla (Bacteroidetes and Firmicutes), increase of patho-
genic organisms (E. coli, Campylobacter species, and 
Mycobacterium species) [135], and a greater number of 
mucosal surface-associated bacteria with higher adher-
ence and invasion compared with healthy control sub-
jects [136]. Researchers also found CD patients possess a 
reduction in Roseburia spp., Clostridium and Bacteroides 
species, known to be producers of butyrate, which is fun-
damental to intestinal cell homeostasis and mucosal bar-
rier integrity [137, 138]. These studies have shed light on 
the possible causative role of the dysbiosis of gut micro-
biota in CD.

Smoking is the best studied environmental risk factor 
for CD, exerting detrimental effects on mucosal barrier 
and greater intestinal permeability and disease suscep-
tibility [139]. Accumulating data investigated the asso-
ciation between smoking and imbalance of intestinal 
microbiome [139]. Accordingly, several studies indi-
cated that intestinal microbes could be an important link 
between smoking and CD [139]. Benjamin et  al. found 
greater abundance of Bacteroides–Prevotella in smoking 
patients with CD compared with nonsmokers through 
fluorescent in  situ hybridization using probes targeting 
16S rRNA of bacteria [128]. In another study, Opstelten 
reported a reduced microbial gene richness and taxo-
nomic diversity in smoking patients with CD, they fur-
ther demonstrated a statistically significant reduction in 
specific genera Collinsella, Enterorhabdus, and Gordoni-
bacter [140], which can produce urolithins with anti-
inflammatory properties [141]. Faecalibacterium has 
immune-regulatory function to reduce IL-12 expression 
in peripheral blood mononuclear cell (PBMC) in  vitro 
and increase IL-10 release, lower ileal mucosal Faecali-
bacterium prausnitzii is correlated with greater risk of 
recurrence following surgical resection in CD patients 
[142]. Murugananthan et al. revealed a reduction in the 
number of Faecalibacterium prausnitzii in inflamed 
mucosal tissue from smokers with active CD compared 
with non-smokers, the risk of post-operative CD recur-
rence may be predetermined at a pre-operative stage 
due to dysbiosis. These observed features of reduced gut 
microbiota may explain the persistent intestinal inflam-
mation in CD patients in smoky environment, high-
lighting the possible role of microbes interacting with 
smoking and CD (or mediating the adverse effects of 
smoking in CD). However, the mechanisms through 
which smoking caused alterations in microbiota are 
unclear.

Ulcerative colitis
Ulcerative colitis (UC) is another type of chronic 
relapsing inflammatory disorder confined to the colo-
rectal region and to the mucosal layer of the gastro-
intestinal tract. Previous studies have demonstrated 
aberrant microbiota deviations from gut homeostasis 
in UC patients, as evidenced by a low taxonomic diver-
sity, decreases in Firmicutes and increases in Proteobac-
teria in UC gut microbiomes [143–145]. Proportions of 
Fusobacteriaceae family increased, Bifidobacteria and 
members of the Faecalibacterium taxon appeared to be 
compromised in gut microbiota of UC patients [146, 
147], and further study suggested the reduced abundance 
of Bifidobacteria as a microbial biomarker to identify the 
intestinal dysbiosis triggering UC [147].

The understanding of pathogenesis and etiology of UC 
is still out of reach. It was presumed that genetically sus-
ceptible individuals of UC or patients with UC exhibited 
aberrant mucosal immune response against their gut 
microbiota [148, 149], which could result in productions 
of pro-inflammatory cytokines responsible for abnormal 
inflammation reaction in the digestive tract [150]. Envi-
ronmental factors were deemed to trigger the onset and 
cause flares of inflammatory bowel disease. Smoking is 
among the most widely studied factors described in UC. 
The contradictory results of reverse associations between 
smoking and the natural history of UC has long been 
the topic of great interest. Some studies showed current 
smokers with UC are more likely to show milder disease, 
fewer hospitalizations, and reduced need for corticos-
teroid and immunosuppressant therapy compared with 
non-smokers [151]. Others did not find the protective 
role [152, 153]. Li et al. [154] suggested cigarette smok-
ing could change the composition of intestinal micro-
biota, modulate mucus production and inhibit repairing 
of the gastrointestinal tract. Nevertheless, the main com-
ponents of cigarette smoking has inflammatory-regula-
tory properties, for instance, Heme oxygenase-1 (HO-1) 
and carbon monoxide (CO) play a role in modulating 
cytokine expression and macrophage bactericidal activity, 
regulating intestinal homeostasis and mucosal immune 
responses to the enteric microbiota [155, 156], both of 
which were involved in the possible pathological process 
in UC. The exact mechanisms through which smoking is 
associated with alterations in microbiota are unclear. As 
yet, there is no data exploring the effect of smoking on 
gut microbiota in patients with UC. Smokers may have 
behavioral characteristics, such as diet, that predispose 
to a luminal and mucosal dysbiosis [157]. However, it is 
also possible that smoking has a direct influence on the 
microbiota, and this deserved to be mentioned in future 
research hotspots.
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Colorectal cancer
Colorectal cancer (CRC) is considered a major pub-
lic healthy issue, with approximately 700,000 deaths 
reported annually worldwide [158], ranking only sec-
ond to lung cancer [159]. Chronic inflammation is a 
well-established factor associated with cancer onset, 
progression through mucosal disruption and the excess 
of reactive oxygen species (ROS) [160, 161]. At present, 
many scholars believe that the pathogenesis of CRC may 
be associated with the participation of intestinal micro-
organisms, which started the damage mechanisms of 
intestinal mucosal immune response, thus leading to 
immune response and inflammation [162]. The correla-
tion between gut microbiome and the initiation of cancer 
can be dated from last century when people observed the 
potential etiology of bacteria Streptococcus bovis in the 
occurrence of CRC [163]. In recent years, the disturbance 
of gut microbiome was further pushed to a high new cli-
max, as distinct gut microbiome composition detected in 
CRC patients.

The abundance of several microbes, such as Strepto-
coccus gallolyticus [164], Fusobacterium, [165], B. fragilis 
[166], Escherichia–Shigella, Peptostreptococcus ten [167] 
were observed to be enriched in CRC patients versus 
control groups, while genera such as Bacteroides, Rose-
buria [164] and Pseudomonas [167] were significantly 
depleted in CRC patients. Moreover, the barely studied 
fields gut virome and mycobiome correlated with CRC 
were also reported when Nakatsu et al. identified a set of 
discriminatory virome signatures (e.g. Orthobunyavirus, 
Tunalikevirus, Phikzlikevirus, Betabaculovirus, Sp6lik-
evirus, Sfi21dtunalikevirus, Punalikevirus, Lambdalik-
evirus, C2likevirus, and Mulikevirus) enriched in CRC 
subjects [168], and when Coker et  al. reported higher 
Malasseziomycetes and depleted Saccharomycetes and 
Pneumocystidomycetes in CRC patients [169].

CRC is a complex disease susceptible to a variety of diet 
and lifestyle factors, especially smoking, a well-known 
factor involved in the initiation and increasing the risk 
of CRC with a prolonged latency period [170]. Although 
the mechanisms of smoking-induced susceptibility to 
higher risk of CRC remain to be elucidated, preliminary 
evidence suggests a collective role of host, microbial, 
and smoking, such as intestinal and immune disruption, 
impaired clearance of pathogens, changes in the virulence 
of bacteria and fungi, and ingestion of bacteria that are 
present in cigarettes [171]. The fact as mentioned above 
that cigarette smoke or side-stream smoking decreases 
the amount of Bifidobacterium [124], mainly butyrate-
producing bacteria with anti-inflammatory and anti-
tumor molecule role [172] was highly consistent with 
the results that butyrate-producing bacteria are depleted 
in cancer patients [170]. In addition, in vitro and in vivo 

studies found that cigarette smoke not only decrease the 
fecal abundance of Bifidobacterium but also reduce its 
production of short chain fatty acids (SCFAs) [124, 173], 
immune-regulatory molecules modulating immune and 
inflammatory response within many diseases, and reduc-
tions in the concentration of SCFAs especially butyrate 
in colorectal tissues were demonstrated to be associ-
ated with the possibility of early stage CRC development 
[174]. Moreover, the smoking-related microbial changes 
may lead to altered epithelial mucin composition of the 
mucus layer and increased inflammatory response [175], 
which play pivotal role in the onset of CRC.

Stated thus, these studies suggested that alterations of 
gut microbiome may be an essential contributing factor 
to the initiation and development of this cancer in the 
context of smoking.

Systemic diseases
In addition to inflammatory bowel disease, dysbiosis of 
the gut microbiome has been implicated in many autoim-
mune diseases, including multiple sclerosis (MS) [176], 
rheumatoid arthritis (RA) [177], ankylosing spondyli-
tis [178], systemic lupus erythematous (SLE) [179], and 
[180]. Human studies and mouse models support the 
role of the gut microbiome in predisposition to RA, such 
as reduction in bacteria belonging to the family Bifido-
bacterium and Bacteroides [181], and higher prevalence 
Prevotella copri [182]. Ye et al. also revealed higher abun-
dance of Bilophila spp., and several opportunistic patho-
gens (e.g., Parabacteroides spp. and Paraprevotella spp.), 
together with a reduction in butyrate-producing bac-
teria Clostridium spp., and two genera of methanogens 
(Methanoculleus spp., Methanomethylophilus spp.) in 
BD patients [183]. MS has also been recently associated 
with changes of the intestinal microbiota with the study 
reporting depletion in species belonging to Clostridium 
and Bacteroidetes in Japanese patients with MS [184].

Smoking affects both innate and adaptive immune 
systems and plays dual roles in regulating immunity by 
either exacerbation of pathogenic immune responses or 
weakening of defensive immunity [185]. Smoking is a 
well-established risk factor for developing RA, SLE and 
MS [186–189]. Epidemiologic data showed positive asso-
ciation between the incidence of MS and smoking, the 
risk of MS increased with the number of pack-years of 
smoking increasing [190], smoking renders individuals 
with HLA–DRB1 shared epitope (SE) alleles susceptible 
to RA, stronger association existed in individuals carry-
ing double copies of the SE [186]. The gut microbiome 
is responsible for maintaining homeostasis and function 
of host immune system indicating the probable essen-
tial role in changing the immune response that leads to 
autoimmune diseases like RA. As mentioned earlier, 
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cigarette smoking could change the composition of intes-
tinal microbiota [154], and some of the components play 
an important role in modulating intestinal homeostasis 
and immune responses to the enteric microbiota [155, 
156]. The role of smoking involved in these diseases was 
assessed in both animal models and clinical trials, but so 
far no exact underlying mechanisms were identified. The 
gut microbiome may provide the missing link to this puz-
zle and help solve the mystery of the influence of smok-
ing in autoimmune diseases, and this deserve the future 
research to further the understanding of the role of 
microbiome in systemic diseases.

Conclusions
In conclusion, microbiome research has enormously 
developed in the last years tempting to move its steps 
to better characterize the human microbiome. Smok-
ing is the risk factor of several diseases, it could impact 
human microbiome directly or indirectly through 
immunosuppression, oxygen deprivation, biofilm for-
mation, or other potential mechanisms. None of the 

above mechanisms is well established, and adequate 
explanation of how smoking affects the microbiome 
is yet to be established. Microbiome has pivotal roles 
in the development of healthy immune responses, and 
oral, airway and gut microbial dysbiosis can contribute 
to local or systemic various diseases such as periodon-
titis, HIV infection, gastrointestinal cancer, asthma, 
COPD, CF, CD, UC, RA, MS. Evidence suggests the 
microbial dysbiosis in many diseases in smoky environ-
ment, but the causal relationship between microbiome 
alterations and disease progress remains enigmatic. 
More basic and clinical researches may help us gain 
more insight into the hugely complex net-work of 
smoking–microbiome–host interactions underlying the 
observed associations. Longitudinal studies integrating 
metagenomic, transcriptomic, metabolomic, methods 
with clinical results may help us ascertain the relation-
ships between smoking, microbiome, and pathological 
mechanism in diseases.

Table 2 Influence of smoking on the microbiome in some diseases

Diseases Reference Origin Sample Enriched microbes Depleted microbes

Periodontitis [60] Human Subgingival plaque sample Genera: Fusobacterium, Fretibacterium, 
Streptococcus, Veillonella, Corynebac-
terium, TM7, Filifactor

Genera: Prevotella, Campylobacter, 
Aggregatibacter, Veillonellaceae 
GQ422718, Haemophilus, Prevotel-
laceae

Asthma [104] Human Subgingival plaque sample Genera: Fusobacterium, Prevotella and 
Selenomonas

Not reported

Crohn’s disease [128] Human Subgingival plaque sample Genera: Anaeroglobus, Bulleidia, 
Corynebacterium, Granulicatella

Genera: Veillonella, TM7

Fig. 1 Schematic summary illustrating the possible mechanisms of smoking-induced dysbiosis of microbiome and its possible role in different 
diseases
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