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Abstract 

Background:  Visible light spectroscopy (VLS) is a technique used to measure the mucosal oxygen saturation dur-
ing upper gastrointestinal endoscopy to evaluate mucosal ischemia, however in vivo validation is lacking. We aimed 
to compare VLS measurements with a validated quantitative microvascular oxygen tension (μPO2) measurement 
technique.

Methods:  Simultaneous VLS measurements and μPO2 measurements were performed on the small intestine of five 
pigs. First, simultaneous measurements were performed at different FiO2 values (18%–100%). Thereafter, the influence 
of bile was assessed by comparing VLS measurements in the presence of bile and without bile. Finally, simultaneous 
VLS and μPO2 measurements were performed from the moment a lethal dose potassium chloride intravenously was 
injected.

Results:  In contrast to μPO2 values that increased with increasing FiO2, VLS values decreased. Both measurements 
correlated poorly with R2 = 0.39, intercept 18.5, slope 0.41 and a bias of − 16%. Furthermore, the presence of bile 
influenced VLS values significantly (median (IQR)) before bile application 57.5% (54.8–59.0%) versus median with bile 
mixture of the stomach 73.5% (66.8–85.8), p = < 2.2 * 10−16; median with bile mixture of small bowel 47.6% (41.8–50.8) 
versus median after bile removal 57.0% (54.7–58.6%), p = < 2.2 * 10−16). Finally, the VLS mucosal oxygen saturation 
values did not decrease towards a value of 0 in the first 25 min of asystole in contrast to the μPO2 values.

Conclusions:  These results suggest that VLS measures the mixed venous oxygen saturation rather than mucosal 
capillary hemoglobin oxygen saturation. Further research is needed to establish if the mixed venous compartment is 
optimal to assess gastrointestinal ischemia.

Keywords:  Visible light spectroscopy, Chronic mesenteric ischemia, Diagnostics, Microvascular oxygen tension 
measurements
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Background
Visible light spectroscopy (VLS) is a technique used 
to measure the mucosal capillary hemoglobin oxygen 
saturation based on reflectance spectrophotometry [1]. 
The mucosal oxygen saturation can be calculated by the 
marked difference in the absorption spectra of oxygen-
ated and deoxygenated hemoglobin. Endoscopic VLS 
measurements are performed during upper GI endos-
copy [2–4]. As determined previously by van Noord 
et al., measurements are defined positive for ischemia if 
the measured saturation is lower than 63% in the antrum 
of the stomach, lower than 62% in the duodenal bulb and 
58% in the descending duodenum [4].

VLS is used in clinical practice in the work-up of the 
diagnosis of chronic mesenteric ischemia (CMI). CMI 
is defined as ischemic symptoms caused by insufficient 
blood supply to the gastrointestinal (GI) tract [5]. The 
main cause of CMI is stenosis of one or more mesen-
teric arteries due to atherosclerosis [6]. Other occlu-
sive causes are external compression of the celiac artery 
and/or celiac ganglion by the median arcuate ligament 
and diaphragmatic crura (median arcuate ligament syn-
drome (MALS)) and mesenteric artery stenosis due 
to vasculitis. However, CMI can exist in the absence of 
mesenteric artery stenosis. Non-occlusive mesenteric 
ischemia (NOMI) is caused by hypo-oxygenation due 
to underlying conditions such as cardiac and pulmonic 
insufficiency, spasms of small arteries, shunts, occlusion 
of smaller arteries, e.g. by micro-emboli, and autonomic 
dysfunction [7].

The diagnosis of CMI is a clinical challenge because 
of the diverse presentation of CMI. Symptoms overlap 
largely with many other disorders and the high preva-
lence of asymptomatic mesenteric artery stenosis in the 
general population of (3–29% [8, 9]) due to the existence 
of an extensive collateral circulation. However, mesen-
teric artery stenosis can become symptomatic if this col-
lateral circulation is not sufficient and/or the extent of 
the stenosis becomes significant. Accurate identification 
of patients with CMI is important to select those patients 
who will benefit of therapy, but to withhold invasive ther-
apy from those who will not. Treatment consists of endo-
vascular revascularization with expandable metal stents 
or surgical revascularization of obstructed vessels, both 
methods that are invasive, costly and not without side-
effects. A functional test to determine mucosal ischemia 
of the GI tract is therefore essential.

In the absence of one specific test for the diagnosis of 
CMI [10], the diagnosis is established by consensus in a 
multidisciplinary meeting attended by gastroenterolo-
gists, vascular surgeons and interventional radiologists. 
Symptoms alone do not accurately predict the diagno-
sis of CMI [7, 11, 12]. Therefore, consensus diagnosis is 

based on the combination of symptoms, imaging of the 
mesenteric vasculature and functional assessment of 
mucosal ischemia with gastric-jejunal tonometry [13, 
14] or VLS [1, 4]. The diagnosis is confirmed if success-
ful therapy results in symptom relief. This method for the 
diagnosis of CMI has an acceptable diagnostic yield [15] 
and this method is excepted in absence of a gold standard 
test [10].

Endoscopic mucosal oxygen saturation measurements 
with VLS are already used in clinical practice to evalu-
ate CMI, however no extensive validation studies have 
been performed for this intended use. In the current 
study, VLS mucosal oxygen saturation is compared with a 
validated microvascular oxygen tension (μPO2) measure-
ment technique [16, 17].

The microvascular oxygen tension technique used in 
this study is a Palladium (Pd) porphyrin phosphorescence 
lifetime technique that measures oxygen tension, intro-
duced by Van der Kooi at the end of the 1980s [18]. Pal-
ladium porphine (Pd-porphyrin) bound to albumin, has 
become a standard phosphorescent dye for μPO2 meas-
urements in vivo [16, 17]. This quantitative measurement 
is also located in the microcirculation making it a con-
venient comparison to mucosal oxygen saturations meas-
ured with VLS.

The objective of this study was to validate the VLS 
technique. This validation consisted of 3 experiments in 
a porcine model: (1) comparison of VLS mucosal oxygen 
saturation and μPO2 measurements at different levels 
of FiO2, (2) VLS mucosal oxygen saturation measure-
ments in the presence of bile and (3) comparison of VLS 
mucosal oxygen saturation and μPO2 measurements dur-
ing asystole.

Methods
Ethical statement
This study was approved by the local Animal Research 
Committee of the Erasmus MC University Medical 
Center in accordance with the National Guidelines for 
Animal Care and Handling (protocol number DEC 129-
13-06 EMC3185). To enhance transparency this article is 
written according to the ARRIVE guidelines for animal 
research [19].

Experimental animals
In total, 5 female crossbred Landrace x Yorkshire pigs, 
with mean body weights of 28.1 ± 0.6 kg (mean ± stand-
ard error of mean), age 2–3  months were used for the 
experiments. Sample size calculation determined that 5 
animals were sufficient to detect a difference of at least 
5% in mucosal saturation measured with VLS before and 
after bile per location with an alpha of 0.05 and a power 
of 90% [20].
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Experimental procedures
After an overnight fast with free access to water, the ani-
mals were sedated with an intramuscular injection of 
tiletamine/zolazepam (6/6  mg/kg; Virbac Laboratories, 
Carros, France), xylazine (2 mg/kg; AST Farma B.V., The 
Netherlands) and atropine sulfate (0.5  mg/animal; Cen-
trafarm Services BV, Etten-Leur, The Netherlands). After 
a 15 min induction period, anesthesia was induced with 
tilatamine/zolazepam (50–100  mg/animal) through a 
cannula (20G Venflon (Becton, Dickinson and Company, 
USA) in an auricular vein. Tracheal intubation was per-
formed with a size 7.0 Portex® endotracheal tube (Smiths 
Medical International Ltd., United Kingdom). For main-
tenance of anesthesia, the animals received continuous 
infusion of ketamine (5 mg kg−1 h−1; Alfasan Nederland 
B.V., The Netherlands), midazolam (1.5 mg  kg−1  h−1; 
Atavis Group PCT, Iceland), sufentanil (4  μg  kg−1  h−1; 
Janssen-Cilag B.V., The Netherlands), and rocuronium-
bromide (4 mg kg−1 h−1; Fresenius Kabi Austria GmbH, 
Austria). All animals received 500 ml of colloid solution 
(Voluven®; Fresenius Kabi AG, Germany) at start and a 
continuous infusion of crystalloid (Sterofundin® ISO 
10 ml kg−1 h−1; B. Braun, Germany). Each pig received a 
bolus of magnesium sulfate (500 mg; Pharmachemie BV, 
Haarlem, The Netherlands), as arrhythmia prophylaxis, 
added to the first bag of crystalloid solution. To prevent 
infections during the experiment, Cefazolin (1000  mg/
animal; Kefzol ® EuroCept BV, Ankeveen, The Nether-
lands), an antibiotic used for the treatment of a wide-
spread of bacteria was given intravenous.

Pressure-controlled mechanical ventilation (Servo 300; 
Siemens-Elema, Solna, Sweden) was performed with a 
FiO2 between 24% and a positive end-expiratory pres-
sure of 5 cm H2O while no intervention was done. Nor-
mothermia, measured nasal, was maintained between 
38 and 39 °C, with two heating pads underneath and an 
electric heating blanket above the animal. Furthermore, 
hearth rate, MAP, SpO2 and temperature were monitored 
continuously throughout the entire experiment. Arte-
rial blood samples were collected to determine the arte-
rial oxygen pressure and arterial oxygen saturation (ABL 
800Flex (Radiometer, Denmark).

A 4F thermodilution catheter (Pulsion Medical Sys-
tems AG München, Germany) was placed in the left 
femoral artery for arterial blood sampling. An 9Fr intro-
ducer sheath (Arrow International Inc., USA) was placed 
in the right jugular vein for infusion of palladium por-
phyrin. Both catheters were placed using the Seldinger 
technique. A lower midline abdominal incision was made 
to insert a cystostomy tube into the urinary bladder with 
purse-string sutures for urine collection.

The animals were placed in supine position and 
an incision was made to open the abdomen. A small 

intestinal loop was dissected and a small incision was 
made at the non-vascularized side to expose the intes-
tinal mucosa (Fig. 1). Mucosal oxygen saturation meas-
urements were performed with a fiberoptic probe 
(Endoscopic T-Stat Sensor; Spectros, Portola Val-
ley, California, USA) connected to the VLS oximeter 
(T-Stat 303 Microvascular Oximeter, Spectros, Portola 
Valley, California).

Microvascular oxygen tension measurements were 
done with oxygen dependent phosphorescent dye palla-
dium porphine (Pd-porphyrin). Palladium porphyrin is 
a large molecule with optical properties that can absorb 
energy and react with oxygen. In the absence of oxygen 
it will release the absorbed energy from an excitation 
source via phosphorescent light with a specific decay 
time, i.e. lifetime. The lifetime is related to the amount 
of oxygen surrounding the Pd-porphyrin described by 
the Stern–Volmer relation [18]. It has been tested for 
pH, temperature and diffusivity dependency [17]. Cali-
bration experiments are done and determine the O2 
accuracy of 5% independent of phosphorescence inten-
sity itself [17].

For the laboratory experimental setup of the μPO2 
measurements the excitation source was an Opolette 
355-I tunable laser (Opotek, Carlsbad, CA, USA) set 
to a wavelength of 524 nm. An optical fiber developed 
by TNO and produced by Light Guide Optics was used 
that would fit through the working channel of a gas-
troduodenal endoscope. It has one central located exci-
tation fiber with several surrounding detection fibers.

The phosphorescence was collected with a gated 
micro channel plate photomultiplier tube (MCP-PMT 
R5916U series, Hamamatsu Photonics, Hamamatsu, 
Japan). Phosphorescence lifetime analysis was done 

Fig. 1  Set-up of the experiment of the VLS-probe (blue) and the 
μPO2 probe fixated together positioned 1 to 5 mm above the mucosa 
of the small intestinal loop
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with a self-written software program in Labview (ver-
sion 13.0, National Instruments, Austin, TX, USA). For 
the detailed setup description we refer elsewhere [21].

The probe palladium porphyrin was Pd(II) meso-Tetra 
(4-carboxyphenyl)porphine (80 mg/animal) (Frontier Sci-
entific, Logan, USA) dissolved in 1 ml DMSO and TRIS 
Trisma® Base (Sigma, St. Louis, MO) was combined with 
a 4% bovine serum albumin solution solved in phosphate 
buffered saline. This method has been validated in vitro 
and in vivo [17]. Pd-porphyrin bound to albumin, forms 
a high-molecular-weight complex, confining it mainly to 
the vascular compartment when infused intravenously.

Both optical fibers were fixated together to perform 
stable simultaneous mucosal oxygen saturation and μPO2 
measurements of the same mucosal spot of the small 
intestine (Fig. 1).

Mucosal oxygen saturation versus μPO2 measurements 
at different FiO2 values
Simultaneous VLS mucosal oxygen saturation and μPO2 
measurements were performed at different FiO2 values 
ranging from 18 to 100%. The mucosal oxygen saturation 
and μPO2 measurements were simultaneously performed 
for 2  min at a specific FiO2 value. When a new FiO2 
value was set, the start of a set of new measurements 
was awaited for the first two 2 min. To compare the two 
measurement techniques the μPO2 was converted into a 
corresponding saturation. For the μPO2 conversion, for 
every measured value in mmHg the corresponding % was 
calculated called micro-vascular oxygen saturation con-
verted (μSO2.converted). The conversion can be found in 
Fig. 2.

Influence of bile on mucosal oxygen saturation
Furthermore, the influence of bile on mucosal oxy-
gen saturation values measured with VLS was assessed. 
Mucosal oxygen saturation measurements were per-
formed of the small intestine mucosa in presence of bile. 
Two different types of bile were used: fluid obtained dur-
ing upper GI endoscopy from the stomach of the animal 
and fluid obtained from the small intestine of the animal. 
The sticky viscosity of the bile ensured the fixation of the 
bile on the measurement area and continuous visual con-
firmation ensured that the bile measurements were per-
formed on surface covered with bile. The amount of bile 
applied to the mucosa, the thickness of the bile applied 
and the exact content of the bile applied were not con-
trolled. The mucosal oxygen saturations in presence of 
bile were compared with the mucosal oxygen saturations 
before the bile was applied to the mucosa (baseline) and 
the mucosal oxygen saturations every time after the bile 
was removed with saline fluid as control. For every step 
approximately 30 measurements were done.

Mucosal oxygen saturation versus μPO2 during asystole
Finally, simultaneous mucosal oxygen saturation and 
μPO2 measurements were performed from the moment 
a lethal dose potassium chloride was intravenously 
injected. A measurement period of 25 min after injection 
was considered long enough to ensure a steady state since 
Benaron et  al. showed detection of local ischemia with 
VLS within 120 s [22].

Experimental outcomes
Mucosal oxygen saturation values were defined in per-
centage tissue hemoglobin saturation. The μPO2 meas-
urements were defined in mmHg.

Analytical and statistical methods
Statistical analysis was performed with R Statistics soft-
ware (v3.2.4). Normal distribution was assessed visually 
and with the Shapiro–Wilk normality test. Normal dis-
tributed data is presented as mean ± standard deviation 
(SD) and abnormally distributed data is presented as 
median with interquartile range (IQR). A linear regres-
sion model was used for the FiO2, mucosal oxygen satu-
rations, and μPO2. A scatter plot was used to show the 
mucosal oxygen saturation versus the μPO2 measure-
ments at different FiO2 values. To compare the two 
measurement techniques, the μPO2 was converted from 
mmHg to % porcine hemoglobin saturation. To deter-
mine the saturation a porcine-specific hemoglobin satu-
ration formula published by Serianni et al. was used [23]: 
(%/100) = (0.13534 × PO2)3.02/[(0.13534 − PO2)3.02 + 91.2]. 
The formula was derived from 213 data point at pH 7.4 
and 37° with an excellent fit.

To compare the saturation, the difference in measure-
ment frequency had to be overcome. The mucosal oxygen 
saturation has a fixed measurement interval whereas the 
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Fig. 2  Conversion of μPO2 into saturation according to the found 
relationship by Serianni et al. [23]
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μPO2 is measured on demand. To equally compare the 
two measurements the mucosal oxygen saturation was 
averaged over same period as one μPO2 was done. There-
after these results were visualized with linear regression 
and with a Bland–Altman comparison plot [24].

The Wilcoxon signed-rank test was used to compare 
the measurement before, with and after application of 
bile. A two-tailed p value of < 0.05 was considered sig-
nificant. After the potassium chloride injection mucosal 
oxygen saturation measurements were compared with 
μPO2. Because VLS measures every second, a symmetri-
cal moving average of 20 samples was taken to smooth 
the data, for example the eleventh sample is an average of 
sample [1–21].

Results
Baseline data
All 5 animals were in good clinical condition before the 
start of the experiment.

Mucosal oxygen saturation versus μPO2 measurements 
at different FiO2 values
The mucosal oxygen saturation levels versus the μPO2 
levels different values of FiO2 in 5 animals were meas-
ured. The mucosal oxygen saturation decreased with 
increasing FiO2 in contrast to the μPO2 values that 
increased with increasing FiO2. The spread of the 
mucosal oxygen saturation levels and the FiO2 levels was 
large, shown in Fig. 3.

Figure  4a shows the correlation between mucosal oxy-
gen saturation and the converted μPO2 saturation. There 
is a poor linear correlation with an r2 = 0.39, an intercep-
tion of 18.5% and a slope of 0.41. In the Bland–Altman plot 
(Fig. 4b) also a poor correlation is seen with a mean dif-
ference of − 16%. If the saturation increases the mucosal 
oxygen saturation undervalues the saturation even more.

Influence of bile on mucosal oxygen saturation
Figure 5 shows the mucosal oxygen saturation measure-
ments without the presence of bile, with the presence 
of a bile mixture from the stomach and with the pres-
ence of a bile mixture from the small bowel and meas-
urements without any of the bile mixtures measured 
in a total of 2 animals. The mucosal oxygen saturation 
measurements before application of the bile mixtures 
and after the bile mixtures were removed were not sig-
nificantly different (mucosal oxygen saturation before 
application of bile mixture median (IQR) 57.5% (54.8–
59.0%) versus mucosal oxygen saturation after removal 
bile mixture 57.0% (54.7–58.6%), p = 0.2743). However, 
a significant increase of the mucosal oxygen saturation 
was seen when the bile mixture from the stomach was 
applied compared to the mucosal oxygen saturation 

before application of the bile mixtures (median mucosal 
oxygen saturation with mixture of the stomach (IQR) 
73.5% (66.8–85.8) p = < 2.2 * 10−16). When the bile mix-
ture from the small bowel was applied, the mucosal 
oxygen saturation was significantly lower with a median 
(IQR) 47.6% (41.8–50.8), p = < 2.2 * 10−16 compared 
to mucosal oxygen saturation measurements with bile 
mixture form the stomach and the mucosal oxygen sat-
uration increased significantly after the bile mixtures 
had been removed (p = < 2.2 * 10−16).

Mucosal oxygen saturation versus μPO2 during asystole
The mucosal oxygen saturation measurements and 
μPO2 measurements during the minimally first 25 min 
of asystole in 5 animals are shown in Fig.  6. In all 5 
animals the μPO2 measurements decreased towards 
a value of 0. The mucosal oxygen saturation measured 
with VLS decreased and increased variably during the 
measurement period and the mucosal oxygen satura-
tion never reached a stable state around 0%.

Adverse events
No adverse events occurred during the 5 porcine 
experiments.
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Discussion
In this study we validated mucosal oxygen saturation 
measurements by comparing VLS with calibrated μPO2 
measurements. This study showed that the mucosal oxy-
gen saturation values decreased with increasing FiO2 in 
contrast to the μPO2 values that increased with increas-
ing FiO2 with a large spread of the measured mucosal 

oxygen saturation levels and FiO2 levels and a poor lin-
ear correlation. Furthermore, a significant influence 
of bile on the mucosal oxygen saturation values was 
shown. Finally, this study showed that the mucosal oxy-
gen saturation values, in contrast to the μPO2 values, did 
not decrease towards a value of 0 in the first 25 min of 
asystole.

The found inverse relationship of the mucosal oxygen 
saturation measurements by VLS with FiO2 is remark-
able. Mucosal oxygen saturations measured with VLS are 
expected to increase with increasing FiO2 if VLS meas-
ures the capillary oxygen saturation level. However, VLS 
measures not only arterial saturation but also a large 
venous compartment. If a large mixed venous saturation 
determines the overall saturation value the influence of 
FiO2 is expected to be minimal. Potentially due to hyper-
oxic vasoconstriction the actual venous saturation can 
decrease more compared to normoxic situations. The 
high FiO2 values will be measured by the μPO2. Further-
more, the measured values, both VLS as μPO2 values, 
have a great spread. Possibly, the oxygen tension was 
very variable in the gastrointestinal vessels as intestinal 
ischemia is also patchy and heterogenic distributed [5]. 
During the experiment the hemodynamic state of the 
animals worsened by all experimental handlings, also 
contributing to a great spread of measured values.

Significant influence of bile on the mucosal oxygen 
saturation values measured with VLS was confirmed. 
Therefore it is advised and mentioned in the prescription 
to remove any bile remnants before the start of the VLS 
measurements. The bile has its own absorption spectrum 
of light. It also absorbs light in the same wavelengths as 
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oxyhemoglobin and deoxyhemoglobin [25], and influ-
ences the result to determine the mucosal oxygen satu-
ration. The amount of bile applied to the mucosa, the 
thickness of the bile applied and the exact content of the 
bile applied were not controlled in this experiment. How-
ever, these factors contribute to the light absorption by 
the bile and thus influence its effects on the VLS signal. 
Therefore, we advise to remove any fluid on the measur-
ing area of the GI mucosa before the VLS measurements.

The idea that VLS measures mixed venous oxygen satu-
ration is further confirmed by the fact that VLS measured 
still a reasonable oxygen saturation 25 min after asystole. 
The saturation in the capillaries is decreased towards 
zero over time due to diffusion of oxygen towards the still 
oxygen consuming cells. However, in the venous com-
partment the oxygen will desaturate slowly by the large 
buffer capacity. Therefore, the oxygen saturation will not 
decrease towards zero immediately after asystole. Dips 
in oxygen saturation are seen in the mixed venous com-
partment measured by VLS as shown in Fig.  6 due to 
spasm in the supplying arteries. After such a peristaltic 

contraction the blood flow stabilizes and no decrease in 
saturation is seen.

VLS is a powerful technique to measure oxygen satu-
ration at a microvascular level. In the microvasculature 
oxyhemoglobin/deoxyhemoglobin is proportional mainly 
located in the venous compartment of the microvascu-
lature. Therefore the saturation measured by the VLS 
is mainly represented by the venous compartment. For 
detection of an oxygen transport problem that results 
in ischemia, the microvascular arterial saturation is of 
importance, a part that is underexposed by VLS. This is 
endorsed by the fact that after a lethal potassium chlo-
ride the saturation does not drop in comparison to μPO2, 
which is an exaggerated model of instant ischemia.

This study has some limitations. First, the experi-
ments performed in this study were designed to enable 
generalizability in humans. However, to enable stable 
oxygen saturation measurements with VLS and μPO2 
of the mucosa of the small intestine of a pig, the abdo-
men had to be opened to open the small intestinal loop. 
The mucosa of this small intestinal loop was exposed 
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to room air and room temperature. This will result in 
oxygen diffusion into the tissue and rapid decrease in 
temperature for the exposed tissue. Furthermore, the 
abdominal anatomy of a pig is different from the human 
abdominal anatomy. The GI tract of a pig is monogas-
tric like the human GI tract, however the colon lies in a 
spiral. The mesenteric vascularization in humans con-
sists of individual variable, mesenteric vessel forma-
tions with arcades, lateral branches and anastomoses in 
the bowel wall [26]. The mesenteric vascularization in 
pigs consists of bundles of vessel branched of the main 
stem arising from the mesentery and passing directly 
into the bowel wall without any branching of arcades 
[26].

Conclusion
This study showed that VLS measures the mixed venous 
hemoglobin oxygen saturation and not the mucosal cap-
illary hemoglobin oxygen saturation. The presence of 
bile significantly influences the oxygen saturation lev-
els measured with VLS. VLS is currently used in clinical 
practice in the clinical work-up of CMI. Further research 
is needed to establish if the mixed venous compartment 
is optimal for mucosal hemoglobin saturation measure-
ments to assess GI ischemia.
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