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in precision medicine paving a new era
in patients centric care?
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Abstract

Healthcare is undergoing a transformation, and it is imperative to leverage new technologies to generate new data
and support the advent of precision medicine (PM). Recent scientific breakthroughs and technological advancements
have improved our understanding of disease pathogenesis and changed the way we diagnose and treat disease
leading to more precise, predictable and powerful health care that is customized for the individual patient. Genetic,
genomics, and epigenetic alterations appear to be contributing to different diseases. Deep clinical phenotyping, com-
bined with advanced molecular phenotypic profiling, enables the construction of causal network models in which a
genomic region is proposed to influence the levels of transcripts, proteins, and metabolites. Phenotypic analysis bears
great importance to elucidat the pathophysiology of networks at the molecular and cellular level. Digital biomarkers
(BMs) can have several applications beyond clinical trials in diagnostics—to identify patients affected by a disease or
to guide treatment. Digital BMs present a big opportunity to measure clinical endpoints in a remote, objective and
unbiased manner. However, the use of “‘omics”technologies and large sample sizes have generated massive amounts
of data sets, and their analyses have become a major bottleneck requiring sophisticated computational and statistical
methods. With the wealth of information for different diseases and its link to intrinsic biology, the challenge is now to
turn the multi-parametric taxonomic classification of a disease into better clinical decision-making by more precisely
defining a disease. As a result, the big data revolution has provided an opportunity to apply artificial intelligence (Al)
and machine learning algorithms to this vast data set. The advancements in digital health opportunities have also
arisen numerous questions and concerns on the future of healthcare practices in particular with what regards the
reliability of Al diagnostic tools, the impact on clinical practice and vulnerability of algorithms. Al, machine learning
algorithms, computational biology, and digital BMs will offer an opportunity to translate new data into actionable
information thus, allowing earlier diagnosis and precise treatment options. A better understanding and cohesiveness
of the different components of the knowledge network is a must to fully exploit the potential of it.
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Introduction

Today, the practice of medicine remains largely empiri-
cal; physicians generally rely on patterns matching to
establish a diagnosis based on a combination of the
patients’ medical history, physical examination, and
laboratory data. Thus, a given treatment is often based
on physicians past experience with similar patients.
One consequence of this is that a blockbuster gets
prescribed for a “typical patient” with a specific dis-
ease. According to this paradigm, treatment decision
is driven by trial and error and the patient occasion-
ally becomes the victim of unpredictable side effects, or
poor or no efficacy for a drug that theoretically works
in some people affected by that specific disease.

Greater use of BMs [1, 2] and companion diagnostics
(CDX) can now enable a shift from empirical medicine
to precision medicine (PM) (the right medicine, for the
right patient, at the right dose, at the right time). It is
conceivable that, in the immediate future, physicians
will be moving away from the concept of “one size fits
all” and shift instead to PM.

It is generally known that the response of a specific
treatment varies across the heterogeneity of a popula-
tion with good and poor responders. Patients and treat-
ment response differ because of variables like genetic
predisposition, heterogeneity of the cohorts, ethnic-
ity, slow vs. fast metabolizers, epigenetic factors, early
vs. late stage of the disease. These parameters have an
effect on whether a given individual will be a good or
poor responder to a specific treatment.

The goal of PM is to enable clinicians to quickly,
efficiently and accurately predict the most appropri-
ate course of action for a patient. To achieve this, cli-
nicians are in need of tools that are both compat-ible
with their clinical workflow and economically feasible.
Those tools can simplify the process of managing the
biological complexity that underlies human diseases.
To support the creation and refinement of those tools, a
PM ecosystem is in continuous development and is the
solution to the problem. The PM ecosystem is begin-
ning to link and share information among clinicians,
laboratories, research enterprises, and clinical-informa-
tion-system developers. It is expected that these efforts
will create the foundation of a continuously evolving
health-care system that is capable of significantly accel-
erating the advancement of PM technologies.

Precision medicine highlights the importance of
coupling established clinical indexes with molecular
profiling in order to craft diagnostic, prognostic and
therapeutic strategies specific for the needs of each
group of patients. A correct interpretation of the data
is a must for the best use of the PM ecosystem. The
PM ecosystem combines omics and clinical data to
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determine the best course of action to be taken for each
specific patient group.

Currently, a drug gets approved after a lengthy regu-
latory process. One way to address this problem, is to
focus on selected group of patients thus, Phase III clinical
studies can be conducted with a small group of patients
rather than thousands and thousands of patients typically
needed for the Phase III studies. This approach should
potentially guarantee a more rapid and expeditious way
to perform drug development of next-generation phar-
macotherapy. A narrower focus on a specific patient’s
group at the stage of the regulatory approval process
should facilitate streamlining the regulatory approval
resulting in a greater clinical and economic success.

The shift towards a deeper understanding of disease
based on molecular biology will also inevitably lead to a
new, more precise disease’s classification, incorporating
new molecular knowledge to generate a new taxonomy.
This change will result in a revised classification of intrin-
sic biology, leading to revisions of diseases signs and
symptoms. For this change to occur, however, larger data
bases, accessible to all, will be needed that dynamically
incorporate new information.

The emerging use of personalized laboratory medi-
cine makes use of a multitude of testing options that can
more precisely pinpoint management needs of individ-
ual groups of patients. PM seeks to dichotomize patient
populations in those who might benefit from a specific
treatment (responders) and those for whom a benefit is
improbable (non-responders). Defining cut-off points
and criteria for such a dichotomy is difficult. Treatment
recommendations are often generated using algorithms
based on individual somatic genotype alterations. How-
ever, tumors often harbor multiple drivers’ mutations
(owing to intra- and inter-tumoral heterogeneity). Phy-
sicians, therefore, need to combine different streams
of evidence to prioritize their choice of treatment. The
implementation of PM often relies on a fragmented land-
scape of evidences making hard for physicians to select
among different diagnostic tools and treatment options.

In the case of cancer immunotherapy, predictive bio-
markers (BM) for immunotherapy differ from the tradi-
tional BM used for targeted therapies. The complexity
of the tumor microenvironment (TME), the immune
response and molecular profiling requires a more holistic
approach than the use of a single analyte BM [3]. To cope
with this challenge, researchers have adopted multiplexing
approach, where multiple BMs are used to empower more
accurate patient stratification [4]. To select specific patient’s
groups for immunotherapy, histological analysis now
include concomitant analysis of immuno-oncology BMs,
such as PD-L1 and immune cell infiltrates (Fig. 1) as well as
more comprehensive immune and tumor-related pathways
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Fig. 1 Critical checkpoints for host and tumor profiling. A multiplexed biomarker approach is highly integrative and includes both tumor- and
immune-related parameters assessed with both molecular and image-based methods for individualized prediction of immunotherapy response. By
assessing patient samples continuously one can collect a dynamic data on tissue-based parameters, such as immune cell infiltration and expression
of immune checkpoints, and pathology methods. These parameters are equally suited for data integration with molecular parameters. TILs:
tumor-infiltrating lymphocytes. PD-L1: programmed cell death-ligand 1. Immunoscore: a prognostic tool for quantification of in situ immune cell
infiltrates. Immunocompetence: body’s ability to produce a normal immune response following exposure to an antigen (tumor drawing has been

(the “Cancer Immunogram”) (Fig. 2) [4, 5]. In the case of
cancer immunotherapy, multiplexed immunoprofiling gen-
erating a comprehensive biomarker dataset that can corre-
lated with clinical parameters is key for the success of PM.

Patient stratification for precision medicine

In traditional drug development, patients with a disease
are enrolled randomly to avoid bias, using an “all comers”
approach with the assumption that the enrolled patients
are virtually homogeneous. The reason for random enroll-
ment is to ensure a wide representation of the general
population. In reality, we never perform clinical trials for
randomly selected patients, but rather we apply various
types of enrichments to patients’ enrolment by applying
specific inclusion and exclusion criteria. Despite all of
those efforts to increase the enrichment, the population
that ultimately gets selected for the study can be rather
heterogeneous with respect to drug-metabolizing capa-
bilities, environmental conditions (e.g. diet, smoking
habit, lifestyle etc.), or previous exposure to medication(s)
as well as individuals genetic and epigenetic make-up. By
using BMs to better characterize molecular, genetic, and
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Fig. 2 The cancer immunogram. The schema depicts the seven
parameters that characterize aspects of cancer-immune interactions
for which biomarkers have been identified or are plausible. Italics
represent those potential biomarkers for the different parameters

(adapted from [4])
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epigenetic makeup of patients, drug developers have been
trying to establish a more objective approach.

The use of patient stratification is to separate prob-
able responders from non-responders. A prospective
stratification can result in a smaller and shorter clinical
study compared to those needed for randomly selected
patients.

Minimally, stratification can speed up approval for
drug candidates intended for a subset of patients, while
leaving the door open for further tests and market expan-
sion in the more heterogeneous population of patients.
Maximally, it can unmask a useful therapeutic agent that
otherwise would be lost in the noise generated by the
non-responders, as was the case for instance of trastu-
zumab and gefitinib [6].

Thus, clinical trials could be shorter, given a quicker
determination on the efficacy of the new molecular
entity. Today, the major focus of research is to identify
the molecular causes of differential therapeutic responses
across patient populations. It is now clear that patients
affected by a disease show significant response hetero-
geneity to a given treatment. Advances in understanding
the mechanisms underlying diseases and drug response
are increasingly creating opportunities to match patients
with therapies that are more likely to be efficacious and
safer.

Furthermore, patient stratification has a considerable
economic impact on the model of the pharmaceutical
industry. By identifying the populations likely to ben-
efit from a new therapy, drug development costs will be
reduced and the risk of treating non-responders will be
minimized. Advances in “omics” technologies (e.g. epig-
enomics, genomics, transcriptomics, proteomics, metab-
olomics, etc.), also called, systems-based approach [7],
are now utilized to identify molecular targets including
BMs [1, 2] that can reveal the disease state or the ability
to respond to a specific treatment, thus providing scien-
tists and clinicians to generate a learning dataset consist-
ing of molecular insights of the disease pathogenesis.

A search of the relevant literature will reveal an abun-
dance of publications related to BMs [8]. However, as
previously reported by Poste in 2011 [9] more than
150,000 articles have described thousands of BMs how-
ever, only approximately 100 BMs are routinely used in
the clinical practice. As to date, over 355 new non-tradi-
tional BMs (i.e. pharmacogenomic BM-drug pairs) have
been described in drug labels (www.fda.gov/drugs/scien
ceresearch/ucm572698.htm). Table 1 lists 355 pharma-
cogenomic BMs as of Dec. 2018, linked to drugs with
pharmacogenomic information found in the drug labe-
ling (Drugs@FDA; https://www.fda.gov/drugs/scienceres
earch/ucm572698.htm). Those BMs include germline or
somatic gene variants (i.e. polymorphisms, mutations),
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functional deficiencies with a genetic etiology, altered
gene expression signatures, and chromosomal abnormal-
ities. The list also includes selected protein BMs that are
used to select treatments for specific patient’s groups.

Moreover, as reported recently by Burke [10]
there are more than 768,000 papers indexed in Pub-
Med.gov directly related to BMs (https://www.
amplion.com/biomarker-trends/biomarker-panel
s-the-good-the-bad-and-the-ugly/).

All the data collected so far have shown insufficient
linkages between BMs and disease pathogenesis resulting
in the failure of many BMs as well as drug targets. It is
critical to link the target to the disease pathogenesis thus,
enabling the development of better and more precise
therapies by pre-selecting responders to treatment.

Biomarkers and decision making

BMs have been used to improve patient’s stratification
and/or develop targeted therapies facilitating the deci-
sion-making process throughout the new drug devel-
opment process. BMs constitute a rational approach
which, at its most optimal, reflects both the biology of
the disease and the effectiveness of the drug candidate.
Also, adding the appropriate BMs to a drug-development
strategy enables the concept of ‘fail fast, fail early’; thus,
allowing early identification of the high proportion of
compounds that fail during drug development. Reduc-
ing human exposure to drugs with low efficacy or safety
concerns allows to shift resources to drugs that have a
higher chance of success. Identification of BMs helpful
for a quick go-no-go decision early in the drug develop-
ment process is critical for enhancing the probability of
success of a drug.

Traditionally, clinical trial end-points, such as mor-
bidity and mortality, often require extended timeframes
and may be difficult to evaluate. Imaging-based BMs are
providing objective end-points that may be confidently
evaluated in a reasonable timeframe. However, imaging
techniques are rather expensive and often very impracti-
cal especially in specific geographical area.

Despite all of these, BMs are essential for decid-
ing which patients should receive a specific treatment.
Table 1 illustrates a number or pharmacogenomic BMs in
drug labeling. As of December 2018, approximately 355
pharmacogenomic BMs are linked to drugs with pharma-
cogenomic information found in the drug labeling. These
BMs include germline or somatic gene variants (i.e. poly-
morphisms, mutations), functional deficiencies with a
genetic etiology, altered gene expression signatures, and
chromosomal abnormalities, and selected protein BMs
that are used to select treatments for patients.

Pre-clinical BMs are essential, as long they translate
into clinical markers. Which is often is not the case.
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Several reasons can be offered to explain why many clini-
cal studies have failed to identify BMs ability to predict
treatment efficacy or disease modification including lack
of statistical power, lack of validation standards [11] and
pharmacogenetic heterogeneity of patient groups [12].

Genomics, epigenetics, and microRNAs as emerging
biomarkers in cancer, diabetes, autoimmune
and inflammatory diseases
Biomarkers with the potential to identify early stages of
disease for example pre-neoplastic disease or very early
stages of cancer are of great promise to improve patient
survival. The concept of liquid biopsy refers to a mini-
mally invasive collection and analysis of molecules that
can be isolated from body fluids, primarily whole blood,
serum, plasma, urine and saliva, and others. A myriad of
circulating molecules such as cell-free DNA (cf-DNA),
cell-free RNA (cf-RNA) including microRNAs (miR-
NAs), circulating tumor cells (CTC), circulating tumor
proteins, and extracellular vesicles, more specifically
exosomes, have been explored as biomarkers [13].

Genetic and epigenetic alterations including DNA
methylation and altered miRNA expression might be
contributing to several autoimmune diseases, cancer,
transplantation, and infectious diseases. For example in a
recent study in rheumatoid arthritis (RA), de la Rica et al.
[14] has identified epigenetic factors involved in RA, and
hence conducted DNA methylation and miRNA expres-
sion profiling of a set of RA synovial fibroblasts and com-
pared the results with those obtained from osteoarthritis
(OA) patients with a normal phenotype. In this study,
researchers identified changes in novel key genes includ-
ing IL6R, CAPNS, and DPP4, as well as several HOX
genes. Notably, many genes modified by DNA methyla-
tion were inversely correlated with expression miRNAs.
A comprehensive analysis revealed several miRNAs that
are controlled by DNA methylation, and genes that are
regulated by DNA methylation and targeted by miRNAs
were of potential use as clinical markers. The study found
that several genes including Stat4 and TRAF1-C5 were
identified as risk factors contributing to RA and other
autoimmune diseases such as SLE [15, 16]. RA is also
strongly associated with the inherited tissue type MHC
antigen HLA-DR4 and the genes PTPN22 and PAD14
[15]. DNA methylation screening identified genes under-
going DNA methylation-mediated silencing including
IL6R, CAPNS8 and DPP4, as well as several HOX genes;
and a panel of miRNAs that are controlled by DNA meth-
ylation, and genes that are regulated by DNA methylation
and are targeted by miRNAs.

Likewise, changes in miRNA levels in blood and other
body fluids (miRNAs) have been linked to a variety of
autoimmune diseases [17] including: (i) Type 1 diabetes,
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miR-342, miR-191, miR-375 and miR-21 and miR-510
and others [18-20]; (ii) Type 2 diabetes, miR-30, miR-
34a, miR-145 and miR-29¢c, miR-138, -192, -195, -320b,
and let-7a, (iii) prediabetes (miR-7, miR-152 and miR-
192) [21, 22] and insulin resistance (miR-24, miR-30d,
miR-146a), obesity and metabolic diseases [19-26] (iv)
Multiple sclerosis (MS), miR-326 [27], miR-17-5p [28];
(v) Rheumatoid Arthritis (RA), miR-146a, miR-155
and miR-16 [29, 30]; (vi) Primary biliary cirrhosis, miR-
122a, miR-26a, miR-328, miR-299-5p [31]; (vii) Sjogren’s
syndrome, miR-17-92 [17]; (viii) SLE, miR-146a [32],
miR-516-5p, miR-637 [33]; and (ix) Psoriasis, miR-203,
miR-146a, miR125b, miR21 [34].

In the case of RA, alterations in several miRNAs
expression patterns including miR-146a, miRNA-155,
miRNA-124a, miR-203, miR-223, miR-346, miR-132,
miR-363, miR-498, miR-15a, and miR-16 were docu-
mented in several tissue samples of RA patients. The pol-
ymorphisms present in these miRNAs and their targets
have also been associated with RA or other autoimmune
diseases [19, 35]. Several reports have shown altered
miRNA expression in the synovium of patients with RA
[36]. For example, elevated expression of miR-346 was
found in Lipopolysaccharide activated RA fibroblast-like
synoviocytes (FLS) [37]. Moreover, miR-124 was found
at lower levels in RA FLS in comparison with FLS from
patients with OA [38]. miR-146a has been found to be
elevated in human RA synovial tissue and its expression
is induced by the pro-inflammatory cytokines i.e. tumor
necrosis factor and interleukinlf [29]. Furthermore,
miR-146, miR-155, and miR-16 were all elevated in the
peripheral blood of RA patients with the active disease
rather than inactive disease [30] suggesting that these
miRNAs may serve as potential disease activity markers.

The epigenetic regulation of DNA processes has been
extensively studied over the past 15 years in cancer, where
DNA methylation and histone modification, nucleosome
remodeling and RNA mediated targeting regulate many
biological processes that are crucial to the genesis of can-
cer. The first evidence indicating of an epigenetic link
with cancer were studied derived from DNA methylation.
Though many of the initial studies were purely correla-
tive, however, they did highlight a potential connection
between epigenetic pathways and cancer. These prelimi-
nary results were confirmed by recent results from the
International Cancer Genome Consortium (ICGC).

Compilation of the epigenetic regulators mutated in
cancer highlights histone acetylation and methylation
as the most widely affected epigenetic pathways. Deep
sequencing technologies aimed at mapping chromatin
modifications have begun to shed some lights on the ori-
gin of epigenetic abnormalities in cancer. Several pieces
of evidence are now highlighting that dysregulation of the
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epigenetic pathways can lead to cancer. All the evidence
collected thus far along with clinical and preclinical
results observed with epigenetic drugs against chromatin
regulators, point to the necessity of embracing a central
role of epigenetics in cancer. Unfortunately, those studies
are far too many to be comprehensively described in this
review.

Furthermore, cancer cell lines have been used to iden-
tify potential novel biomarkers for drug resistance and
novel targets and pathways for drug repurposing. For
example, previously we conducted a functional shRNA
screen combined with a lethal dose of neratinib to dis-
cover chemo-resistant interactions with neratinib. We
identified a collection of genes whose inhibition by RNAi
led to neratinib resistance including genes involved in
oncogenesis, transcription factors, cellular ion trans-
port, protein ubiquitination, cell cycle, and genes known
to interact with breast cancer-associated genes [39].
These novel mediators of cellular resistance to neratinib
could lead to their use as patient or treatment selection
biomarkers.

In addition, we undertook a genome-wide pooled
lentiviral shRNA screen to identify synthetic lethal or
enhancer (synthetic modulator screen) genes that inter-
act with sub-effective doses of neratinib in a human
breast cancer cell line. We discovered a diverse set of
genes whose depletion selectively impaired or enhanced
the viability of cancer cells in the presence of neratinib.
Further examination of these genes and pathways led to
a rationale for the treatment of cells with either pacli-
taxel or cytarabine in combination with neratinib which
resulted in a strong antiproliferative effect. Notably, our
findings support a paclitaxel and neratinib phase II clini-
cal trial in breast cancer patients [40].

Biomarker multiplexing

Multiple biomarkers are used to empower more accurate
patient stratification. To improve patient stratification
for immunotherapy, the analysis of immuno-oncology
biomarkers, like PD-L1, as well as a more comprehen-
sive analysis of the immune and tumor-related pathways
(the “Cancer Immunogram) (Fig. 2) [4] has to be used
for a better patient stratification in future immuno-
therapy trials [5]. The “Cancer Immunogram” includes
tumor foreignness, immune status, immune cell infiltra-
tion, absence of checkpoints, absence of soluble inhibi-
tors, absence of inhibitory tumor metabolism, and tumor
sensitivity to immune effectors as the most important
predictors of immunotherapy response in a single tissue
sample [5]. As depicted in Fig. 2, The “Cancer Immuno-
gram” integrates both tumor- and immune-related char-
acteristics assessed with both molecular and image-based
methods for individualized prediction of immunotherapy
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response. By evaluating dynamic data on tissue-based
parameters, (e.g., immune cell infiltration and expression
of immune checkpoints), quantitative pathology meth-
ods are ideally suited for data integration with molecular
parameters.

As illustrated in Fig. 3, and reported in a recent article
[3], the utility of this approach to organize and integrate
the biologic information into a useful and informative
single assay able to inform and influence drug develop-
ment, personalized therapy strategy and selection of
specific patient populations. The authors [3] suggest that
anti-cancer immunity can be histologically segregated
into three main phenotypes: (1) the inflamed phenotype
(“hot” tumors); (2) the immune-excluded phenotype
(“cold” tumors); and (3) the immune-desert phenotype
(“cold” tumors) [41, 42] (Fig. 3). Each tumor phenotype
is associated with specific underlying biological and
pathological mechanisms that may determine the suc-
cess of the host immune response and immunotherapy or
other therapeutic modalities to fight cancer. Identifying
these mechanisms at the level of the individual groups of
patients and selecting those patients with similar tumor
phenotype is critical for the selection of specific patient
populations both for the development as well as imple-
mentation of therapeutic interventions.

Digital biomarkers
Digital BMs are defined as an objective, quantifiable
physiological and behavioral data that are collected and
measured by means of digital devices. The data collected
is typically used to explain, influence and/or predict
health-related outcomes. Increasingly, many smartphone
apps are also available for health management with or
without connection to these sensor devices [43, 44].
There are approx. 300,000 health apps and 340 + (CK per-
sonal communication) sensor devices available today and
the number of apps is doubling every 2 years. Recently,
a new class of wearable smartphone-coupled devices
such as smart watches have been widely available. These
devices offer new, and more practical opportunities not
without limitations [44]. As those wearable devices and
their corresponding apps continue to develop and evolve,
there will be a need for a more dedicated research and
digital expert assessment to evaluate different healthcare
applications as well as assess the limitations and the risks
of impinging on the individual privacy and data safety.
This surge in technology has made it possible for ‘con-
sumers’ to track their health but also represents an inter-
esting opportunity to monitor healthcare and clinical
trials. Data collected about a patient’s activity and vital
signs can be used to get an idea about the patient’s health
status and disease progression on a daily basis. However,
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the problem is that a majority of these apps and devices
are meant for wellness purposes and not intended to
diagnose or treat diseases.

As reported previously in the literature [5], and shown
Figs. 1 and 2, recent advances in electronic data collec-
tion will be instrumental in our ability to digitize and
process large collections of tissue slides and molecular
diagnostic profiling. The evolving field of machine learn-
ing and artificial intelligence with the support of human
interpretation will have a dramatic impact on the field
(45, 46).

This field has already generated tangible results.
Indeed,, medical device companies (e.g., Philips, GE,
and Leica) are developing new imaging technologies for
digital pathology to detect digital biomarkers, while a
number of Information Technology (IT) companies (e.g.,
Google, IBM, and Microsoft, or PathAl) are developing
tools, such as machine learning and artificial intelligence
(AI) for big data analysis and integrated decision making.

Pharmaceutical companies are also moving in the same
direction. For example, FDA clearance for the VEN-
TANA MMR IHC Panel for patients diagnosed with

colorectal cancer (CRC) developed by Roche is a dem-
onstration of these efforts [5]. Thus, developing digital
biomarkers, big data analysis and interpretation will be
beneficial in the new era of PM.

How can wearable help in clinical trials and healthcare?

In a typical clinical trial or in a clinical setting, the patient
visits the hospital not more than once per month or less.
So, the clinician can observe the signs and symptoms of
the patient only during this visit and has almost no vis-
ibility on how the patient is doing for the majority of the
time outside the clinic. If digital BMs are used, the patient
can perform these tests using smartphones or sensors in
the comfort of his/her home. For example, in a Parkin-
son’s disease trial various aspects of the patient’s health
can be captured in a remote study using smartphone-
based apps. This allows the collection of quantitative and
unbiased data on a frequent or almost continuous basis.
The clinician can get almost real-time feedback on each
patient, whether they are getting better or worse. This
feedback can help to inform the study protocol or even
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halt the study if the drug doesn’t seem to be working on
most of the patients.

The Clinical Trials Transformation Initiative (CTTI)
provides a framework and detailed guidance for develop-
ing digital BMs. They also outline the benefits of using
digital BMs in clinical trials such as being patient-centric
while also making faster decisions that save time and
costs.

Develop and validate digital biomarkers

The first and most important consideration in developing
digital BMs is not which device to use, but rather decid-
ing which disease symptoms to capture that best repre-
sent the disease. Involving patients, and physicians in the
discussion are necessary to understand which symptoms
matter to patients. At the same time, it is important to
consider if these symptoms can be objectively measured
and what is a meaningful change in measurement that
reflects treatment benefit.

Once it is clear what endpoints need to be captured,
the right device can be selected. The device technology
needs to be verified (measurement errors, variances, etc.)
and the device also needs to be validated for the specific
use (reliability; accuracy and precision compared to gold
standard or independent measurements). An observa-
tional study is required to ensure the suitability of the
device before deploying it in a trial.

Diseases that can be tracked with digital biomarkers

Heart disease and diabetes measurements are common
application areas for sensor-based devices. However,
digital BMs could have the most impact in monitoring
CNS diseases since it gives us the opportunity to measure
symptoms that were largely intractable until now. Various
sensor devices are available for tracking several aspects of
health such as activity, heart rate, blood glucose and even
sleep, breath, voice, and temperature. Most smartphones
are equipped with several sensors that can perform the
various motion, sound and light based tests. In addition,
the smartphone can be used for psychological tests or to
detect finger motions through the touchscreen. These
measures can be used in various combinations to predict
the health aspects or symptoms required.

Digital BMs can have several applications beyond clini-
cal trials, for example in diagnostics—to identify patients
affected by a disease. However, the most interesting
application is in digital therapeutics where the device/
app can be used to help the treatment like insulin dose
adjustment or to monitor/treat substance abuse or addic-
tion. Digital BMs present a big opportunity for measuring
endpoints in a remote, objective and unbiased manner
that was largely difficult until now. However, there are
still several challenges that need to be considered before
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developing and deploying them to measure endpoints in
clinical trials.

The conundrum of biomarker strategy

There is a wrong notion that by the time a BM is dis-
covered and validated; it is too late to affect the deci-
sion-making process. The real question is whether the
chosen BM is: (1) intrinsically related to the patho-
genesis of a disease; and (2) whether it is reliable and
adequate for decision-making. It has been reported
that building computer models can transform potential
BM into clinically meaningful tests. However, on sev-
eral occasions when scientists [47] attempted to import
data from the literature, they found that the diagnos-
tic criteria used to assess BMs accuracy were vague or
based on un-validated BMs.

Identifying BMs that can be translated from animal
models to humans is also challenging [48]. While inhibit-
ing an enzyme in an animal model may be effective, this
may not be the case in humans. This is either because the
pathway has diverged or humans have some compensa-
tory mechanisms. A treatment may change a BM, but
this may be irrelevant to a specific disease. Therefore, a
true BM must be intrinsically linked to the pathogenesis
of the disease. A drug should treat a disease, not a BM.

Without understanding the pathogenesis of a disease,
it is difficult to figure out what is the right BM to be used
in clinical studies. Once a BM is identified, it is difficult
to understand whether it is associated with a specific
disease or multiple diseases or if it is a reflection of poor
health. For instance, if you are studying potential BMs for
Systemic Lupus Erythematosus (SLE) or Alzheimer’s Dis-
ease (AD), the same set of BMs keeps emerging as poten-
tial differentiators. A growing body of evidence indicates
that SLE is associated with increased risk of cognitive
impairment and dementia [49]. The real question is, how-
ever, whether those specific BMs would be able to dif-
ferentiate SLE from AD. Otherwise, the plethora of BMs
that has been generated would be irrelevant.

Pharmaceutical companies are obsessed with the idea
that a BM needs to be validated before it can be used for
decision-making. Unfortunately, there are no clear-cut
criteria to date identifying which BM should be validated.
The rigor on how to use a BM to kill a compound relies
entirely on the discretion of pharmaceutical companies.
The risk of using the wrong BM or selecting the wrong
set of BMs may lead to the wrong decision of dumping a
good drug because the adopted BM strategy was evalu-
ated inaccurately. To overcome this problem, pharma-
ceutical companies tend to rely their decision-making
process on a long list of BMs (very often too many). This
is based on the notion that clusters of variables can be
used to differentiate responders from non-responders.
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The risk of utilizing a long list of BMs is not only costly
but also to make the data difficult to be interpreted.
The best solution to this problem is to select a strategy
that selects a few BMs with complementary predictive
properties.

In the last few years, the FDA has pressured phar-
maceuticals to shift the paradigm towards PM, thus
targeting diagnostics and treatments based on patient-
stratification. This has prompted everyone in the phar-
maceutical field to translate molecular profiles into
effective treatments, thus impacting: (i) prevention; (ii)
early detection; (iii) use of animal or in silico models to
facilitate the prediction of success by increasing efficacy
and minimizing toxicity and (iv) computational biol-
ogy to create new synergies between discovery and drug
development.

Computational biology and bioinformatics to aid
biomarker development

There is a need to develop novel computer-aided algo-
rithms and methodologies for pattern recognition,
visualization, and classification of distribution metrics
for interpreting large sets of data coming from high-
throughput molecular profiling studies. This is where the
bioinformatics and computational biology play a critical
role in linking biological knowledge with clinical prac-
tice: they are the interface between the clinical devel-
opment process of drug target and BM discovery and
development.

Computational biology uses computational tools and
machine learning for data mining, whereas bioinformat-
ics applies computing and mathematics to the analysis
of biological datasets to support the solution of biologi-
cal problems. Bioinformatics plays a key role in analyzing
data generated from different ‘omics’ platforms annotat-
ing and classifying genes/pathways for target identifica-
tion and disease association.

The goal of bioinformaticians is to use computational
methods to predict factors (genes and their products)
using: (1) a combination of mathematical modeling and
search techniques; (2) mathematical modeling to match
and analyze high-level functions; and (3) computational
search and alignment techniques to compare new bio-
molecules (DNA, RNA, protein, metabolite, etc.) within
each functional ‘omics’ platform. Combination of this and
patient datasets are then used to generate hypotheses.

Bioinformatics and computational biology enable fine
tuning of hypotheses [50]. These fields often require spe-
cialized tools and skills for data exploration, clustering,
regression and supervised classification [51, 52], pat-
tern recognition and selection [53], and development of
statistical filtering or modeling strategies and classifiers
including neural networks or support vector machines.
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The integration of clinical and ‘omics’ data sets has
allowed the exploitation of available biological data such
as functional annotations and pathway data [54-56].
Consequently, this has led to the generation of prediction
models of disease occurrence or responses to therapeutic
intervention [51, 57].

However, the use of high throughput “omics” tech-
nologies and large sample sizes have generated massive
amounts of data sets and their analyses have become a
major bottleneck requiring sophisticated computational
and statistical methods and skill sets to analyze them [9].

The role of modeling and simulation to support
information-based medicine

Modeling and simulation (M&S) can accelerate drug
development and reduce costs significantly [58]. It relies
on a feedback loop leading to the production of more
relevant compounds to feed into the development cycle.
M&S begins with a new data set, such as BMs to link
bench to bedside, thus generating a feedback loop with
the drug development cycle. Once the right data is avail-
able, investigators can test hypotheses to understand the
molecular factors contributing to disease and devising
better therapies and simulating different study designs
before testing the drug candidate in a clinical trial.

The utility of this approach was shown by Roche AG
receiving approval for a combination drug (PEGASYS)
for the treatment of hepatitis C. The approach used a
variety of factors, including the genotype of the virus
and the weight of the patient to select the proper dose
for a subset of patients. Pfizer was also pioneering this
approach for Neurontin (gabapentin). This drug was
approved for a variety of neuropathic pain disorders,
including post-herpetic neuralgia. Despite those exam-
ples, many companies have not yet fully embraced this
approach and are still struggling with modeling and
simulation tools, due to poor integration of separate
data sets. The tools developed for data integration do not
communicate well with each other since they rely on data
that are in separate databases. Based on this, it will be dif-
ficult to include M&S as an integral part of the develop-
ment process, unless companies integrate their systems
more seamlessly. All the odds speak in favor of the fact
that industries are adopting standard data formats and
managing structured (data in databases) and unstruc-
tured data (documents) sets. As a result, the outcome of
translating drug development into clinical practice will
be more efficient.

Using pharmacogenomic data, M&S can help us to
unravel critical safety issues. FDA has started to recog-
nize with the Critical Path initiative the value of M&S as
an important part of the CRADA in 2006 (US Food and



Seyhan and Carini J Transl Med (2019) 17:114

Drug Administration, “Challenge and Opportunity on
the Critical Path to New Medical Products”).

The goal of CRADA is to develop software to support
CDISC data formats that can link to other FDA databases
and which can ultimately conduct modeling and simu-
lation. This data will ultimately be applied to the end of
Phase IIa revision to make a go or no-go decision.

Machine learning and artificial intelligence can improve
precision medicine

The recent big data revolution, accompanied with the
generation of continuously collected large data set from
various molecular profiling (genetic, genomic, prot-
eomic, epigenomic and others) efforts of patient samples
by the development and deployment of wearable medi-
cal devices (e.g. wearable watches) and mobile health
applications, and clinical outcome data has enabled the
biomedical community to apply artificial intelligence (AI)
and machine learning algorithms to vast amounts of data.
These technological advancements have created new
research opportunities in predictive diagnostics, preci-
sion medicine, virtual diagnosis, patient monitoring, and
drug discovery and delivery for targeted therapies. These
advancements have awoken the interests of academic,
industry researchers, and regulatory agencies alike and
are already providing new tools to physicians.

An example is the application of precision immuno-
profiling by image analysis and artificial intelligence to
biology and disease. This was demonstrated in a recent
paper where the authors used immunoprofiling data to
assess immuno-oncology biomarkers, such as PD-L1 and
immune cell infiltrates as predictors of patient’s response
to cancer treatment [5]. Through spatial analysis of
tumor-immune cell interactions, multiplexing technolo-
gies, machine learning, and Al tools these authors dem-
onstrated the utility of pattern-recognition in large and
complex datasets and deep learning approaches for sur-
vival analysis [5].

Essentially, we are using genetics, epigenetics, genom-
ics, proteomics, and other molecular profiling data to
inform biology, which we then are evaluating progres-
sively backward using clinical, cellular, and in vitro assays
for the discovery of novel targets, pathways, and BMs.
Using this plethora of data and data on drugs, we are in a
position to come up with candidate drugs faster that most
likely work as compared to rational drug design. The goal
for human exploratory data would be to aggregate data
across the entire medical ecosystem, and give it to third
parties to analyze. The pharmaceutical industry could
then use AI to build models or to surface patterns—
connecting with the patient outcome data—to provide
insights into potential benefits to patients. To accom-
plish this, it is going to take academia, government, and

Page 23 of 28

industry—society at large to make better use of human
exploratory data. Up to date, the only way to streamline
access to human exploratory data is if patients consent,
so part of the solution is patient empowerment.

A recent publication [59] highlights the potential util-
ity of Al in cancer diagnostics. Scientists re-trained an
off-the-shelf Google deep learning algorithm to identify
the most common types of lung cancers with 97% accu-
racy that even identified altered genes driving abnormal
cell growth. To accomplish this, scientists fed Inception
v3 slide images supplied by The Cancer Genome Atlas, a
database consisting of images of cancer histopathology
data and the associated diagnostic annotations. This type
of AT has been used to identify faces, animals, and objects
in pictures uploaded to servers portal (i.e. Google’s online
services) has proven useful at diagnosing the disease
before, including diabetic blindness and heart conditions.
The researchers found the Al performed almost as well as
experienced pathologists when it was used to distinguish
between adenocarcinoma, squamous cell carcinoma,
and normal lung tissue. Intriguingly, the program was
trained to predict the 10 most commonly mutated genes
in adenocarcinoma and found that six of them—STK11,
EGFR, FAT1, SETBP1, KRAS, and TP53—can be pre-
dicted from pathology images, with AUCs from 0.733 to
0.856 as measured on a held-out population. The genetic
changes identified by this study often cause the abnormal
growth seen in cancer and they can change a cell’s shape
and interactions with its surroundings, providing visual
clues for automated analysis.

In another study, researchers used machine learning
and retrospectively identified multiple factors that under-
lie cancer immunotherapy success which potentially
allows better target immunotherapy treatment to those
who will benefit [60]. To generate their computer model,
researchers analyzed data (measured mutations and
gene expression in the tumor and T cell receptor (TCR)
sequences in the tumor and peripheral blood in urothe-
lial cancers treated with anti-PD-L1) from 21 patients
with bladder cancer from a clinical trial dataset of
urothelial cancers from Snyder et al. [61] with a uniquely
rich data set that captured information about tumor
cells, immune cells, and patient clinical and outcome
data. Instead of modeling the clinical response of each
patient directly, researchers modeled the response of
each patient’s immune system to anti PDL-1 therapy and
used the predicted immune responses to stratify patients
based on expected clinical benefit. Their computer model
identified key features associated with a specific response
to the drug (i.e. PD-L1 inhibitor) and applied 36 different
features-multi-modal data set into their machine learning
algorithm and allowed the algorithm to identify patterns
that could predict increases in potential tumor-fighting
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immune cells in a patient’s blood after treatment. The
machine learning algorithm identified 20 features. When
they analyzed these features as a panel, they were able to
describe 79 percent of the variation in patient immune
responses. This suggested that the comprehensive set of
features collected and analyzed for these patients may
predict the patient immune response with high accuracy.
However, if the researchers excluded any one of the three
categories from the model (tumor data, immune cell data
or patient clinical data) the algorithm can no longer pre-
dict immune response with high accuracy and confidence
(the model could only predict at most 23 percent of the
variation). Authors concluded that integrative models of
immune response may improve our ability to predict the
patient response to immunotherapy. However, this study
only analyzed a small set of patient data (it only incor-
porated data from 21 patients, which is far too few to be
predictive for the general population) and requires vali-
dation of this approach in a larger cohort of patients.

We also recently used a similar machine learning
approach that enabled us to identify multiple factors
that underlie short-term intensive insulin therapy (IIT)
therapy success early in the course of type 2 diabetes
which potentially allowed better targeted treatment to
those patients who will benefit the most [23]. For that,
we developed a model that could accurately predict the
response to short-term intensive insulin therapy which
provided insight into molecular mechanisms driving
such response in humans. We selected a machine learn-
ing approach based on the random forests (RF) method,
which implements an out-of-bag (“bagging”) technique
to monitor error and ensure unbiased prediction with
reduced risk of overfitting. For our analysis, the RF algo-
rithm was implemented using the “randomForestpack-
age” in the R environment. As reported by [62], “by using
bagging in tandem with random feature selection, the
out-of-bag error estimate is as accurate as using a test set
of the same size as the training set. Therefore, using the
out-of-bag error estimate removes the need for a set aside
test set” In conclusion, our study identified potential
responders to IIT (a current limitation in the field) and
provided insight into the mechanism of pathophysiologic
determinants of the reversibility of pancreatic islet beta-
cell dysfunction in patients with early type 2 diabetes.

The advancements in digital health opportunities have
also arisen numerous questions and concerns for the
future of biomedical research and medical practice espe-
cially when it comes to reliability of Al-driven diagnostic
tools, the impact of these tools on clinical practice and
patients; vulnerability of algorithms to bias and unfair-
ness, and ways to detect and improve the bias and unfair-
ness in machine learning algorithms [63].
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In summary, we hope that the Al program in a not too
distant future helps to identify or even predict muta-
tions instantly, avoiding the delays imposed by genetic
tests, which can take weeks to confirm the presence of
mutations. These findings suggest that Al and machine
learning models can assist pathologists in the detection
of cancer subtype or gene mutations in an efficient and
expeditious way.

Deep phenotyping—Ilinking physiological abnormalities
and molecular states—from bedside to bench

The analysis of phenotype plays a key role in medical
research and clinical practice towards better diagnosis,
patient stratification, and selection of best treatment
strategies. In biology “phenotype” is defined as the physi-
cal appearance or biochemical characteristic of an organ-
ism as a result of the interaction between its genotype
and the environment “Deep phenotyping” is defined as
the precise and comprehensive analysis of phenotypic
abnormalities in which the individual components of the
phenotype (taking a medical history or a physical exami-
nation, diagnostic imaging, blood tests, psychological
test, etc., in order to make the correct diagnosis) have
been observed and described [64]. However, to under-
stand the pathogenesis of a disease, several key points
must be considered, such as the spectrum of complica-
tions, classification of patients into more homogeneous
subpopulations that differ with respect to disease suscep-
tibility, genetic and phenotypic subclasses of a disease,
family history of disease, duration of disease, or to the
likelihood of positive or adverse response to a specific
therapy.

The concept of “PM” which aims to provide the best
available medical care for each individual, refers to the
stratification of patients into more homogeneous sub-
populations with a common biological and molecular
basis of disease, such that strategies developed from this
approach is most likely to benefit the patients [Commit-
tee on the Framework for Developing a New Taxonomy
of Disease, 2011]. A medical phenotype comprises not
only the abnormalities described above but also the
response of a patient to a specific type of treatment.
Therefore, a better understanding of the underlying
molecular factors contributing to disease and associ-
ated phenotypic abnormalities requires that phenotype is
linked to molecular profiling data.

Therefore, deep phenotyping, combined with advanced
molecular phenotypic profiling such as genetics and
genomics including Genome-wide association stud-
ies (GWAS), epigenetics, transcriptomics, proteomics,
and metabolomics, with all their limitations, enables the
construction of causal network models (Fig. 4) in which
a genomic region is proposed to influence the levels of
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Fig. 4 Schematic of a comprehensive biomedical knowledge network that supports a new taxonomy of disease. The knowledge network of
disease would incorporate multiple parameters rooted in the intrinsic biology and clinical patient data originating from observational studies
during normal clinical care feeding into Information Commons which are further linked to various molecular profiling data enabling the formation
of a biomedical information network resulting in a new taxonomy of disease. Information Commons contains current disease information linked
to individual patients and is continuously updated by a wide set of new data emerging though observational clinical studies during the course of
normal health care. The data in the Information Commons and Knowledge Network provide the basis to generate a dynamic, adaptive system that
informs taxonomic classification of disease. This data may also lead to novel clinical approaches such as diagnostics, treatments, prognostics, and
further provide a resource for new hypotheses and basic discovery. At this intersection, artificial intelligence and machine learning may help to
analyze this highly complex large dataset by pattern recognition, feature extraction yielding Digital BMs. Validation of the findings that emerge from
the Knowledge Network, such as those which define new diseases or subtypes of diseases that are clinically relevant (e.g. which have implications
for patient prognosis or therapy) can then be incorporated into the New Taxonomy of disease to improve diagnosis (i.e. disease classification) and

disease (adapted from [72])

treatment. This multi-parametric taxonomic classification of a disease may enable better clinical decision-making by more precisely defining a

transcripts, proteins, and metabolites. This takes advan-
tage of the relative (i.e. the function of regulatory RNAs
and epigenetic modifications on phenotype) unidirec-
tional flow of genetic information from DNA variation to
phenotype.

As discussed by Schadt et al. [65] the relationships
between various physiological phenotypes (e.g. physi-
ological traits) and molecular phenotypes (e.g DNA
variations, variations in RNA transcription levels, RNA
transcript variants, protein abundance, or metabolite
levels) together constitute the functional unit which
must be examined to understand the link to disease and
strata of more homogeneous population representing
the phenotype. All this can accelerate the identification
of disease subtypes with prognostic or therapeutic impli-
cations, and help to develop better treatment strategies.

Therefore, phenotypic analysis bears great importance
for elucidating the physiology and pathophysiology of
networks at the molecular and cellular level because it
provides clues about groups of genes, RNAs, or proteins
that constitute pathways or modules, in which dysfunc-
tion can lead to phenotypic consequences. Several recent
studies have shown the utility of correlating phenotypes
to features of genetic or cellular networks on a genome
scale [66—69]. The emerging field of “Knowledge Engi-
neering for Health” proposes to link the research to the
clinic by using deep phenotypic data to enable research
based on the practice and outcomes of clinical medicine
which consequently lead to decision making in stratified
and PM contexts [70].
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The knowledge network of disease

As illustrated in Fig. 4, and further discussed in the litera-
ture [71] a knowledge network of disease should integrate
multiple datasets and parameters to yield a taxonomy
heavily embedded in the intrinsic biology of disease.
Despite physical signs and symptoms are the overt mani-
festations of disease, symptoms are often non-specific
and rarely identify a disease with confidence and they are
not as objective and not quantitative. In addition, a num-
ber of diseases— such as different types of cancer, cardio-
vascular disease, and HIV infection are asymptomatic in
early stages. As a result, diagnosis based on traditional
“signs and symptoms” alone carries the risk of missing
opportunities for prevention, or early intervention.

On the other hand, advances in liquid biopsies, which
analyze cells, DNA, RNA, proteins, or vesicles isolated
from the blood as well as microbiomes have gained par-
ticular interest for their uses in acquiring information
reflecting the biology of health and disease state. Biology-
based BMs of disease such as genetic mutations, protein,
metabolite BMs, epigenetic alterations of DNA, altera-
tions in gene expression profiles, circulating miRNAs,
cell-free DNAs, exosomes, and other biomolecules have
the potential to be precise descriptors of disease.

When multiple BMs are used in combination with con-
ventional clinical, histological, and laboratory findings,
they often are a more accurate, sensitive, specific for the
precise description and classification of disease.

In the near future, it is anticipated that comprehensive
molecular profiling and characterization of healthy per-
sons and patients will take place routinely as a normal
part of health care even as a preventive measure prior
to the appearance of disease, thus enabling the collec-
tion of data on both healthy and diseased individuals on
a grander scale. The ability to conduct molecular char-
acterizations on both non-affected and disease affected
tissues would enable monitoring of the development and
natural history of many diseases.

Summary

The drug development is a challenging long process with
many obstacles on the way. Though several strategies
have been proposed to tackle this issue, there is a general
consensus that a better use of BMs, omics data, AI and
machine learning will accelerate the implementation of
a new medical practice that will depart from the widely
spread concept “one drug fits all”

In conclusion, drug developers must combine tra-
ditional clinical data with patients’ biological profile
including various omics-based datasets to generate an
“information-based” model that utilizes complex datasets
to gain insight into disease and facilitate the development
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of more precise, safer, and better-targeted therapies for a
more homogeneous patient population.

Review criteria

Publicly available information such as PubMed and
Internet were used for the literature review. We focused
on identifying articles published on the use of multi-
ple technologies for the discovery and development
of clinically relevant BMs, omics platforms, and other
relevant topics in the subject area. The research was
restricted to the most recent studies in this field and
all research was limited to human studies published in
English.
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