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Abstract 

Background: Atrial fibrillation (AF) is one of the most prevalent sustained arrhythmias, however, epidemiological 
data may understate its actual prevalence. Meanwhile, AF is considered to be a major cause of ischemic strokes due 
to irregular heart-rhythm, coexisting chronic vascular inflammation, and renal insufficiency, and blood stasis. We 
studied co-expressed genes to understand relationships between atrial fibrillation (AF) and stroke and reveal potential 
biomarkers and therapeutic targets of AF-related stroke.

Methods: AF-and stroke-related differentially expressed genes (DEGs) were identified via bioinformatic analysis Gene 
Expression Omnibus (GEO) datasets GSE79768 and GSE58294, respectively. Subsequently, extensive target prediction 
and network analyses methods were used to assess protein–protein interaction (PPI) networks, Gene Ontology (GO) 
terms and pathway enrichment for DEGs, and co-expressed DEGs coupled with corresponding predicted miRNAs 
involved in AF and stroke were assessed as well.

Results: We identified 489, 265, 518, and 592 DEGs in left atrial specimens and cardioembolic stroke blood samples 
at < 3, 5, and 24 h, respectively. LRRK2, CALM1, CXCR4, TLR4, CTNNB1, and CXCR2 may be implicated in AF and the hub-
genes of CD19, FGF9, SOX9, GNGT1, and NOG may be associated with stroke. Finally, co-expressed DEGs of ZNF566, 
PDZK1IP1, ZFHX3, and PITX2 coupled with corresponding predicted miRNAs, especially miR-27a-3p, miR-27b-3p, and 
miR-494-3p may be significantly associated with AF-related stroke.

Conclusion: AF and stroke are related and ZNF566, PDZK1IP1, ZFHX3, and PITX2 genes are significantly associated 
with novel biomarkers involved in AF-related stroke.
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Background
Atrial fibrillation (AF) is one of the most prevalent 
sustained arrhythmias, having an age-adjusted hospi-
talization incidence of 1–4% of the general population 
and an prevalence rising of > 13% for those older than 

80-years-of-age [1, 2]. However, epidemiological data 
may understate its actual prevalence, because 40% of 
patients are asymptomatic and remain undiagnosed with 
subclinical AF [3]. There is also evidence that patients 
with AF have significantly increased cardiovascular-
related morbidity, given its association with atrial and 
ventricular mechanical or electrical failure, structural 
and hemodynamic alterations, and thromboembolic 
events [3].

Stroke is the leading cause of disability and death and 
has an estimated incidence of 3.73 (95% CI 3.51–3.96) 
per 1000 person-years among black- and white- adults in 
an atherosclerosis risk in communities (ARIC) cohort [4]. 
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Furthermore, global increases in stroke prevalence plus 
stroke-related disability and mortality associated with 
aging will increase [5, 6]. Thus, we may not now know the 
actual true burden of stroke due to limits in brain imag-
ing identification in < 10 mm small hypointense areas and 
silent infarctions for 28% of those patients older than 
65-years-of-age [7]. AF is commonly classified as parox-
ysmal, persistent or permanent, or new onset arrhythmia 
basing on the present continuous time, which mainly 
included that paroxysmal AF was self-terminates within 
7 days, while persistent AF was lasts longer than 7 days or 
needs cardioversion, and usually has lasted for 3 months 
[8]. As we all kwon, AF is considering to be a major cause 
of ischemic strokes due to irregular heart-rhythm, coex-
isting chronic vascular inflammation, and renal insuf-
ficiency, and blood stasis. According to Rivaroxaban 
Once Daily Oral Direct Factor Xa Inhibition Compared 
With Vitamin K Antagonism for Prevention of Stroke 
and Embolism Trial in Atrial Fibrillation (ROCKET-AF) 
trial study, Steinberg et  al. [9] suggested that the par-
oxysmal AF patients carrying a lower adjusted rate of 
stroke or systemic embolism (adjusted HR: 0.78, 95% CI 
0.61–0.99, P = 0.045), all-cause mortality (adjusted HR: 
0.79, 95% CI 0.67–0.94, P = 0.006), and the composite of 
stroke or systemic embolism or death (adjusted HR: 0.82, 
95% CI 0.71–0.94, P = 0.005) than persistent AF patients 
after adjusted efficacy and safety outcomes. According 
to the Oxford vascular study (OXVASC), nearly 43.9% of 
ischemic strokes were associated with AF among patients 
80 years-of-age or older who had a threefold increase in 
AF in the past 3 decades [10]. However, this assumption 
has been challenged by the atrial fibrillation reduction 
atrial pacing trial (ASSERT) which identified a tempo-
ral association between subclinical AF and stroke risk 
among patients with implantable pacemakers and defi-
brillators. They reported that only 8% and 16% of patients 
had an association between pre-detected and post-
detected AF within months of stroke or systemic embo-
lism, respectively [11]. Of note, AF is often intermittent 
and asymptomatic, and presents as an electromechani-
cal disassociation of atrial fibrillation. Clinically, current 
stroke risk scores and traditional diagnosis with an elec-
trocardiogram are practical, while the limitation of pre-
dict stroke risk accurately in individual AF patients was 
significantly identified, especially in persistent AF which 
carrying a higher risk of stroke or systemic embolism 
and all-cause mortality [12]. In this study, we identified 
co-expressed differentially expressed genes (co-DEGs) of 
persistent AF and stroke and elucidated molecular mech-
anisms and pathology of AF-related DEGs (AF-DEGs) 
and stroke-related DEGs (stroke-DEGs). Finally, we 
provide a bioinformatic analysis of DEGs and predicted 
microRNAs (miRNAs) for AF patients prone to stroke.

Methods
Materials and methods
GSE79768 and GSE58294 datasets were downloaded 
from GEO (http://www.ncbi.nlm.nih.gov/geo/) [13] and 
expression profiling arrays were generated using GPL570 
(HG-U133_Plus_2) Affymetrix Human Genome U133 
Plus 2.0 Array (Affymetrix, Santa Clara, CA). Addition-
ally, the GSE79768 dataset, including 26 specimens with 
paired left atrial (LA) and right atrial (RA) tissue obtained 
from 13 patients was used to identify differential LA-
to-RA gene expression and molecular mechanisms 
for patients with persistent AF or sinus rhythm (SR) 
abnormalities and we describe potential mechanisms of 
AF-related remodeling in the LA and the relationship 
between LA arrhythmogenesis and thrombogenesis. In 
this study, persistent AF patients has lasts continuously 
for > 6 months, while the SR patients had no evidence of 
AF clinically and any anti-arrhythmic drug history. Blood 
samples of GSE58294 were collected from cardioembolic 
stroke (N = 69) and control patents (N = 23) at < 3, 5, and 
24 h.

Data processing
R packages of “affy”, “affyPLM”, and “limma” (http://www.
bioco nduct or.org/packa ges/relea se/bioc/html/affy.html), 
provided by a bioconductor project [14], were applied 
to assess GSE79768 and GSE58294 RAW datasets. We 
used background correction, quantile normalization, 
probe summarization and log2-transformation, to create 
a robust multi-array average (RMA), a log-transformed 
perfect match, and a mismatch probe (PM and MM) 
methods. The Benjamini-Hochberg method was used 
to adjust original p-values, and the false discovery rate 
(FDR) procedure was used to calculate fold-changes (FC). 
Genes expression values of the|log2 FC| > 1and adjusted 
p < 0.05 were used for filtering AF-DEGs. However, the 
|log2 FC| > 1.5 and adjusted p < 0.05 were used to identify 
stroke-DEGs, given that blood sample specificity pointed 
to many genes. Additionally, we calculated and made 
Venn diagrams for co-DEGs for AF- and stroke-DEGs.

Finally, we applied online prediction tools utilizing 
microRNA Data Integration Portal (mirDIP) (http://
ophid .utoro nto.ca/mirDI P) [15], miRDB (http://mirdb 
.org/) [16], TargetScan (v7.1; http://www.targe tscan .org/
vert_71/) [17], and DIANA Tools (http://diana .imis.athen 
a-innov ation .gr/Diana Tools /) [18], to predict poten-
tial microRNA targeting. Subsequently, we used the 
mirDIP, miRDB, TargetScan, and Diana Tools software 
to predict which of the selected miRNAs could target co-
DEGs. We determined 5 top candidate miRNAs based on 
higher predicted scores for ≥ 3 prediction tools for each 
co-DEG.

http://www.ncbi.nlm.nih.gov/geo/
http://www.bioconductor.org/packages/release/bioc/html/affy.html
http://www.bioconductor.org/packages/release/bioc/html/affy.html
http://ophid.utoronto.ca/mirDIP
http://ophid.utoronto.ca/mirDIP
http://mirdb.org/
http://mirdb.org/
http://www.targetscan.org/vert_71/
http://www.targetscan.org/vert_71/
http://diana.imis.athena-innovation.gr/DianaTools/
http://diana.imis.athena-innovation.gr/DianaTools/
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Identification of protein–protein interaction (PPI) networks 
of DEGs
PPI networks of AF- and stroke-DEGs were analyzed 
using the search tool for the retrieval of interacting genes 
(STRING database, V10.5; http://strin g-db.org/) that 
predicted protein functional associations and protein–
protein interactions. Subsequently, Cytoscape software 
(V3.5.1; http://cytos cape.org/) was applied to visualize 
and analyze biological networks and node degrees, after 
downloading analytic results of the STRING database 
with a confidence score > 0.4 [19].

Functional enrichment analysis
Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway enrichment analyses of 
AF- and stroke-DEGs were carried out using the data-
base for annotation, visualization and integrated discov-
ery bioinformatics resources (DAVID Gene Functional 
Classification Tool, http://david .abcc.ncifc rf.gov/) [20], 
and REACTOME databases (v62; http://www.react ome.
org) [21]. GO terms and KEGG maps of biological func-
tions associated with a p < 0.05 was considered to be sig-
nificantly enriched. In addition, we presented different 
biofunctions of AF- and stroke-DEGs in biological pro-
cesses, molecular functions, and cellular components 
from DAVID and REACTOME databases, respectively.

Subsequently, the AmiGO database (v2.0; http://amigo 
.geneo ntolo gy.org/amigo /) was used to analyze the GO 
consortium for selected co-DEGs to verify the accuracy 
and annotate biofunctions of identified co-DEGs [22]. 
Using microRNA target prediction, online tools from 
Diana-miRPath (v3.0; http://www.micro rna.gr/miRPa 
thv3) [18] were applied to evaluate interactions between 
miRNA previously identified using prediction tools and 
co-DEGs involved in AF and stroke.

Identification of co‑DEGs associated with nervous 
or cardiovascular diseases
The comparative toxicogenomics database (http://ctdba 
se.org/) was used to find integrated chemical-gene, 
chemical-disease, and gene-disease interactions to gen-
erate expanded networks and predict novel associations 
[23]. We used these data to analyze relationships between 
gene products and nervous or cardiovascular diseases. 
Here, relationships between co-DEGs and diseases and 
association or an implied association were identified.

Results
Identification of DEGs
We identified 54,674 probes corresponding to 20,484 
genes in GSE79768 and GSE58294 datasets and 

AF- and stroke-DEGs were confirmed. We found 489 
DEGs in LA specimens of AF patients compared with 
SR patients, including 428 down-regulated genes and 
61 up-regulated genes. However, total of 265, 518, and 
592 DEGs were identified following the time points of 
less than 3, 5, and 24 h after stroke, respectively. Here, 
we defined 210 co expressed DEGs in the three time 
points mentioned above as the stroke-DEGs. Heatmaps 
of AF-DEGs in relation to inflammatory and immune 
response, ion channels, and cell signaling were con-
ducted for genes expression and these data appear in 
Fig.  1 and Additional file  1: S1. Simultaneously, Fig.  2 
and Additional file  2: S2 has shown the genes expres-
sion value in relation to inflammatory response, energy 
metabolism, ions channel and transportation, and neu-
ronal regulation above the stroke-DEGs.

Functional enrichment in Co‑DEGs
Figure  3c illustrates expressed AF- and stroke-DEGs 
and co expressed genes. Interestingly, four co expressed 
DEGs, including zinc finger protein 566 (ZNF566), 
PDZK1 interacting protein 1(PDZK1IP1), zinc fin-
ger homeobox  3 (ZFHX3), paired-like homeodomain 
2 (PITX2), were observed. The AmiGO database was 
used to confirm GO term enrichment related to biolog-
ical processes, molecular functions, and cellular com-
ponents and Co-DEGs were associated with various 
processes as indicated in Table 1.

PPI network analysis and functional GO terms and pathway 
enrichment analyses
We identified 256 and 43 nodes from PPI network 
of AF- and stroke-DEGs, respectively and these data 
appear in Fig.  3. Here, the hub nodes, including leu-
cine-rich repeat kinase 2 (LRRK2; degree = 38), calm-
odulin 1 (CALM1; degree = 25), chemokine (C-X-C 
motif ) receptor 4 (CXCR4; degree = 25), toll-like recep-
tor 4 (TLR4; degree = 21), catenin (cadherin-associated 
protein), beta 1(CTNNB1; degree = 21), and chemokine 
(C-X-C motif ) receptor 2 (CXCR2; degree = 21) are 
considering as hub-genes in related to AF maintaining. 
However, the hub-genes, involved in CD19 (degree = 5), 
fibroblast growth factor 9 (FGF9; degree = 5), SRY (sex 
determining region Y)-box  9 (SOX9; degree = 5), gua-
nine nucleotide binding protein (G protein), gamma 
transducing activity polypeptide 1(GNGT1; degree = 4), 
and noggin (NOG; degree = 4), are demonstrated in 
stroke-DEGs with a relative higher degree.

Using the DAVID database, the top 5 GO terms 
related biological processes among those genes were 
primarily associated with inflammatory response (Fold 

http://string‑db.org/
http://cytoscape.org/
http://david.abcc.ncifcrf.gov/
http://www.reactome.org
http://www.reactome.org
http://amigo.geneontology.org/amigo/
http://amigo.geneontology.org/amigo/
http://www.microrna.gr/miRPathv3
http://www.microrna.gr/miRPathv3
http://ctdbase.org/
http://ctdbase.org/
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Enrichment: 4.08; p value: 1.11E−07), immune response 
(Fold Enrichment: 3.50; p-value: 2.49E−06), regulation 
of MAP kinase activity (Fold Enrichment: 9.53; p-value: 
1.92E−05), and regulation of NF-kappa B activety (Fold 
Enrichment: 16.73; p-value: 1.95E−04). There is sig-
nificant correlation in plasma membrane (Fold Enrich-
ment: 1.60; p-value: 1.37E−06), extracellular region (Fold 

Enrichment: 1.75; p-value: 8.88E−04), and MHC class 
II protein complex (Fold Enrichment: 13.47; p-value: 
0.003) in relation to cellular components. In addition, 
the terms related molecular functions were mainly 
involved in ion channel binding (Fold Enrichment: 5.06; 
p-value: 0.001), neuropeptide Y receptor activity (Fold 
Enrichment: 23.84; p-value: 0.007), and transmembrane 
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Fig. 1 Hierarchical clustering analysis of AF-related differentially expressed genes: a–d results of hierarchical clustering analysis for DEGs expression 
in relation to cellular signaling, ion channel, inflammatory and immune responses. Red, greater expression. Blue, less expression
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PPI networks of AF-DEGs

PPI networks of Stroke-DEGs Venn diagrams of DEGs
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Fig. 3 PPI network and Venn diagrams: (1) PPI networks from a and b constructed using STRING database for DEGs (threshold > 0.4). (2) Venn 
diagrams of c of DEGs related to AF and < 3, 5, and 24 h after stroke, respectively. Co-expressed genes, including ZNF566, PDZK1IP1, ZFHX3, and 
PITX2, are identified

Table 1 The Gene Ontology (GO) terms enrichment for the co-expressed genes of the AF-related stroke

ISS sequence similarity evidence used in manual assertion, IGI genetic interaction evidence used in manual assertion, IDA direct assay evidence used in manual 
assertion, TAS traceable author statement used in manual assertion, IEA evidence used in automatic assertion, IPI physical interaction evidence used in manual assertion

Gene/product GO class (direct) Evidence Evidence with Reference

PDZK1IP1 Integral component of membrane IEA UniProtKB-KW:KW-0812 GO_REF:0000037

Extracellular exosome IDA PMID:19056867

ZNF566 DNA binding IEA UniProtKB-KW:KW-0238 GO_REF:0000037

Nucleus IEA UniProtKB-SubCell:SL-0191 GO_REF:0000039

Transcription, DNA-templated IEA UniProtKB-KW:KW-0804 GO_REF:0000037

Metal ion binding IEA UniProtKB-KW:KW-0479 GO_REF:0000037

ZFHX3 Negative regulation of transcription from RNA polymerase II promoter IGI UniProtKB:P01104 PMID:10318867

RNA polymerase II proximal promoter sequence-specific DNA binding IDA PMID:7507206

core promoter sequence-specific DNA binding ISS UniProtKB:Q61329 GO_REF:0000024

Transcriptional repressor activity, RNA polymerase II proximal promoter 
sequence-specific DNA binding

IC GO:0000122/GO:0000978 GO_REF:0000036

Protein binding IPI UniProtKB:Q13761 PMID:20599712

Nucleus TAS PMID:1719379

PITX2 Transcription regulatory region sequence-specific DNA binding IDA PMID:9685346

Transcriptional activator activity, RNA polymerase II proximal promoter 
sequence-specific DNA binding

IEA UniProtKB:Q9R0W1 GO_REF:0000107

RNA polymerase II transcription coactivator activity IDA PMID:9685346

Branching involved in blood vessel morphogenesis IEA UniProtKB:P97474 GO_REF:0000107

Vasculogenesis IEA UniProtKB:P97474 GO_REF:0000107

In utero embryonic development IEA UniProtKB:P97474 GO_REF:0000107

Neuron migration IEA UniProtKB:P97474 GO_REF:0000107

Extraocular skeletal muscle development IEA UniProtKB:P97474 GO_REF:0000107
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receptor protein tyrosine kinase adaptor activity (Fold 
Enrichment: 21.46; p-value: 0.008). With respect to 
stroke-DEGs, the biological processes terms of regula-
tion of myoblast differentiation (Fold Enrichment: 25.39; 
p-value: 4.89E−04), endocardial cushion morphogenesis 
(Fold Enrichment: 27.38; p-value: 0.005), positive regula-
tion of epithelial cell proliferation (Fold Enrichment: 9.73; 
p-value: 0.008), and fibroblast growth factor receptor 
signaling pathway (Fold Enrichment: 7.12; p-value: 0.018) 
were significantly enriched. Similarly, the terms of RNA 
polymerase II transcription factor activity, sequence-
specific DNA binding (Fold Enrichment: 5.15; p-value: 
0.006), ISG15-specific protease activity (Fold Enrich-
ment: 146.79; p-value: 0.013), and nucleic acid binding 
(Fold Enrichment: 2.09; p-value: 0.015) related molecular 
functions were primarily enriched (As shown in Fig.  4 
and Additional file 3: S3).

KEGG pathway analysis data appear in Fig.  4c. The 
results suggesting that the AF-DEGs were mainly 
enriched in pathways of cytokine–cytokine receptor 
interaction (p-value: 1.02E−04), cGMP-PKG signal-
ing pathway (p-value: 0.025), antigen processing and 
presentation (p-value: 0.022), and NF-kappa B signal-
ing pathway (p-value: 0.037). However, KEGG terms 
included PI3  K-Akt signaling pathway (p-value: 0.017) 
and B cell receptor signaling pathway (p-value: 0.045) 
were enriched in stroke-DEGs. (As shown in Fig.  4c 
and Additional file  4: S4).GO terms enrichment using 
the REACTOME database identified additional asso-
ciations and these appear in Fig. 4d. The CTD database 
showed that Co-DEGs targeted several nervous system 
and cardiovascular diseases and these data appear in 
Fig. 5 and Additional file 5: S5.
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Fig. 4 GO terms and KEGG pathway enrichment: a, b AF-and stroke-related GO term enrichment for DEGs, respectively. c KEGG pathway of AF- and 
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Identification of functional and pathway enrichment 
among predicted miRNAs and Co‑DEGs
Prediction analysis using mirDIP, miRDB, TargetS-
can, and DIANA bioinformatic tools identified the top 
5 selected miRNAs targeting each Co-DEG involved 
in AF-related stroke and these data appear in Table  2. 
These data enable us to understand how predicted miR-
NAs are related to AF-related stroke progress.

Discussion
Predicting AF is needed for stroke prevention but 30% 
of patients have no signs of AF despite months of con-
tinuous cardiac rhythm monitoring. Thus, cardiovas-
cular malignant events may be correlated with irregular 
and infrequent cardiovascular incidents as well as limi-
tations in electromechanical indices that should predict 
problems with atrial contractility [7, 11, 12]. Estimating 
markers and associations between atrial dysfunction 
and embolic stroke are thus of interest and may be novel 
therapeutic targets for primary care. The inflammatory 
and immune response, and ion channel and transporta-
tion are significantly associated with AF recurrence and 
maintenance, as well as the stroke occurrence. Several 
hub-genes involved directly or indirectly that regulate the 
nervous system were found among AF-DEGs. Visanji’s 
group compared resting electrocardiograms of LRRK2-
associated Parkinson’s disease (PD) patients, nonmani-
festing carriers, noncarriers, and idiopathic PD patients 

to investigate heart rate variability in LRRK2-associated 
PD [24]. There is evidence that LRRK2 may act as a bio-
functional mediator to correlate heart rate variability 
and PD [24]. In a molecular mechanistic study, the neu-
ral protective role for regulating mitochondrial complex 
I function and oxidative stress in ischemia/reperfusion 
was identified [25, 26]. According gene–gene interac-
tion analysis, Timasheva’s group illustrated that the loci 
of CXCR2 is significantly associated with stroke devel-
opment in patients with hypertension [26]. In addition, 
CXCR2 antagonism attenuated neurological deficits and 
infarct volumes via decreased cerebral neutrophil infil-
tration and peripheral neutrophilia in a hyperlipidemic 
 ApoE−/− mice stroke model [27]. CALM1 is recognized 
as a major regulator of cardiac ion-current expression 
and calcium handling, and a key determinant of car-
diac electrical function [28]. Also, specific risk alleles 
for CALM1 were identified as being associated with 
increased risk of stroke in studies of coronary heart dis-
ease [29]. Thus, there may be a relationship between car-
diovascular and nervous system disease and they may 
arise from loci mutations or gene variants.

Additionally, PITX2, of the pituitary homeobox (Pitx) 
family, has a critical role in organ morphogenesis and 
AF maintenance which is related to short stature home-
obox  2 (Shox2) [30]. Pitx2 is expressed in the LA and 
the pulmonary vein, which is considered a substrate 
and trigger for AF maintenance respectively. However, 
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several experimental data indicate a trend that PITX2 
gene expression is silenced during aging in LA sam-
ples, suggesting genetic evidence for gene silencing 
for increased AF susceptibility [30, 31]. Then, miRNAs 
function analysis and a genomic approach showed that 
miR-17-92 and miR-106b-25 were associated with Pitx2 
expression regulation and are implicated in human 
AF susceptibility [31]. To reveal relationships between 
genetic variants and the risk of ischemic stroke, Malik’s 
group studied PITX2 and ZFHX3 genes and found a 
significant association with cardioembolic stroke (CE) 
in a meta-analysis [31, 32]. Similarly, in a genome-wide 

association study using clinical samples from paroxys-
mal or persistent AF patients, ZFHX3 was significantly 
associated with LA enlargement and persistent AF 
and subsequently with ablation outcomes [33]. Cor-
respondingly, Choi’s group found a significant asso-
ciation between top susceptibility loci (chromosomes 
4q25 [PITX2], 16q22 [ZFHX3]) and AF recurrence after 
ablation in a Korean population, despite no top single 
nucleotide polymorphisms (SNPs) that predicted clini-
cal recurrence after catheter ablation [34]. A regulatory 
role for PDZK1IP1 (MAP17) in reactive oxygen species 
production has been confirmed and is considered as a 

Table 2 The Gene Ontology (GO) terms and  Kyoto Encyclopedia of  Genes and  Genomes (KEGG) pathways enrichment 
among predicted miRNAs and Co-DEGs

Genes Predicted miRNAs Category P value

PDZK1IP1 hsa-miR-1296-5p KEGG pathway Hypertrophic cardiomyopathy (HCM) 0.047

hsa-miR-27a-3p NF-kappa B signaling pathway 0.022

hsa-miR-27b-3p Toll-like receptor signaling pathway 0.017

hsa-miR-6895-5p GO terms Negative regulation of energy homeostasis 4E−04

hsa-miR-4725-3p Calcium ion-dependent exocytosis of neurotransmitter 0.001

Neurotransmitter receptor activity 0.002

Regulation of leukocyte migration 0.003

Smooth muscle hyperplasia 0.011

Immunoglobulin mediated immune response 0.034

ZNF566 hsa-miR-216b-5p KEGG pathway Valine, leucine and isoleucine biosynthesis 0.320

hsa-miR-1277-5p Cardiac muscle contraction 0.411

hsa-miR-6783-5p GO terms Regulation of acute inflammatory response 0.007

hsa-miR-369-3p Commissural neuron differentiation in spinal cord 0.019

hsa-miR-6778-3p Cardiac vascular smooth muscle cell differentiation 0.020

MHC protein binding 0.035

ATP-activated inward rectifier potassium channel activity 0.035

Mitochondrial translation 0.041

PITX2 hsa-miR-377-3p KEGG pathway TGF-beta signaling pathway 3.00E − 03

hsa-miR-141-3p Phosphatidylinositol signaling system 0.124

hsa-miR-5692b GO terms Vascular smooth muscle cell differentiation 0.002

hsa-miR-4789-5p Cell proliferation involved in outflow tract morphogenesis 0.002

hsa-miR-494-3p Cardiac neural crest cell migration involved in outflow tract 
morphogenesis

0.002

Pulmonary myocardium development 0.002

Atrial cardiac muscle tissue morphogenesis 0.002

Ventricular cardiac muscle cell development 0.003

Cardiac muscle cell differentiation 0.006

Neuron migration 0.014

Neuron differentiation 0.014

ZFHX3 hsa-miR-494-3p KEGG pathway Regulating pluripotency of stem cells 3E − 07

hsa-miR-758-3p GO terms Positive regulation of myoblast differentiation 0.023

hsa-miR-27a-3p Negative regulation of myoblast differentiation 0.023

hsa-miR-27b-3p Regulation of neuron differentiation 0.023

hsa-miR-493-5p Muscle organ development 0.041
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marker for increased oxidative stress and may be a new 
therapeutic target [35]. and recent research suggests 
a potential role for ions channels regulation, linked to 
the  Na+/H+ exchanger 3 and A-kinase anchor protein 
2/protein kinase A pathway [36]. However, ZNF566 
plays a central role in heart regeneration and repair, and 
endocardial and epicardial epithelial to mesenchymal 
transitions [37, 38].

Research suggests potential beneficial effects of miRNA 
transformation therapy vectored by adenovirus, plasmid, 
and lentivirus for AF therapy [39]. We found that miR-
27a-3p, miR-27b-3p, and miR-494-3p were co-DEGs and 
may be potential biomarkers of AF-related stroke. Inter-
estingly, Vegter’s group compared heart failure-specific 
circulating miRNAs in 114  heart failure patients with/
without different manifestations of atherosclerotic dis-
ease, and reported that miR-18a-5p, miR-27a-3p, miR-
199a-3p, miR-223-3p and miR-652-3p abundance were 
associated with atherosclerosis and cardiovascular-
related rehospitalizations [40]. Similarly, Marques and 
colleagues found that several miRNAs involved in let-
7b-5p, let-7c-5p, let-7e-5p, miR-122-5p, and miR-21-5p, 
and absorbed miR-16-5p, miR-17-5p, miR-27a-3p, and 
miR-27b-3p are target pathways related to heart failure 
and considered to be potential biomarkers [41]. In con-
trast, expression of miR-27b-3p is significantly related 
to embryonic myogenesis and protein synthesis but 
miR-494-3p expression is associated with cerebral blood 
supply and functional recovery in a rat stroke model 
according to cerebral cortical miRNA profile changes [42, 
43].

Conclusion
The hub-genes of LRRK2, CALM1, CXCR4, TLR4, 
CTNNB1, CXCR2, KIT, and IL1B may be associated with 
AF recurrence and maintenance and CD19, FGF9, SOX9, 
GNGT1, and NOG may be associated with stroke. Addi-
tionally, co-DEGs of ZNF566, PDZK1IP1, ZFHX3, and 
PITX2 link AF and stroke. Finally, the top 5 miRNAs for 
each co-DEGs may be potential biomarkers or therapeu-
tic targets for AF-stroke, especially miR-27a-3p, miR-
27b-3p, and miR-494-3p. Thus, there is an association 
between AF and stroke, and expression of ZNF566, PDZ-
K1IP1, ZFHX3, and PITX2 genes favor AF-related stroke.

Limitation
Several limitations still detected in our study. First, this 
study is a microarray analysis that all the results based on 
gene expression value. However, owing to gene expres-
sion may be not directly equivalent to protein expression, 
the biomarkers of this study should consider as gene, not 
in protein. In application, assay of PCR and microarray 

chip may be better for accessing the risk of AF-related 
stroke. Second, validation should be carried out both 
in vitro, in vivo and clinical trials. However, as of now the 
techniques of in vivo or in vitro models for AF and stroke 
was immature. And the larger, prospective clinical stud-
ies may be better to validate our results to some extent.
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