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Abstract 

Background:  Colorectal cancer (CRC) is the third leading cause of cancer-related mortality worldwide. Current sys‑
tematic methods for diagnosing have inherent limitations so development of a minimally-invasive diagnosis, based 
on the identification of sensitive biomarkers in liquid biopsies could therefore facilitate screening among population 
at risk.

Methods:  In this study, we aim to develop a novel approach to identify highly sensitive and specific biomarkers by 
investigating the use of extracellular vesicles (EVs) isolated from the peritoneal lavage as a source of potential miRNA 
diagnostic biomarkers. We isolated EVs by ultracentrifugation from 25 ascitic fluids and 25 peritoneal lavages from 
non-cancer and CRC patients, respectively. Analysis of the expression of EV-associated miRNAs was performed using 
Taqman OpenArray technology through which we could detect 371 miRNAs.

Results:  210 miRNAs were significantly dysregulated (adjusted p value < 0.05 and abs(logFC) ≥ 1). The top-10 miR‑
NAs, which had the AUC value higher than 0.95, were miRNA-199b-5p, miRNA-150-5p, miRNA-29c-5p, miRNA-218-5p, 
miRNA-99a-3p, miRNA-383-5p, miRNA-199a-3p, miRNA-193a-5p, miRNA-10b-5p and miRNA-181c-5p.

Conclusions:  This finding opens the avenue to the use of EV-associated miRNA of peritoneal lavages as an untapped 
source of biomarkers for CRC.

Keywords:  Colorectal cancer, Biomarkers, Diagnostic, miRNAs, Ascitic fluid, Peritoneal lavage, Liquid biopsy, 
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Background
Colorectal cancer (CRC) is the third most common 
type of malignant tumor and the third leading cause 
of cancer-related mortality worldwide among men and 

women [1]. The overall survival of colorectal cancer is 
65%, but this is highly dependent upon the disease stage 
at diagnosis, and ranges from a 90% of 5-year survival 
rate for cancers detected at the localized stage (40% of 
the cases) and 70% for regional (35% of the cases) to 
15% for distant metastatic cancer (20% of the cases) 
[2]. Current systematic methods for diagnosis, such as 
fecal occult blood test and flexible sigmoidoscopy, help 
to reduce mortality by removing precursor lesions and 
making diagnosis at an earlier stage. However, these 
techniques have inherent limitations, such as low sen-
sitivity and invasiveness for patients, respectively; and 
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the burden of disease and mortality is still high [3]. 
Serum tumor markers CA19-9 and CEA have been used 
for detection of many types of cancer, but their sensitiv-
ity for the detection of CRC is low [4]. Therefore, devel-
opment of a minimally-invasive diagnosis, based on the 
identification of sensitive biomarkers in liquid biopsies 
could therefore facilitate screening among population 
at risk of CRC, impact on early detection, and thus, 
decrease CRC-related mortality.

MiRNAs are a highly conserved family of endogenous 
non-coding and single-stranded RNAs that are 19–24 
nucleotides in length [5]. Generally, miRNAs negatively 
regulate gene expression via binding to the 3′-untrans-
lated region (3′-UTR) of their target double-stranded 
mRNA that results in transcriptional repression or 
mRNA degradation upon dicer complex [6]. miRNAs 
have been implicated in development and progression 
of CRC by functioning as oncogenes and tumor sup-
pressors [7]. Recent studies demonstrated that miRNAs 
are secreted from various cells, including cancer cells, 
into bodily fluids such as blood, urine, breast milk, and 
saliva, either as free miRNAs or via extracellular vesi-
cles (EVs) [4].

EVs are 20–200  nm membrane vesicles released by 
either directly from plasma membranes, or from intra-
cellular multivesicular bodies by their fusion with the 
cell membrane. Their function is to mediate intercel-
lular communication, influencing the recipient cell 
function. Importantly, EVs have awakened the interest 
of the scientific community as a source of biomarkers, 
mainly because they carry a broad range of bioactive 
material (proteins, metabolites, RNA, miRNA, etc.) and 
this material is well-protected owing to the EVs lipid 
bilayer membrane, even if EVs are extracted from circu-
lating or proximal body fluids [8].

Herein, we investigated the use of EVs isolated from 
the peritoneal lavage, a proximal fluid in CRC patients, 
as a source of potential diagnostic biomarkers. To do 
so, we conducted miRNA-profiling of EVs isolated from 
peritoneal lavages of surgical CRC patients and ascitic 
fluids of non-cancer patients by using the TaqMan 
OpenArray Human MicroRNA Panel. We unveiled the 
most relevant individual miRNAs for diagnosing CRC 
and characterized the biological and molecular land-
scape of the CRC milieu. The study was conceived as a 
proof of concept investigation to demonstrate the feasi-
bility of peritoneal lavage as a source of EV-associated 
miRNAs in patients with CRC.

Methods
Patients and ascitic fluid and peritoneal lavages collection
Participants in the study attended to the Hospital Arnau 
de Vilanova in Lleida, Spain. The Clinical Research 

Ethics Committee of the hospital approved the study 
and all the participating patients provided a signed 
informed consent. Ascitic fluids and peritoneal lav-
ages were extracted from a cohort of 50 patients, cor-
responding to 25 control patients with decompensated 
cirrhosis, and 25 patients with CRC who underwent 
curative surgery. In control patients, the collection of 
ascitic fluid was aspirated using 18 or 21G needles (for 
diagnostic paracentesis) or an over-the-needle catheter 
device (for therapeutic paracentesis). The procedure 
was performed under sterile conditions, the site of nee-
dle insertion was selected by ultrasound guidance, and 
skin and parietal peritoneum were previously anesthe-
tized with 2% mepivacine. A total of 100 mL of ascitic 
fluid was gently aspirated, collected into a 50 mL tube 
and stored at − 80  °C. In CRC patients, the collection 
of peritoneal lavage was performed before the surgery, 
once the abdominal cavity has been opened and prior 
to any manipulation of the colon. A total of 100 mL of 
physiological saline were instilled into the abdominal 
cavity with a 50 mL syringe, mobilizing patients for the 
correct distribution of saline, which was then extracted 
with a 50  mL syringe connected to a 14-gauge aspira-
tion needle. The peritoneal lavage was gently aspirated. 
A volume ranging from 50 to 100 mL was collected and 
stored at − 80  °C. The clinical features of each patient 
are listed in Additional file 1: Table S1.

EVs isolation
EVs were isolated with a differential centrifugation 
method as previously described [9] with slight modi-
fications. Briefly, ascitic fluids and peritoneal lavages 
were centrifuged at 300×g for 10  min, followed by a 
centrifugation at 2500×g for 20  min and a centrifuga-
tion of 10,000g for 30 min (Thermo Scientific Heraeus 
MultifugeX3R Centrifuge (FiberLite rotor F15-8x-50c)). 
The supernatant was then filtered through 0.22 µm fil-
ters (Merck Millipore) and the sample obtained was 
transferred to ultracentrifuge tubes (Beckman Coul-
ter) and filled with PBS to perform two consecutive 
ultracentrifugation steps at 100,000g for 2 h each on a 
Thermo Scientific Sorvall WX UltraSeries Centrifuge 
with an AH-629 rotor. The pellet containing the EVs 
was resuspended in 50 µL of PBS. From those, 5 µL 
were isolated for nanoparticle tracking analysis (NTA) 
and quantification, and the rest was frozen at − 80  °C 
with 500 µL of Qiazol for RNA extraction.

Nanoparticle tracking analysis
Size and number of EVs was determined using a 
Nanosight LM10 instrument equipped with a 405  nm 
laser and a Hamamatsu C11440 ORCA-Flash 2.8 camera 
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(Hamamatsu) with Nanoparticle Tracking Analysis 
(NTA, Malvern Instruments, UK). Each sample was 
diluted appropriately with Milli-Q water (Milli-Q Synthe-
sis, Merck Millipore, Massachusetts, USA) to give counts 
in the linear range of the instrument. The particles in the 
laser beam undergo Brownian motion, and a video was 
recorded for 60  s in triplicate. Analysis was performed 
following manufacturer’s instructions and data were ana-
lyzed using the version 2.3 of the NTA-software.

Total RNA extraction and OpenArray analysis
Total RNA, including miRNAs and other RNAs, was iso-
lated from the EVs samples using the miRNeasy Mini-
Kit (Qiagen) according to manufacturer’s protocol. RNA 
from EVs was eluted with 30 µL of Nuclease-free water 
(Ambion). MiRNA expression was performed using 
TaqMan OpenArray Human MicroRNA Panel, Quant-
Studio 12  K Flex (Catalog number: 4470187, Thermo 
Fisher Scientific), a fixed-content panel containing 754 
well-characterized human miRNA sequences from the 
Sanger miRBase v14 and according to the manufacturer’s 
instructions. Reverse transcription (RT) was performed 
on 2 µL RNA using Megaplex™ Primer Pools A and B and 
the supporting TaqMan® MicroRNA Reverse Transcrip-
tion Kit as follows: 15 min at 42  °C and 5 min at 85  °C. 
Then, 5 µL of the resulting cDNA was preamplified prior 
to real-time PCR analysis using Megaplex™ PreAmp 
Pools and the TaqMan® PreAmp Master Mix using the 
following conditions: one single step at 95  °C during 
5 min, 20 cycles of a two-steps program (3 s, 95  °C and 
30 s, 60 °C) followed by a single cycle of 10 min at 99 °C 
to inactivate the enzyme. The preamplified products 
were diluted 1:20 in 0.1× TE buffer pH8.0, and mixed in 
1:1 with TaqMan® OpenArray® Real-Time PCR Master 
Mix in the 384-well OpenArray® Sample Loading Plate. 
TaqMan® OpenArray® MicroRNA Panels were automati-
cally loaded using the AccuFill™ System.

Preprocessing and differential expression analysis
All bioinformatics analysis was performed with the Bio-
Conductor (version 3.7) [10] project in the R statistical 
environment (version 3.5.0) [11]. For the data preproc-
essing, the HTqPCR (version 1.34) R package [12] was 
used. Probes that had a “Cycle threshold” (Ct) value of 40 
in all samples were removed. Further samples in which 
more than 80% of the probes had a Ct value above 40 
were retained. To assure comparability across samples, 
the Ct values were delta normalized. The average Ct val-
ues of the probes hsa − miR − 150 − 5p, hsa − let − 7g-5p, 
hsa − miR − 598 − 3p, and hsa − miR − 361 − 3p were 
used for normalization. These probes had the Ct values 
of 40 in a maximum of three samples, and the lowest 

interquartile range across samples. Differential expres-
sion analysis was carried out with an empirical Bayes 
approach on linear models, using the limma (version 
3.36) R Package [13]. Results were corrected for multiple 
testing using the False Discovery Rate (FDR) [14].

Development of predictors
For predictive analysis, the whole patient cohort was ran-
domly divided into training and validation sets with the 
3:2 ratio. Calculated (with the limma R Package) rela-
tive miRNA expression values were used as input vari-
ables to a logistic regression model between groups. Each 
miRNA (adjusted p-value < 0.05) was fitted in the logistic 
regression model to differentiate the CRC and the control 
patients groups in the training set and its classification 
ability was evaluated using the AUC (area under the ROC 
curve), accuracy, sensitivity, and specificity values on the 
validation set. The procedure from division into train-
ing and validation sets and fitting the logistic model was 
repeated 500 times and statistics were collected.

miRNA target genes prediction and bioinformatics analysis
miRNAs target genes were obtained using the Predic-
tive Target Module of miRWalk2.0 online software [15] 
(https​://goo.gl/ajG9j​a), considering the following param-
eters: 3´UTR localization, miRNA seed start at position 
1 and minimum 7 bp seed length. To improve the accu-
racy of target gene prediction, only those transcripts that 
were predicted in at least 8 out of the 12 databases were 
considered (miRWalk, miRanda, MicroT4, miRDB, miR-
Map, miRBridge, miRNAMap, PICTAR2, RNA22, PITA, 
TargetScan, and RNAhybrid). Gene Ontology (GO) 
functional analysis were used to analyze the potential 
functions of the predicted target genes, using the online 
Panther software [16] (http://www.panth​erdb.org/). Bio-
logical process (BP) and molecular function (MF) GO 
terms were analyzed and plotted.

Results
We analyzed the miRNA profile of EVs isolated from 
the ascitic fluid of 25 control individuals and peritoneal 
lavage of 25 CRC patients. Additional file  2: Figure S1 
illustrates the workflow that was followed in this study. 
The quality of EVs isolated from the ascitic fluids and 
peritoneal lavages was measured by size distribution and 
concentration by Nanoparticle Tracking Analysis, dem-
onstrating that we analyzed a population mostly enriched 
in small EVs but also containing a low representation 
of larger vesicles (Additional file 3: Figure S2). MiRNAs 
were extracted from EVs for a systematic miRNA expres-
sion analysis using the Taqman OpenArray technology, 
through which we detected 371 out of the 754 miRNAs 
(49.2%) present in the OpenArray. Probes that had the 

https://goo.gl/ajG9ja
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Ct value of 40 in all samples and samples in which more 
than 80% of the probes had the Ct value above 40 were 
removed, resulting in 355 miRNAs from 22 control and 
19 CRC patients analyzed for the differential expression 
analysis (Table 1).

The differential expression analysis between can-
cer and control cases yielded a list of 210 miRNAs that 
were significantly dysregulated (adj. p-value < 0.05 and 
logFC lower or higher than 1). Among those, 207 miRNA 
were found to be downregulated and 3 miRNA were 
upregulated in CRC patients. To evaluate whether these 
miRNAs can be used as diagnostics biomarkers, we per-
formed a predictive analysis using the logistic modeling. 
Ten miRNAs demonstrated predictive performance at the 
AUC values higher than 0.95: miRNA-199b-5p, miRNA-
150-5p, miRNA-29c-5p, miRNA-218-5p, miRNA-99a-3p, 
miRNA-383-5p, miRNA-199a-3p, miRNA-193a-5p, 
miRNA-10b-5p and miRNA-181c-5p (Table  2; Fig.  1). 
All those miRNAs were downregulated from 3.52 to 
12.82 in the log2 scale with adjusted p-value lower than 
1.56E−05, except miRNA-150-5p which was upregulated 
(adjusted p-value 3.41E−04). In Table  3, studies report-
ing an association between each of these top-10 miRNAs 
and CRC are described based on a search of Pubmed for 
each miRNA and the word “colorectal cancer”. Although 
there are some controversies among the different stud-
ies, most of the miRNA dysregulations observed in our 
study are concordant with the observations reported by 
other authors, either in tissue, plasma or stool samples. 
MiRNA-199b-5p, miRNA-29c-5p, and miRNA-99a-3p 
have never been reported previously in association to 
CRC.

To further understand the milieu generated by CRC 
EVs, we performed a bioinformatics study to first unveil 
the predicted transcripts that are regulated by all the 
differential miRNAs, and then assess the biological pro-
cesses and molecular functions in which they participate. 
A total of 9358 transcripts were found to be regulated by 
the 210 miRNA differentially expressed. Figure  2 shows 
the number and most frequently regulated transcripts 
predicted for each dysregulated miRNA. To comprehen-
sively integrate the properties of all target transcripts, 
they were studied using Gene Ontology (GO). The most 
enriched biological processes in CRC EVs were metabolic 
processes (24.3%), mostly including biosynthetic process, 
organic substance metabolomic process and cellular met-
abolic process; biological regulation (22.5%); cellular pro-
cesses (10.7%), signal transduction, cellular component 
organization and cellular metabolic process; and cellular 
component organization or biogenesis, including cellu-
lar component organization (Fig.  3a). In relation to the 
most altered molecular functions in CRC EVs, the Gene 
Ontology (GO) analysis revealed that many targeted 
transcripts were found to be involved in binding (37.8%), 
including protein binding and organic cyclic compound 
binding; and in catalytic activity (31.2%), including cata-
lytic activity, and protein and hydrolase activity (Fig. 3b).

Discussion
In this study we investigated, for the first time, the 
miRNA content of EVs isolated from peritoneal lavages 
and ascitic liquid of CRC and control patients, respec-
tively. Our study shows that EV-associated miRNAs can 
be consistently extracted from peritoneal lavages and 
ascitic liquids and that miRNA expression profiles can 
indicate and represent the status of CRC patients. The 
EV-associated miRNA were analyzed by Taqman Ope-
nArray technology and the differential expression analy-
sis yielded a list of 210 miRNAs that were significantly 
dysregulated in CRC patients, being downregulated the 
98.57% of the altered miRNAs.

The finding that miRNAs are dysregulated in CRC 
patients is known, as many studies have reported this 
previously, mostly in tissue specimens [17] but also 
in different body fluids. In CRC, most of the studies 
use plasma or serum as it is the most common, easy-
to-handle, accessible liquid biopsy. The first report 
detected 69 miRNAs in serum of CRC patients but not 
in serum of normal controls [18]. Since then, several 
studies have identified miRNA upregulation or down-
regulation in plasma or serum samples [17] including 
studies that have focus on the search of biomarkers 
in miRNAs dysregulated in the vesicular fraction of 
the serum or plasma of CRC patients. Hiroko Ogata-
Kawata et  al. [4] analyzed the EV-associated miRNA 

Table 1  Clinicopathological characteristics of patients

Clinical characteristics of the final cohort of patients included in the study after 
data normalization

ADC adenocarcinoma

Colon Cancer Control

Age

 Median 74 65

 Minimum 50 52

 Maximum 88 90

Gender

 Female 12 4

 Male 7 18

Pathology

 Colon cancer 19 –

 ADC low grade 15 –

 ADC other types 4 –

 Hepatic cirrhosis – 20

 Others – 2
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Table 2  miRNA transcripts displaying a  significant differential expression in  patients with  CRC compared to  control 
patients

miRNA LogFC p-value Adj. p-value AUC​ AUC 95% 
CI_lower

AUC 95% 
CI_upper

Accuracy Sensitivity Specificity

hsa-miR-199b-5p_478486_mir − 12.82 2.59E−08 9.85E−07 1 1 1 0.967 0.968 0.964

hsa-miR-150-5p_477918_mir 2.58 7.10E−05 3.41E−04 0.978 0.959 0.996 0.919 0.936 0.899

hsa-miR-29c-5p_478005_mir − 2.93 2.78E−08 9.85E−07 0.973 0.954 0.991 0.943 0.943 0.944

hsa-miR-218-5p_477977_mir − 8.16 6.51E−07 8.25E−06 0.97 0.945 0.995 0.913 0.905 0.921

hsa-miR-99a-3p_479224_mir − 4.89 1.51E−08 8.95E−07 0.97 0.95 0.99 0.94 0.976 0.9

hsa-miR-383-5p_478079_mir − 8.33 3.55E−15 1.26E−12 0.968 0.952 0.985 0.939 0.94 0.938

hsa-miR-199a-3p_477961_mir − 6.16 2.84E−09 2.65E−07 0.968 0.942 0.994 0.905 0.92 0.887

hsa-miR-193a-5p_477954_mir − 3.62 1.32E−06 1.56E−05 0.962 0.932 0.991 0.873 0.852 0.897

hsa-miR-10b-5p_478494_mir − 2.79 2.58E−07 4.17E−06 0.957 0.93 0.983 0.871 0.875 0.866

hsa-miR-181c-5p_477934_mir − 3.52 1.23E−05 8.74E−05 0.952 0.929 0.974 0.833 0.859 0.803

hsa-miR-708-5p_478197_mir − 6.45 9.72E−08 2.29E−06 0.946 0.917 0.975 0.877 0.834 0.926

hsa-miR-125b-5p_477885_mir − 2.35 9.27E−07 1.13E−05 0.946 0.918 0.974 0.885 0.884 0.885

hsa-miR-140-5p_477909_mir − 5.82 4.59E−05 2.39E−04 0.943 0.919 0.968 0.817 0.825 0.807

hsa-miR-451a_478107_mir − 8.35 1.34E−07 2.64E−06 0.942 0.913 0.972 0.843 0.881 0.8

hsa-miR-148b-3p_477824_mir − 3.05 1.42E−07 2.66E−06 0.942 0.916 0.968 0.834 0.853 0.813

hsa-miR-130a-3p_477851_mir − 2.62 1.85E−06 2.00E−05 0.94 0.909 0.972 0.861 0.884 0.835

hsa-miR-214-3p_477974_mir − 7.59 1.19E−07 2.49E−06 0.937 0.901 0.972 0.896 0.94 0.846

hsa-miR-10a-5p_479241_mir − 2.19 1.44E−02 2.82E−02 0.937 0.906 0.969 0.897 0.904 0.889

hsa-miR-497-5p_478138_mir − 3.68 2.13E−04 8.08E−04 0.936 0.911 0.961 0.814 0.829 0.797

hsa-miR-143-3p_477912_mir − 3.15 1.58E−06 1.81E−05 0.936 0.906 0.965 0.86 0.868 0.85

hsa-miR-20a-5p_478586_mir − 2.79 5.14E−08 1.30E−06 0.933 0.901 0.964 0.877 0.906 0.843

hsa-miR-29c-3p_479229_mir − 3.55 2.14E−04 8.08E−04 0.931 0.897 0.965 0.86 0.84 0.883

hsa-miR-17-5p_478447_mir − 3.68 4.83E−05 2.41E−04 0.93 0.893 0.966 0.874 0.898 0.847

hsa-miR-486-5p_478128_mir − 11.10 2.21E−07 3.73E−06 0.929 0.899 0.958 0.853 0.818 0.893

hsa-miR-145-5p_477916_mir − 3.07 6.47E−06 5.34E−05 0.929 0.899 0.958 0.877 0.901 0.851

hsa-miR-214-5p_478768_mir − 8.13 2.33E−08 9.85E−07 0.923 0.885 0.96 0.877 0.906 0.844

hsa-miR-20b-5p_477804_mir − 11.65 3.73E−09 2.65E−07 0.921 0.887 0.956 0.883 0.879 0.887

hsa-miR-551b-3p_478159_mir − 9.71 2.07E−10 3.68E−08 0.919 0.885 0.953 0.852 0.906 0.79

hsa-miR-107_478254_mir − 4.70 1.35E−03 3.73E−03 0.917 0.883 0.951 0.919 0.938 0.898

hsa-miR-202-5p_478755_mir − 7.19 5.11E−08 1.30E−06 0.915 0.876 0.954 0.855 0.867 0.842

hsa-miR-93-5p_478210_mir − 2.84 3.88E−04 1.30E−03 0.915 0.875 0.954 0.86 0.872 0.847

hsa-miR-483-3p_478122_mir − 7.01 3.69E−09 2.65E−07 0.913 0.877 0.949 0.837 0.884 0.784

hsa-miR-652-3p_478189_mir − 2.05 2.63E−05 1.70E−04 0.913 0.882 0.945 0.825 0.831 0.818

hsa-miR-29b-3p_478369_mir − 3.59 3.71E−06 3.47E−05 0.911 0.877 0.945 0.836 0.834 0.838

hsa-miR-328-3p_478028_mir − 5.03 2.86E−04 1.01E−03 0.908 0.874 0.941 0.819 0.798 0.842

hsa-miR-25-3p_477994_mir − 2.37 3.44E−05 1.99E−04 0.908 0.87 0.946 0.865 0.899 0.827

hsa-miR-26a-5p_477995_mir − 2.30 1.99E−05 1.38E−04 0.904 0.872 0.937 0.796 0.799 0.791

hsa-miR-296-5p_477836_mir − 6.51 3.42E−05 1.99E−04 0.903 0.865 0.941 0.878 0.796 0.973

hsa-miR-144-3p_477913_mir − 5.05 3.53E−05 1.99E−04 0.903 0.867 0.938 0.827 0.85 0.801

hsa-miR-769-5p_478203_mir − 3.98 3.53E−05 1.99E−04 0.903 0.864 0.942 0.899 0.901 0.896

hsa-miR-181a-5p_477857_mir − 2.13 5.21E−06 4.52E−05 0.902 0.865 0.939 0.843 0.895 0.783

hsa-miR-29a-3p_478587_mir − 3.12 1.16E−03 3.38E−03 0.901 0.86 0.942 0.878 0.854 0.905

hsa-miR-152-3p_477921_mir − 3.98 2.17E−05 1.48E−04 0.9 0.866 0.934 0.804 0.791 0.819

hsa-miR-125b-1-3p_478665_mir − 9.13 1.93E−07 3.42E−06 0.895 0.86 0.931 0.86 0.868 0.851

hsa-miR-30a-3p_478273_mir − 1.66 9.38E−05 4.27E−04 0.891 0.854 0.928 0.812 0.793 0.834

hsa-miR-449b-5p_479528_mir − 10.10 2.30E−08 9.85E−07 0.889 0.846 0.932 0.88 0.908 0.847

hsa-miR-219a-5p_477980_mir − 6.58 5.10E−07 7.54E−06 0.889 0.852 0.926 0.84 0.854 0.824

hsa-miR-125a-5p_477884_mir − 1.40 1.48E−03 4.02E−03 0.888 0.846 0.93 0.827 0.84 0.813
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Table 2  (continued)

miRNA LogFC p-value Adj. p-value AUC​ AUC 95% 
CI_lower

AUC 95% 
CI_upper

Accuracy Sensitivity Specificity

hsa-miR-374b-3p_479421_mir − 4.64 2.15E−06 2.24E−05 0.887 0.845 0.929 0.8 0.791 0.81

hsa-miR-101-3p_477863_mir − 4.19 6.98E−05 3.39E−04 0.886 0.845 0.927 0.832 0.896 0.759

hsa-miR-452-5p_478109_mir − 3.88 2.89E−05 1.80E−04 0.886 0.852 0.92 0.751 0.737 0.766

hsa-miR-193a-3p_478306_mir − 2.46 2.37E−03 5.97E−03 0.884 0.841 0.928 0.869 0.899 0.835

hsa-miR-148a-3p_477814_mir − 1.48 1.24E−03 3.52E−03 0.884 0.845 0.923 0.822 0.818 0.826

hsa-miR-133a-3p_478511_mir − 6.89 1.67E−04 6.73E−04 0.883 0.843 0.922 0.827 0.853 0.797

hsa-miR-675-5p_478196_mir − 4.22 5.46E−06 4.61E−05 0.883 0.845 0.92 0.766 0.721 0.817

hsa-miR-34a-5p_478048_mir − 2.04 3.41E−05 1.99E−04 0.882 0.841 0.922 0.823 0.801 0.848

hsa-miR-582-5p_478166_mir − 8.33 3.37E−07 5.20E−06 0.881 0.842 0.92 0.84 0.767 0.923

hsa-miR-2110_477971_mir − 4.46 2.45E−06 2.48E−05 0.879 0.837 0.92 0.782 0.794 0.769

hsa-miR-185-5p_477939_mir − 2.69 1.09E−02 2.18E−02 0.879 0.836 0.921 0.828 0.872 0.777

hsa-miR-144-5p_477914_mir − 11.46 4.47E−08 1.30E−06 0.877 0.833 0.921 0.873 0.944 0.791

hsa-miR-199a-5p_478231_mir − 7.83 1.24E−04 5.31E−04 0.877 0.831 0.923 0.772 0.712 0.84

hsa-miR-361-5p_478056_mir − 1.48 9.56E−04 2.83E−03 0.877 0.837 0.918 0.821 0.86 0.778

hsa-miR-195-5p_477957_mir − 2.80 2.19E−04 8.17E−04 0.875 0.832 0.919 0.835 0.822 0.849

hsa-miR-136-5p_478307_mir − 8.01 5.88E−07 8.03E−06 0.873 0.834 0.913 0.828 0.821 0.836

hsa-miR-548d-5p_480870_mir − 3.80 3.79E−03 8.96E−03 0.873 0.827 0.919 0.755 0.65 0.875

hsa-miR-30b-5p_478007_mir − 2.55 2.64E−03 6.47E−03 0.873 0.829 0.916 0.774 0.795 0.751

hsa-miR-363-3p_478060_mir − 8.98 3.58E−05 1.99E−04 0.869 0.825 0.914 0.782 0.776 0.789

hsa-miR-27b-3p_478270_mir − 2.46 2.87E−02 4.90E−02 0.868 0.828 0.908 0.76 0.815 0.698

hsa-miR-24-3p_477992_mir − 2.06 4.68E−05 2.40E−04 0.868 0.823 0.913 0.859 0.9 0.813

hsa-miR-499a-5p_478139_mir − 4.05 4.42E−05 2.34E−04 0.864 0.821 0.908 0.851 0.875 0.824

hsa-miR-15a-5p_477858_mir − 1.96 3.80E−04 1.28E−03 0.863 0.823 0.903 0.77 0.781 0.758

hsa-miR-31-3p_478012_mir − 5.27 2.92E−04 1.02E−03 0.86 0.817 0.904 0.799 0.766 0.836

hsa-miR-18a-3p_477944_mir − 4.70 5.55E−05 2.74E−04 0.859 0.817 0.901 0.761 0.747 0.777

hsa-miR-92a-3p_477827_mir − 1.48 5.48E−04 1.74E−03 0.859 0.811 0.907 0.813 0.822 0.804

hsa-miR-130b-3p_477840_mir − 5.57 3.72E−04 1.27E−03 0.858 0.815 0.901 0.748 0.644 0.866

hsa-let-7b-5p_478576_mir − 1.57 5.76E−04 1.81E−03 0.858 0.814 0.902 0.76 0.758 0.761

hsa-miR-30e-3p_478388_mir − 4.70 5.51E−03 1.22E−02 0.854 0.81 0.899 0.753 0.628 0.897

hsa-miR-23b-5p_477991_mir − 3.62 3.36E−05 1.99E−04 0.853 0.81 0.896 0.756 0.758 0.754

hsa-miR-29b-2-5p_478003_mir − 4.33 2.79E−06 2.75E−05 0.85 0.806 0.894 0.797 0.806 0.786

hsa-miR-30e-5p_479235_mir − 8.36 6.16E−04 1.92E−03 0.849 0.802 0.896 0.709 0.638 0.791

hsa-miR-200c-3p_478351_mir − 7.14 2.32E−05 1.53E−04 0.848 0.802 0.894 0.802 0.721 0.894

hsa-miR-1180-3p_477869_mir − 3.91 4.43E−05 2.34E−04 0.847 0.798 0.896 0.806 0.754 0.866

hsa-miR-190a-5p_478358_mir − 1.89 1.87E−02 3.48E−02 0.847 0.801 0.892 0.829 0.814 0.847

hsa-miR-151b_477811_mir − 9.82 2.25E−04 8.31E−04 0.846 0.801 0.892 0.761 0.733 0.792

hsa-miR-505-5p_478957_mir − 5.86 4.24E−05 2.32E−04 0.846 0.801 0.891 0.796 0.805 0.786

hsa-miR-196b-5p_478585_mir − 6.46 1.86E−06 2.00E−05 0.845 0.795 0.894 0.767 0.67 0.879

hsa-miR-324-5p_478024_mir − 1.51 8.13E−03 1.65E−02 0.843 0.797 0.889 0.777 0.754 0.802

hsa-miR-224-5p_477986_mir − 2.72 1.58E−04 6.45E−04 0.842 0.8 0.883 0.746 0.695 0.804

hsa-miR-139-5p_478312_mir − 5.12 2.43E−04 8.80E−04 0.839 0.794 0.885 0.727 0.725 0.729

hsa-miR-545-5p_479003_mir − 5.30 8.42E−06 6.79E−05 0.838 0.79 0.886 0.79 0.79 0.79

hsa-miR-222-3p_477982_mir − 2.08 7.82E−04 2.37E−03 0.838 0.791 0.884 0.728 0.762 0.689

hsa-miR-340-5p_478042_mir − 9.05 9.31E−06 7.18E−05 0.836 0.79 0.882 0.803 0.817 0.786

hsa-miR-504-5p_478144_mir − 3.54 1.86E−04 7.18E−04 0.836 0.787 0.886 0.778 0.729 0.833

hsa-miR-106a-5p_478225_mir − 10.76 4.30E−08 1.30E−06 0.834 0.784 0.883 0.816 0.924 0.693

hsa-miR-1271-5p_478674_mir − 9.10 3.87E−06 3.52E−05 0.834 0.785 0.883 0.823 0.9 0.734

hsa-miR-125b-2-3p_478666_mir − 6.80 9.11E−06 7.18E−05 0.834 0.782 0.886 0.804 0.866 0.735

hsa-miR-339-3p_478325_mir − 3.60 6.56E−03 1.39E−02 0.834 0.782 0.886 0.778 0.692 0.876
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Table 2  (continued)

miRNA LogFC p-value Adj. p-value AUC​ AUC 95% 
CI_lower

AUC 95% 
CI_upper

Accuracy Sensitivity Specificity

hsa-miR-483-5p_478432_mir − 6.45 5.42E−07 7.69E−06 0.832 0.783 0.882 0.785 0.871 0.687

hsa-miR-584-5p_478167_mir − 10.36 6.40E−07 8.25E−06 0.831 0.781 0.882 0.803 0.906 0.685

hsa-miR-17-3p_477932_mir − 8.43 2.22E−05 1.49E−04 0.831 0.779 0.883 0.805 0.861 0.741

hsa-miR-570-3p_479053_mir − 4.46 1.11E−04 4.79E−04 0.831 0.785 0.876 0.766 0.697 0.844

hsa-miR-625-5p_479469_mir − 10.93 4.36E−06 3.87E−05 0.83 0.781 0.88 0.806 0.865 0.738

hsa-miR-196a-5p_478230_mir − 7.37 1.01E−05 7.64E−05 0.83 0.777 0.883 0.812 0.879 0.735

hsa-miR-7-1-3p_478198_mir − 7.37 1.00E−04 4.52E−04 0.829 0.783 0.874 0.762 0.646 0.895

hsa-miR-450b-5p_478914_mir − 9.65 1.03E−07 2.29E−06 0.828 0.775 0.88 0.803 0.906 0.685

hsa-miR-221-5p_478778_mir − 5.01 3.08E−04 1.06E−03 0.827 0.779 0.875 0.745 0.64 0.865

hsa-miR-128-3p_477892_mir − 1.32 5.21E−03 1.16E−02 0.823 0.772 0.874 0.743 0.741 0.746

hsa-miR-491-5p_478132_mir − 3.50 1.88E−03 4.92E−03 0.822 0.774 0.87 0.743 0.703 0.79

hsa-miR-136-3p_477902_mir − 7.94 2.78E−05 1.76E−04 0.821 0.771 0.871 0.786 0.855 0.707

hsa-miR-101-5p_478620_mir − 7.44 1.09E−05 8.08E−05 0.819 0.766 0.873 0.812 0.877 0.738

hsa-miR-151a-3p_477919_mir − 1.93 2.85E−04 1.01E−03 0.819 0.769 0.87 0.803 0.854 0.745

hsa-miR-28-3p_477999_mir − 2.25 4.30E−03 1.00E−02 0.817 0.771 0.863 0.738 0.728 0.749

hsa-miR-489-3p_478130_mir − 4.40 1.33E−04 5.62E−04 0.815 0.766 0.865 0.76 0.736 0.787

hsa-miR-106b-3p_477866_mir − 2.41 6.48E−03 1.39E−02 0.815 0.765 0.866 0.72 0.693 0.751

hsa-miR-324-3p_478023_mir − 7.87 2.85E−04 1.01E−03 0.814 0.766 0.861 0.761 0.686 0.847

hsa-miR-125a-3p_477883_mir − 3.24 4.18E−04 1.39E−03 0.811 0.76 0.862 0.765 0.741 0.791

hsa-let-7i-3p_477862_mir − 6.66 4.69E−04 1.54E−03 0.81 0.759 0.861 0.747 0.665 0.841

hsa-miR-33b-5p_478479_mir − 5.49 2.06E−03 5.30E−03 0.81 0.758 0.862 0.704 0.626 0.793

hsa-miR-503-5p_478143_mir − 2.80 6.04E−03 1.31E−02 0.81 0.757 0.863 0.762 0.726 0.805

hsa-miR-301a-3p_477815_mir − 5.08 1.51E−03 4.05E−03 0.809 0.76 0.858 0.723 0.608 0.856

hsa-miR-330-3p_478030_mir − 5.72 7.79E−04 2.37E−03 0.805 0.754 0.856 0.761 0.645 0.892

hsa-miR-425-5p_478094_mir − 1.51 2.66E−02 4.63E−02 0.805 0.757 0.852 0.728 0.714 0.744

hsa-miR-16-2-3p_477931_mir − 3.32 1.12E−02 2.22E−02 0.804 0.747 0.862 0.78 0.769 0.793

hsa-miR-548k_479374_mir − 14.17 8.73E−03 1.76E−02 0.801 0.757 0.845 0.718 0.654 0.79

hsa-miR-429_477849_mir − 2.00 1.76E−02 3.37E−02 0.801 0.747 0.854 0.768 0.807 0.723

hsa-miR-598-3p_478172_mir − 1.51 4.51E−03 1.04E−02 0.8 0.754 0.847 0.696 0.726 0.661

hsa-miR-887-3p_479189_mir − 5.41 1.42E−04 5.95E−04 0.799 0.748 0.85 0.737 0.632 0.858

hsa-miR-93-3p_478209_mir − 4.60 2.28E−04 8.33E−04 0.798 0.745 0.852 0.749 0.702 0.801

hsa-miR-629-5p_478183_mir − 6.16 1.75E−04 6.90E−04 0.796 0.746 0.846 0.753 0.678 0.839

hsa-miR-21-5p_477975_mir 1.32 7.91E−03 1.61E−02 0.796 0.751 0.842 0.683 0.688 0.677

hsa-miR-140-3p_477908_mir − 3.42 6.10E−03 1.31E−02 0.793 0.743 0.843 0.734 0.752 0.713

hsa-miR-425-3p_478093_mir − 5.28 9.90E−04 2.90E−03 0.792 0.74 0.844 0.728 0.588 0.888

hsa-miR-200a-5p_478752_mir 3.05 2.34E−02 4.15E−02 0.792 0.735 0.85 0.713 0.693 0.736

hsa-miR-590-3p_478168_mir − 4.77 1.27E−03 3.56E−03 0.791 0.739 0.842 0.702 0.637 0.776

hsa-miR-30a-5p_479448_mir − 8.52 7.71E−04 2.37E−03 0.789 0.738 0.841 0.734 0.726 0.744

hsa-let-7 g-3p_477850_mir − 6.38 1.74E−04 6.90E−04 0.787 0.733 0.84 0.756 0.608 0.926

hsa-miR-542-3p_478153_mir − 8.15 2.88E−06 2.76E−05 0.786 0.729 0.842 0.778 0.901 0.638

hsa-miR-31-5p_478015_mir − 1.78 7.34E−03 1.51E−02 0.786 0.737 0.835 0.676 0.708 0.64

hsa-miR-379-5p_478077_mir − 5.15 5.46E−04 1.74E−03 0.78 0.724 0.835 0.755 0.773 0.734

hsa-miR-194-5p_477956_mir − 1.66 1.21E−03 3.48E−03 0.78 0.724 0.836 0.778 0.861 0.683

hsa-miR-34c-5p_478052_mir − 2.51 4.47E−03 1.04E−02 0.779 0.726 0.832 0.685 0.639 0.738

hsa-miR-576-5p_478165_mir − 6.85 8.70E−05 4.01E−04 0.778 0.721 0.836 0.774 0.853 0.684

hsa-miR-28-5p_478000_mir − 5.87 1.45E−03 3.96E−03 0.778 0.726 0.829 0.731 0.64 0.835

hsa-miR-708-3p_479162_mir − 2.77 2.27E−03 5.75E−03 0.772 0.715 0.828 0.738 0.74 0.736

hsa-miR-505-3p_478145_mir − 2.12 3.62E−03 8.67E−03 0.771 0.718 0.824 0.758 0.737 0.781

hsa-miR-26b-5p_478418_mir − 1.01 2.37E−02 4.19E−02 0.768 0.717 0.819 0.692 0.714 0.666
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miRNA LogFC p-value Adj. p-value AUC​ AUC 95% 
CI_lower

AUC 95% 
CI_upper

Accuracy Sensitivity Specificity

hsa-miR-365a-3p_478065_mir − 4.75 2.67E−02 4.63E−02 0.767 0.713 0.822 0.661 0.495 0.85

hsa-miR-423-3p_478327_mir − 1.63 1.58E−03 4.19E−03 0.765 0.716 0.815 0.65 0.687 0.607

hsa-miR-338-5p_478038_mir − 3.61 2.40E−03 6.01E−03 0.761 0.703 0.819 0.704 0.719 0.687

hsa-miR-210-3p_477970_mir − 1.17 1.67E−02 3.22E−02 0.761 0.708 0.815 0.672 0.698 0.643

hsa-miR-551a_478158_mir − 5.58 1.97E−03 5.10E−03 0.76 0.699 0.822 0.741 0.69 0.8

hsa-miR-889-3p_478208_mir − 8.68 1.14E−05 8.28E−05 0.759 0.698 0.82 0.789 0.922 0.637

hsa-miR-301b-3p_477825_mir − 5.75 1.87E−02 3.48E−02 0.758 0.7 0.816 0.751 0.851 0.637

hsa-miR-590-5p_478367_mir − 3.83 1.63E−02 3.15E−02 0.757 0.703 0.812 0.707 0.59 0.841

hsa-miR-548am-5p_480872_mir − 3.25 1.13E−02 2.22E−02 0.757 0.703 0.81 0.663 0.526 0.82

hsa-miR-187-3p_477941_mir − 4.47 6.97E−03 1.46E−02 0.754 0.701 0.807 0.704 0.644 0.772

hsa-miR-450a-5p_478106_mir − 7.12 1.26E−03 3.56E−03 0.753 0.692 0.814 0.743 0.646 0.853

hsa-miR-376a-5p_478859_mir − 5.94 1.04E−04 4.56E−04 0.75 0.688 0.811 0.738 0.832 0.631

hsa-miR-1296-5p_479451_mir − 4.26 2.49E−03 6.17E−03 0.75 0.695 0.806 0.703 0.719 0.686

hsa-miR-181c-3p_477933_mir − 3.64 9.29E−04 2.77E−03 0.748 0.685 0.811 0.715 0.805 0.613

hsa-miR-1247-5p_477882_mir − 3.36 2.43E−02 4.26E−02 0.748 0.692 0.804 0.698 0.586 0.827

hsa-miR-34a-3p_478047_mir − 2.32 1.77E−02 3.37E−02 0.748 0.694 0.803 0.658 0.727 0.579

hsa-miR-654-3p_479135_mir − 7.56 4.77E−04 1.55E−03 0.74 0.681 0.799 0.76 0.692 0.839

hsa-miR-411-5p_478086_mir − 5.12 7.16E−03 1.49E−02 0.738 0.68 0.796 0.715 0.647 0.793

hsa-miR-181d-5p_479517_mir − 5.67 4.10E−03 9.63E−03 0.733 0.675 0.791 0.686 0.554 0.838

hsa-miR-200b-3p_477963_mir − 3.43 7.26E−03 1.50E−02 0.733 0.674 0.792 0.683 0.609 0.767

hsa-miR-299-3p_478792_mir − 6.51 4.73E−05 2.40E−04 0.732 0.67 0.794 0.748 0.893 0.582

hsa-miR-182-5p_477935_mir − 8.68 8.37E−05 3.91E−04 0.73 0.666 0.795 0.753 0.9 0.585

hsa-miR-410-3p_478085_mir − 5.65 1.22E−03 3.48E−03 0.728 0.67 0.787 0.753 0.771 0.733

hsa-miR-744-5p_478200_mir − 3.55 1.81E−02 3.40E−02 0.725 0.67 0.781 0.657 0.637 0.68

hsa-miR-96-5p_478215_mir − 6.84 1.03E−04 4.56E−04 0.724 0.658 0.79 0.744 0.886 0.583

hsa-miR-133b_480871_mir − 3.18 1.98E−02 3.66E−02 0.724 0.664 0.783 0.686 0.651 0.726

hsa-miR-544a_478156_mir − 5.67 1.37E−03 3.77E−03 0.719 0.66 0.779 0.756 0.81 0.694

hsa-miR-497-3p_478946_mir − 6.92 1.44E−04 5.95E−04 0.718 0.652 0.784 0.753 0.899 0.585

hsa-miR-331-3p_478323_mir − 5.93 3.27E−03 7.90E−03 0.715 0.656 0.774 0.761 0.775 0.744

hsa-let-7f-2-3p_477843_mir − 3.26 1.19E−02 2.33E−02 0.715 0.655 0.776 0.682 0.567 0.814

hsa-miR-195-3p_478744_mir − 4.54 6.67E−03 1.40E−02 0.712 0.652 0.773 0.717 0.712 0.723

hsa-miR-378a-5p_478076_mir − 5.30 2.12E−03 5.41E−03 0.71 0.65 0.769 0.723 0.584 0.882

hsa-miR-1-3p_477820_mir − 6.27 6.10E−03 1.31E−02 0.706 0.644 0.768 0.732 0.778 0.679

hsa-miR-615-3p_478175_mir − 3.14 4.99E−03 1.13E−02 0.706 0.643 0.769 0.696 0.652 0.746

hsa-miR-545-3p_479002_mir − 2.99 1.99E−02 3.66E−02 0.704 0.64 0.767 0.675 0.678 0.672

hsa-miR-548a-3p_478157_mir − 3.75 4.83E−03 1.10E−02 0.703 0.641 0.765 0.716 0.572 0.881

hsa-miR-1248_478653_mir − 2.64 1.08E−02 2.17E−02 0.702 0.642 0.763 0.707 0.764 0.643

hsa-miR-381-3p_477816_mir − 5.10 5.97E−03 1.31E−02 0.701 0.639 0.763 0.734 0.727 0.742

hsa-miR-627-5p_478427_mir − 4.94 5.01E−04 1.62E−03 0.701 0.632 0.77 0.735 0.863 0.589

hsa-miR-1301-3p_477897_mir − 5.30 5.52E−03 1.22E−02 0.696 0.638 0.754 0.711 0.596 0.843

hsa-miR-486-3p_478422_mir − 6.30 1.86E−04 7.18E−04 0.692 0.626 0.758 0.725 0.891 0.535

hsa-miR-200a-3p_478490_mir − 4.37 1.79E−02 3.39E−02 0.691 0.626 0.756 0.719 0.792 0.635

hsa-miR-15a-3p_477928_mir − 3.53 6.65E−03 1.40E−02 0.688 0.62 0.755 0.703 0.808 0.584

hsa-miR-548 g-3p_479020_mir − 2.12 2.25E−02 4.04E−02 0.687 0.625 0.75 0.691 0.759 0.613

hsa-miR-432-5p_478101_mir − 3.66 2.70E−02 4.65E−02 0.683 0.621 0.746 0.691 0.724 0.652

hsa-miR-15b-5p_478313_mir − 6.53 2.89E−02 4.90E−02 0.682 0.619 0.745 0.666 0.692 0.637

hsa-miR-132-5p_478705_mir − 6.01 3.23E−03 7.86E−03 0.68 0.614 0.745 0.734 0.867 0.582

hsa-let-7e-5p_478579_mir − 5.40 2.04E−02 3.72E−02 0.679 0.614 0.744 0.655 0.556 0.769

hsa-miR-485-5p_478126_mir − 2.09 2.46E−02 4.30E−02 0.678 0.613 0.743 0.688 0.734 0.634
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profile of serum samples from CRC patients and 
healthy controls and identified 16 miRNA that were 
expressed in a significantly higher levels among CRC 
patients. Of these, 7 miRNAs (let-7a, miR-1229, miR-
1246, miR-150, miR-21, miR-223, and miR-23a) were 
suggested as promising diagnostic biomarkers of CRC 
with an AUC between 0.67 and 0.95. More recently, the 
serum exosomal miRNA-19a was found to be upregu-
lated in the serum of CRC patients compared to healthy 
volunteers, but also was associated with poor progno-
sis [19]. Finally, Zhao et al. [20], demonstrated that the 
exosomal miRNA-21 expression is associated with the 
early diagnosis of CRC. Although plasma and serum 
have reported promising biomarkers for CRC diagno-
sis, other approaches as it is the use of proximal bodily 
fluids as a source of biomarkers have aroused the atten-
tion of the biomarker research community. Proximal 
bodily fluids, such as urine for prostate cancer [21], 
or uterine fluid for endometrial cancer [22] have dem-
onstrated that this type of fluids offers an improved 

representation of the molecular alterations that takes 
place in the tumor. The peritoneal lavage is a proximal 
fluid with an unexploded value in biomarker research 
for cancers originating within the peritoneal cavity. 
Tokuhisa et al. [23] showed that EV-associated miRNAs 
can be consistently extracted from this bodily fluid and 
that miRNAs expression profiles can indicate the status 
of peritoneum in gastric cancer patients.

To the best of our knowledge, our study is the first to 
report the value of this proximal fluid for the identifica-
tion of miRNAs associated to EVs in CRC. Importantly, 
this study unveiled the promising use of the top-10 
miRNA dysregulated (miRNA-199b-5p, miRNA-150-5p, 
miRNA-29c-5p, miRNA-218-5p, miRNA-99a-3p, 
miRNA-383-5p, miRNA-199a-3p, miRNA-193a-5p, 
miRNA-10b-5p and miRNA-181c-5p) as diagnostic bio-
markers, all showing the AUC value higher than 0.95. 
Those biomarkers should be validated as well as com-
bined in order to increase the already excellent accuracy 
of individual miRNAs. However, this should be done 

Table 2  (continued)

miRNA LogFC p-value Adj. p-value AUC​ AUC 95% 
CI_lower

AUC 95% 
CI_upper

Accuracy Sensitivity Specificity

hsa-miR-299-5p_478793_mir − 5.05 8.70E−04 2.62E−03 0.672 0.603 0.741 0.702 0.858 0.524

hsa-miR-16-1-3p_478727_mir − 4.44 1.55E−03 4.13E−03 0.669 0.603 0.735 0.699 0.841 0.537

hsa-miR-215-5p_478516_mir − 7.23 8.19E−05 3.88E−04 0.668 0.601 0.735 0.718 0.896 0.514

hsa-miR-103a-2-5p_477864_mir − 4.32 2.05E−02 3.73E−02 0.664 0.603 0.724 0.664 0.529 0.818

hsa-miR-29a-5p_478002_mir − 6.48 2.54E−03 6.26E−03 0.643 0.568 0.717 0.723 0.896 0.524

hsa-miR-874-3p_478205_mir − 2.80 2.77E−02 4.74E−02 0.638 0.575 0.701 0.617 0.524 0.722

hsa-miR-502-5p_478954_mir − 4.03 2.18E−02 3.93E−02 0.637 0.573 0.701 0.662 0.53 0.813

hsa-miR-542-5p_478337_mir − 5.28 3.71E−03 8.83E−03 0.633 0.564 0.702 0.68 0.855 0.481

hsa-miR-362-3p_478058_mir − 5.81 1.73E−03 4.56E−03 0.632 0.564 0.701 0.69 0.879 0.475

hsa-miR-431-3p_478888_mir − 4.55 4.63E−03 1.06E−02 0.624 0.552 0.696 0.678 0.853 0.478

hsa-miR-192-3p_478741_mir − 4.08 5.15E−03 1.16E−02 0.61 0.535 0.685 0.674 0.85 0.474

hsa-miR-589-5p_479073_mir − 2.81 2.28E−02 4.07E−02 0.582 0.512 0.652 0.633 0.795 0.448

hsa-miR-888-5p_479192_mir − 3.79 2.06E−02 3.73E−02 0.559 0.489 0.63 0.656 0.861 0.422

hsa-miR-15b-3p_477929_mir − 3.73 1.76E−02 3.37E−02 0.529 0.459 0.599 0.629 0.86 0.365

hsa-miR-651-5p_479131_mir − 3.94 2.90E−02 4.90E−02 0.523 0.448 0.599 0.638 0.87 0.372

Log fold-change expression, p-value, adjusted p-value, AUC values, accuracy, sensitivity, specificity, and 95% of confidence intervals of the 210 dysregulated miRNAs

CI confidence of interval
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Fig. 1  Diagnostic performance of the top-10 differentially expressed miRNAs. a Relative dCT values of top differentially expressed miRNAs in 
patients with CRC (n = 19) compared to control patients (n = 22). **p < 0.05. b ROC-curves and AUC-scores the top-10 differentially expressed 
miRNAs

Table 3  Published studies of the top-10 miRNAs dysregulated in CRC patients

Tissue samples Other type of samples

miR-199b-5p Not previously reported Not previously reported

miR-150-5p Upregulated: [24, 25] Downregulated: serum [28]

Downregulated: [26, 27]

miR-29c-5p Not previously reported Not previously reported

miR-218-5p Upregulated: [29] Not previously reported

Downregulated: [30, 31]

miR-99a-3p Not previously reported Not previously reported

miR-383-5p Downregulated: [32] Not previously reported

miR-199a-3p Upregulated: [26] Upregulated in stool [33, 34]

miR-193a-5p Downregulated in CRC cell lines [35] Not previously reported

miR-10b-5p Downregulated: [30, 36, 37] Not previously reported

miR-181c-5p Upregulated: [38] Not previously reported
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in an independent study including a larger cohort of 
patients. Moreover, further analysis should be performed 
to elucidate the prognostic value of the detection of the 
different types of miRNAs in EVs isolated from perito-
neal lavages.

Conclusions
In this study, we have demonstrated that use of EV-
associated miRNA of ascitic liquid from control patients 
and peritoneal lavages from CRC patients are an 

untapped source of biomarkers. Specifically, we identi-
fied miRNA-199b-5p, miRNA-150-5p, miRNA-29c-5p, 
miRNA-218-5p, miRNA-99a-3p, miRNA-383-5p, 
miRNA-199a-3p, miRNA-193a-5p, miRNA-10b-5p and 
miRNA-181c-5p as promising biomarkers of CRC diag-
nosis with the AUC value higher than 0.95.
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Fig. 2  Prediction of miRNA target transcripts. a Boxplot of the number of transcripts regulated by the 210 dysregulated miRNAs. b Graphical 
representation in which the transcript ID is represented with a different font size accordingly to the times that is predicted to be regulated by the 
different miRNAs, i.e. the most frequently regulated transcripts are shown in a larger font size
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a

b

Fig. 3  Sun projection plot of GO terms. Predicted transcripts regulated by the differentially expressed miRNAs. a GO analysis of up-regulated 
and down-regulated target genes according to biological process. b GO analysis of up-regulated and down-regulated target genes according to 
molecular function
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Additional files

Additional file 1: Table S1. Clinicopathological characteristics of all 
patients. 

Additional file 2: Figure S1. Workflow. Workflow of the study design. 

Additional file 3: Figure S2. EVs characterization. (A) Box-plot repre‑
senting the average mode of EVs isolated from the peritoneal lavage 
and ascitic fluid of CRC and control patients, respectively (Mean ± SD); 
measured by Nanoparticle Tracking Analysis. (B) Size distribution and 
concentration of isolated EVs of a peritoneal lavage of a CRC patient (left) 
and a ascitic fluid of a control patient (right), measured by Nanoparticle 
Tracking Analysis.
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