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Abstract 

Background: Immune checkpoint inhibitors are effective in some cases of lung adenocarcinoma (LUAD). Whole-
exome sequencing has revealed that the tumour mutation burden (TMB) is associated with clinical benefits among 
patients from immune checkpoint inhibitors. Several commercial mutation panels have been developed for estimat-
ing the TMB regardless of the cancer type. However, different cancer types have different mutational landscapes; 
hence, this study aimed to develop a small cancer-type-specific mutation panel for high-accuracy estimation of the 
TMB of LUAD patients.

Methods: We developed a small cancer-type-specific mutation panel based on coding sequences (CDSs) rather than 
genes, for LUAD patients. Using somatic CDSs mutation data from 486 LUAD patients in The Cancer Genome Atlas 
(TCGA) database, we pre-selected a set of CDSs with mutation states significantly correlated with the TMB, from which 
we selected a CDS mutation panel with a panel-score most significantly correlated with the TMB, using a genetic 
algorithm.

Results: A mutation panel containing 106 CDSs of 100 genes with only 0.34 Mb was developed, whose length 
was much shorter than current commercial mutation panels of 0.80–0.92 Mb. The correlation of this panel with the 
TMB was validated in two independent LUAD datasets with progression-free survival data for patients treated with 
nivolumab plus ipilimumab and pembrolizumab immunotherapies, respectively. In both test datasets, survival analy-
ses revealed that patients with a high TMB predicted via the 106-CDS mutation panel with a cut-point of 6.20 muta-
tions per megabase, median panel score in the training dataset, had a significantly longer progression-free survival 
than those with a low predicted TMB (log-rank p = 0.0018, HR = 3.35, 95% CI 1.51–7.42; log-rank p = 0.0020, HR = 5.06, 
95% CI 1.63–15.69). This small panel better predicted the efficacy of immunotherapy than current commercial muta-
tion panels.
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Background
Lung adenocarcinoma (LUAD) is the most common 
type of non-small cell lung cancer (NSCLC), accounting 
for approximately 80–90% cases of lung cancer [1]. Cur-
rently, approximately 35–75% of LUAD patients relapse 
or die within 5 years of receiving conventional treatments 
based on the National Comprehensive Cancer Network 
Clinical Practice Guidelines in Oncology [2]. Recently, 
immunotherapies, which eliminate tumours by activat-
ing the immune system [3], have shown great promise 
for NSCLC [4, 5]. For example, an immune checkpoint 
inhibitor, nivolumab, which targets programmed cell 
death protein-1 (PD-1), can significantly increase survival 
in advanced-stage NSCLC by blocking the interaction 
between PD-1 and its ligand programmed death-ligand 
1 (PD-L1) and allowing cytotoxic T lymphocytes to act 
on tumour cells [6]. Furthermore, the inhibitor (ipili-
mumab) for cytotoxic T lymphocyte-associated antigen 
4 (CTLA-4), which suppresses immune responses, has 
been approved for treating NSCLC [5] and some other 
cancers [7]. However, the heterogeneity of the response 
to immune checkpoint inhibitors significantly confounds 
the treatment of NSCLC [3]. Therefore, it is important 
to identify patients potentially benefiting from these 
immune checkpoint inhibitors.

Previously, PD-L1 protein expression in NSCLC 
patients has been approved as an auxiliary predictive 
marker for certain PD-1/PD-L1 inhibitors including 
pembrolizumab [8]. However, PD-L1 protein expression 
alone cannot completely account for the survival benefit 
to patients treated with immune checkpoint inhibitors 
[8–11]. Moreover, analysis of PD-L1 protein expression 
via immunohistochemistry (IHC) is challenging because 
of subjective diagnoses of immunostaining results by 
pathologists using different criteria or interpretations 
[12].

Several previous studies have reported a high tumour 
mutation burden (TMB), determined through whole-
exome sequencing (WES), indicating that patients are 
more likely to harbour neoantigens, can predict the 
sensitivity to immunotherapies [13, 14]. For exam-
ple, high-TMB patients are associated with enhanced 
responses to nivolumab (PD-1 inhibitor) plus ipili-
mumab (CTLA-4 inhibitor) immunotherapy [15]. 

Moreover, a high TMB is more significantly associ-
ated with the response to PD-1/PD-L1 inhibitors than 
with PD-L1 protein expression detected via IHC [16]. 
However, WES, necessary to determine the TMB, is 
not routinely performed in clinical practice because 
it is costly, time-consuming and labour intensive, and 
needs a large number of sequences [3, 17, 18]. Previous 
studies have reported that the TMB can be accurately 
estimated using smaller gene panels encompassing 
several hundred genes, such as the 324-gene mutation 
panel (FoundationOne CDxTM assay) [6, 19–21] and 
the 341-gene mutation panel (MSK-IMPACT) [22, 23], 
which have been clinically used. The cost-effectiveness 
of these mutation panels facilitates a greater sequenc-
ing depth than that of WES and consequently a higher 
ability to detect mutations, even for genes mutated in 
some tumour cells [24]. However, these commercial 
mutation panels were selected from cancer-related 
genes regardless of the cancer type, rather than being 
developed via a feature selection method; thus, muta-
tion panels can still be improved. In particular, it is 
necessary to develop a cancer-type-specific mutation 
panel to estimate the TMB of LUAD samples, since dif-
ferent cancer types have different mutation landscapes 
[25]. Recently, Lyu et  al. [3] constructed a LUAD-spe-
cific 24-gene model for predicting the TMB of LUAD 
samples. However, this panel was also based on com-
plete exons of the panel genes, comprising thousands of 
exons in the panel genes, most of which being unmu-
tated, solely increasing the unnecessary cost and time 
for sequencing.

In this study, based on the coding sequences (CDSs) 
with a high frequency of mutation in LUAD, we devel-
oped a CDS mutation panel to estimate the TMB of 
LUAD samples. Thereafter, we determined the corre-
lation of CDSs in the mutation panel with the TMB in 
two independent datasets. From two datasets (Matthew 
and Rizvi), we used data on progression-free survival 
(PFS) of advanced LUAD patients treated with immune 
checkpoint inhibitors to estimate the performance of 
the CDS mutation panel for predicting the efficacy of 
immunotherapy. Furthermore, the CDS mutation panel 
was compared with two commercial mutation panels 
(324-gene and 341-gene panels) and a LUAD-specific 
mutation panel (24-gene panel).

Conclusions: The small-CDS mutation panel of only 0.34 Mb is superior to current commercial mutation panels and 
can better predict the efficacy of immunotherapy for LUAD patients, and its low cost and time-intensiveness make it 
more suitable for clinical applications.

Keywords: Immunotherapy, Tumour mutation burden, CDS mutation panel, Lung adenocarcinoma, Clinical 
application
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Methods
Data sources and pre‑processing
The three LUAD somatic mutation datasets (Table  1) 
were used to construct and validate the mutation panel 
for estimating the TMB. The training mutation data were 
downloaded from The Cancer Genome Atlas (TCGA) 
database (https ://porta l.gdc.cance r.gov/), comprising 486 
LUAD samples with paired mRNA expression data. For 
validation, we obtained two independent somatic muta-
tion datasets with PFS data for patients treated with 
immune checkpoint inhibitors, including 59 LUAD sam-
ples reported by Matthew et  al. [5] and 29 LUAD sam-
ples reported by Rizvi et al. [4]. The patients included in 
the Matthew dataset were treated with nivolumab (PD-1 
inhibitor) plus ipilimumab (CTLA-4 inhibitor) and those 
in the Rizvi dataset were treated with pembrolizumab 
(PD-1 inhibitor) immunotherapy.

Whole-exome sequencing was previously performed 
for these TCGA data with tumour tissues and matched 
normal tissue or blood, which were used to filter out ger-
mline mutations and screen somatic mutations [26]; the 

detailed protocol is described in the original literature 
[27]. Briefly, 0.5–3 µg of DNA from each sample was used 
for library preparation and sequenced using the Illumina 
HiSeq platform. The mean coverage across targeted bases 
on tumour and germline DNA were 97.63 and 95.83, 
respectively. Mutations with a variant allelic fraction of 
< 0.05 in tumour tissue were excluded. Only the non-
synonymous mutations, including missense mutation, 
nonsense mutation, nonstop mutation, frame-shift muta-
tion and in-frame mutation, were included, and a discrete 
mutation profile including 82,574 CDSs of 16,961 genes 
was generated. For the two test mutation data, whole-
exome sequencing was performed for tumour tissues and 
matched normal tissues or blood. The detailed protocol 
is further described in the original literatures [5, 28]. 
Finally, discrete mutation profiles including 18,793 CDSs 
of 9400 genes and 8711 CDSs of 5504 genes were gener-
ated, wherein the CDSs mutation matrix was constructed 
using matched human reference genome annotated files 
derived from GENCODE (https ://www.genco degen 
es.org/human /relea ses.html).

Development of the CDS mutation panel for estimating 
TMB
First, from TCGA LUAD somatic mutation data, we 
extracted mutations in the CDSs using the human ref-
erence genome annotated file (GRCh38), and selected 
non-synonymous mutations to construct an m*n CDSs 
mutation matrix, where m represents the number of 
CDSs in genes and n represents the number of samples. 
TMB was estimated as (total mutations in CDSs/total 
bases of CDSs) * 106.

Thereafter, Spearman’s rank correlation analysis was 
performed to estimate the correlation of the CDSs muta-
tion state with the TMB. Herein, we restricted the analy-
sis to the CDSs mutated in more than 5% cancer samples 
[29, 30] to filter out ‘passenger’ genes with low-frequency 
mutations, as it may be subjected to random mutations 
rather than having a tumorigenic advantage. p-values 
were adjusted using the Benjamini–Hochberg procedure 
[31] for multiple testing to control the false discovery rate 
(FDR). CDSs significantly correlated with the TMB were 
selected as candidates.

Finally, the genetic algorithm (GA package) was used 
to generate a final CDS panel from among candidate 
CDSs, whose panel-score was most correlated with 
TMB. The genetic algorithm was implemented with 
a population size of 5000 and a crossover fraction of 
0.9; it was terminated if the optimization objective of 
the best subset was not improved in 100 generations. 
Details regarding the genetic algorithm are shown in 
Additional file 1. The correlation  (R2) was estimated via 

Table 1 Whole-exome sequencing mutation data analyzed 
in this study

Patient characteristics TCGA Matthew [5] Rizvi [4]
No. (%) No. (%) No. (%)

Histology

 Adenocarcinoma 486 59 29

Age (years)

 No less than 65 223 (46) 29 (50) 10 (34)

 Less than 65 263 (54) 30 (50) 19 (66)

Sex

 Male 222 (46) 22 (37) 13 (45)

 Female 264 (54) 37 (63) 16 (55)

Smoking status

 Never – 13 (22) 5 (17)

 Former/light – 38 (64) 18 (62)

 Current/heavy – 8 (14) 6 (21)

Stage

 I 263 (54) – –

 II 117 (24) – –

 IIIA 70 (14) – –

 IIIB–IV 36 (7) 59 (100) 29 (100)

PFS-status

 Progression – 40 (68) 20 (69)

 Progression-free – 19 (32) 9 (31)

Percentage of tumour cells

 Known 433 (89) – –

 Unknown 53 (11) – –

Average percentage of 
tumour cells

78.76 – –

https://portal.gdc.cancer.gov/
https://www.gencodegenes.org/human/releases.html
https://www.gencodegenes.org/human/releases.html
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linear regression analysis [32]. Here, the panel-score 
was calculated as following (Formula 1):

where n is the number of CDSs in the panel, l is the 
length of the panel, and ki is the number of mutations in 
i-th CDS; β and C was obtained through linear regression 
analysis, β is a coefficient to balance the panel-score and 
TMB, C is a constant.

As no clinical data regarding immunotherapy were 
available for patients in TCGA, we could not determine 
the optimal cut-point for our CDS panel for predicting 
the efficacy of immunotherapy. Therefore, we set the 
cut-point of our CDS panel at a median panel score in 
TCGA.

Survival analysis
PFS was defined as the period during and after the 
treatment of a disease, wherein a patient lives with the 
disease but it is not exacerbated. The survival curve was 
estimated using the Kaplan–Meier method and com-
pared using the log-rank test (survival package: ‘sur-
vdiff ’) [33]. The univariate Cox proportional hazards 
regression model (survival package: ‘coxph’) was used 
to evaluate the predictive performances of the mutation 
panels. Furthermore, the multivariate Cox model (sur-
vival package: ‘coxph’) was used to evaluate the inde-
pendent prognostic value of our CDS mutation panel 
after adjusting for clinical factors including age, sex, 
and smoking. Hazard ratios (HRs) and 95% confidence 
intervals (CIs) were generated using the Cox propor-
tional hazards model (survival package: ‘coxph’).

Functional enrichment analysis
Functional pathways for enrichment analysis were 
downloaded from Gene Ontology (GO) in November 
2018. First, we performed Student’s t-test with a 5% 
FDR control to select differentially expressed genes (DE 
genes) between the high-TMB and low-TMB groups 
classified by the CDS panel. Here, 17,680 genes were 
used for differential expression analysis. Thereafter, 
the hypergeometric distribution model was used to 
determine whether the number of DE genes observed 
in a functional term was significantly greater than that 
expected through random chance.

All statistical analyses were performed by using 
R software packages version 3.4.2 (http://www.r-
proje ct.org/). Significance was defined as p < 0.05 or 
FDR < 0.05 for multiple testing.

(1)Panel-score = β

∑
n

i=1
ki

l ∗ 10−6
+ C

Results
Construction of the CDS mutation panel
Figure 1 provides a schematic representation of the study 
protocol.

From the LUAD mutation data from TCGA, we 
extracted mutation data from the CDSs by using the 
human reference genome annotated file (GRCh38). After 
selecting non-synonymous mutations, a mutation matrix 
comprising 82,574 CDSs and 486 patients was generated. 
Thereafter, using Spearman’s rank correlation analysis, 
with a 5% FDR control, 219 CDSs were significantly cor-
related with the TMB of the LUAD samples derived from 
TCGA data. Using the genetic algorithm (“Methods”), we 
extracted a CDS panel comprising 106 CDSs in 100 genes 
with a length of 0.34  Mb (Additional file  2: Table  S1), 
whose panel-score was most significantly correlated 
with the TMB of the LUAD samples  (R2 = 0.95, Fig. 2a). 
This mutation panel was termed the 106-CDS panel. In 
the formula for the panel-score, β = 0.33 , C = 0.27 were 
obtained from linear regression analysis [32]. The techni-
cal details of the 106-CDS panel for TMB evaluation is 
described in Additional file 3: Table S2.

Furthermore, we estimated the correlation of the 
clinical factors and tumour cell proportions with the 
TMB using Spearman’s rank correlation and found that 
only age and sex were significantly associated with the 
TMB (age: p = 0.0055; sex: p = 0.0442, Additional file  4: 
Table  S3). Therefore, we additionally used the multiple 
linear regression model for the 106-CDS panel, age and 
sex together to estimate their correlations with the TMB. 
Consequently, the 106-CDS panel was still significantly 
correlated with the TMB, while age and sex were not, 
suggesting that the 106-CDS panel was an independent 
predictor of the TMB. Additionally, to prevent overes-
timating the TMB, since gene panels are usually heavily 
targeted at recurrently mutated genomic regions, we 
redetermined the TMB after excluding the mutations in 
cancer-related genes and the recurrent CDSs occurring 
in more than 5% samples, and found that the correlation 
 (R2) of the 106-CDS panel with the recalculated TMB 
also approached 0.94 (Fig. 2b).

Validation of the 106‑CDS panel
First, we applied the 106-CDS panel to 59 samples from 
the Matthew dataset with PFS data of patients receiving 
nivolumab plus ipilimumab immunotherapy. The corre-
lation  (R2) between the panel-score of the 106-CDS and 
the TMB was 0.82 (linear regression analysis, p < 0.0001, 
Fig. 2c). When the panel score was dichotomized at 6.20 
mutations per megabase (mut/Mb), the median of the 
panel-scores from the training dataset, our 106-CDS 
panel classified 18 and 41 patients into high- and low-risk 

http://www.r-project.org/
http://www.r-project.org/
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groups, respectively. Univariate survival analysis revealed 
that the predicted high-TMB patients had significantly 
longer PFS than the predicted low-TMB patients (log-
rank p = 0.0018, HR = 3.35, 95% CI 1.51–7.42, Fig.  3a). 
The 1-year PFS rate of the predicted high-TMB patients 

was 0.67, which was markedly higher than the 1-year PFS 
rate (0.25) of the predicted low-TMB patients. Multivari-
ate Cox analysis revealed that the 106-CDS panel with a 
cut-point of 6.20 mut/Mb remained significantly associ-
ated with PFS (p = 0.0013, HR = 4.03, 95% CI 1.73–9.40, 

Fig. 1 Flowchart for the identification of the mutation panel. Mutation data for coding sequences (CDSs) in TCGA from 486 patients was used to 
develop a CDS mutation panel for estimating the tumour mutation burden. The performance of the CDS mutation panel was validated in two 
datasets with data on progression-free survival for patients treated with immune checkpoint inhibitors
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Fig.  3b) after adjusting for age (> 65 vs. ≤ 65  years), sex 
(Male vs. Female), and smoking status (Current vs. For-
mer vs. Never).

Similar results were obtained with the Rizvi dataset, 
wherein the correlation  (R2) between panel-score and 
the TMB was 0.73 (linear regression analysis, p < 0.0001, 
Fig.  2d). High-TMB patients predicted using the 106-
CDS panel with a cut-point of 6.20 mut/Mb had a signifi-
cantly longer PFS than the predicted low-TMB patients 
(log-rank p = 0.0020, HR = 5.06, 95% CI 1.63–15.69, 
Fig. 3c). The 1-year PFS rate of the predicted high-TMB 
patients was 0.61, markedly higher than the 1-year PFS 
rate (0.13) of the predicted low-TMB samples. Multi-
variate Cox analysis revealed that the CDS panel with a 

cut-point of 6.20 mut/Mb remained significantly associ-
ated with PFS (p = 0.0150, HR = 4.36, 95% CI 1.33–14.28, 
Fig.  3d) after adjusting for age (> 65 vs. ≤ 65  years), sex 
(male vs. female), and smoking status (current vs. former 
vs. never).

Comparison of the 106‑CDS panel with three mutation 
panels
We compared our 106-CDS panel with two commercial 
mutation panels (324-gene [6, 20, 21] and 341-gene [23] 
panels) approved by the Food and Drug Administration 
(FDA), and a LUAD-specific mutation panel (24-gene 
panel) for predicting the efficacy of immunotherapy for 

Fig. 2 Performance of the 106-CDS panel for the tumour mutation burden evaluation. a Linear regression analysis of the 106-CDS panel-score with 
the tumour mutation burden (TMB) of lung adenocarcinoma (LUAD) in TCGA database (training set). b Linear regression analysis of the 106-CDS 
panel-score with the recalculated TMB in TCGA after excluding the mutations in cancer-related genes and the recurrent CDSs occurring in more 
than 5% samples. c Linear regression analysis of the 106-CDS panel-score and the TMB in the Matthew dataset. d Linear regression analysis of the 
106-CDS panel-score and the TMB in the Rizvi dataset. The gray lines are 95% confidence intervals of the 106-CDS panel for the TMB evaluation
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LUAD. The results of univariate survival analyses are 
summarized in Table 2.

For the 324-gene mutation panel with a cut-point 
of 10 mut/Mb [19], containing 6130 CDSs spanning 
0.80 Mb, univariate survival analyses revealed that the 
two groups of patients classified using the panel had 
significantly different PFS after receiving immuno-
therapy in the Matthew dataset (log-rank p = 0.0042, 
HR = 2.65, 95% CI 1.33–5.28, Fig.  4a) and in the Rizvi 
dataset (log-rank p = 0.0137, HR = 3.74, 95% CI 1.22–
11.46, Fig.  4b). However, univariate survival results 
revealed that its performance (HR) in predicting the 
efficacy of immunotherapy was worse than that of our 
106-CDS panel in both datasets (Table 2).

Fig. 3 Performance of the 106-CDS panel for predicting the efficacy of immunotherapy in the test datasets. a Kaplan–Meier curves of 
progression-free survival (PFS) for the 59 advanced lung adenocarcinoma (LUAD) patients in the Matthew dataset. The p value was determined 
using log-rank test. The hazard ratio (HR) and 95% confidence interval (CI) were determined using univariate Cox regression models. b Multivariate 
Cox analysis for the 106-CDS panel, age, sex, and smoking status in the Matthew dataset. Solid circles represent the HR for mortality risk and the 
open-ended horizontal lines represent the 95% CI. The p value, HR, and CI were determined using multivariate Cox regression models. c Kaplan–
Meier curves of PFS for the 29 advanced LUAD patients in the Rizvi dataset. The p value was determined using log-rank test. The HR and 95% CI 
were determined using univariate Cox regression models. d Multivariate Cox analysis of the 106-CDS panel, age, sex, and smoking status in the Rizvi 
dataset. The p value, HR, and CI were determined using multivariate Cox regression models

Table 2 The survival analysis result of all datasets

a Cox p value and Hazard ratio (95% CIs) were generated by the univariate Cox 
proportional hazards model

Dataset Mutation panels Log‑rank p Cox pa Hazard ratio (95% 
CIs)a

Matthew 106-CDS 0.0018 0.0029 3.35 (1.51–7.42)

324-gene 0.0042 0.0057 2.65 (1.33–5.28)

341-gene 0.0135 0.0156 2.20 (1.16–4.17)

24-gene 0.0283 0.0312 2.04 (1.07–3.89)

Rizvi 106-CDS 0.0020 0.0050 5.06 (1.63–15.69)

324-gene 0.0137 0.0208 3.74 (1.22–11.46)

341-gene 0.1233 0.1193 2.06 (0.83–5.14)



Page 8 of 12Li et al. J Transl Med           (2020) 18:25 

Fig. 4 Performance of other mutation panels for predicting the efficacy of immunotherapy in the test datasets. a Kaplan–Meier curves of 
progression-free survival (PFS) for 59 advanced lung adenocarcinoma (LUAD) patients in the Matthew dataset, using the 324-gene panel. b Kaplan–
Meier curves of PFS for 29 advanced LUAD patients in the Rizvi dataset, using the 324-gene panel. c Kaplan–Meier curves of PFS for 59 patients 
in the Matthew dataset, using the 341-gene panel. d Kaplan–Meier curves of PFS for 29 patients in the Rizvi dataset, using the 341-gene panel. 
e Kaplan–Meier curves of PFS for 59 patients in the Matthew dataset, using the LUAD-specific 24-gene panel. The p value was determined using 
log-rank test. The hazard ratio (HR) and 95% confidence interval (CI) were determined using univariate Cox regression models
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For the 341-gene mutation panel with a cut-point 
of 7.40 mut/Mb [22], containing 6773 CDSs span-
ning 0.92 Mb, its performance in predicting the efficacy 
of immunotherapy in the Matthew dataset (log-rank 
p = 0.0135, HR = 2.20, 95% CI 1.16–4.17, Fig. 4c) and the 
Rizvi dataset (log-rank p = 0.1233, HR = 2.06, 95% CI 
0.83–5.14, Fig.  4d) was inferior to that of our 106-CDS 
panel (Table 2).

For the LUAD-specific mutation panel (24-gene panel) 
with a cut-point of 141 [3], containing 833 CDSs span-
ning 0.18  Mb, univariate survival analyses revealed that 
the two groups of patients classified by the panel had 
significantly different PFS after immunotherapy in the 
Matthew dataset (log-rank p = 0.0283, HR = 2.04, 95% CI 
1.07–3.89, Fig.  4e). However, its performance (HR) was 
much worse than that of our 106-CDS panel (Table 2). As 
the Rizvi dataset is the training set to determine the cut-
point (141) of the 24-gene panel in predicting the benefits 
of pembrolizumab immunotherapy, we did not compare 
our 106-CDS panel with the 24-gene panel in the data-
set, as it is not an independent test data for the 24-gene 
panel.

Functional characterizations of the 106‑CDS panel
In TCGA dataset, using the 106-CDS panel with a cut-
point of 6.20 mut/Mb, 220 and 266 samples were divided 

into high- and low-TMB groups, respectively. We found 
that 7181 genes were differentially expressed between the 
two groups (Student’s t-test, FDR < 0.05, Fig.  5a, Addi-
tional file 5: Table S4), which were significantly enriched 
in 22 functional pathways (hypergeometric distribution 
model, FDR < 0.05, Fig.  5b, Additional file  6: Table  S5), 
including those associated with genomic instability, such 
as DNA repair [34], DNA replication [35] and chromo-
some segregation [36]. These results indicated that com-
pared with the low-TMB patients predicted using the 
106-CDS panel, the predicted high-TMB patients might 
have higher genomic instability, thus potentially benefit-
ing from immunotherapy, as they are more likely to har-
bour neoantigens.

Discussion
This study describes the generation of a mutation panel 
comprising 106 CDSs of 100 genes spanning 0.34  Mb. 
Previous studies have reported that the sequencing panel, 
comprising more than 300 cancer-related genes, can help 
predict the TMB; however, its performance is apparently 
low when the number of genes in the panel is lesser than 
150 [37]. However, these commercial mutation panels 
(such as 324-gene and 341-gene panels) were not selected 
through any feature selection method; thus, their high 
correlations with the TMB primarily resulted from the 

Fig. 5 Functional characterizations of the 106-CDS panel. a Volcano plot of differently expressed genes (DE genes) between the high-TMB and 
low-TMB groups predicted via the 106-CDS panel. The list of DE genes is shown in Additional file 5: Table S4. The pink and blue circles represent 
the up-regulated and down-regulated DE genes in the predicted high-TMB group when compared with the predicted low-TMB group. The gray 
circle represent the genes without different expression between the predicted high-TMB and low-TMB groups. b The top 10 functional pathways 
significantly enriched with DE genes between the high-TMB and low-TMB groups predicted via the 106-CDS panel. All 22 functional pathways are 
shown in Additional file 6: Table S5. The size of nodes represents the number of DE genes in the pathway. The colour of the nodes, from green to 
red, represents the p-value of enrichment results from high to low. The ratios represent the proportion of DE genes enriched in the pathway to the 
total number of genes in the pathway
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large number of genes included in the panels. In contrast, 
our 106-CDS mutation panel developed using a genetic 
algorithm and containing more major variates associated 
with the TMB is expected to be reliable in estimating the 
TMB, and its performance was validated in the two inde-
pendent test datasets. Certain differences in the correla-
tions of our 106-CDS panel and the TMB were observed 
in the two test datasets, thus potentially accounting for 
their different sample sizes or sample collections; these 
correlations require further validation in a large-scale 
clinical trial.

The present results show that the 106-CDS panel with 
a cut-point of 6.20 mut/Mb preferably predicted the effi-
cacy of immunotherapy among advanced-stage LUAD 
patients. For high-TMB patients predicted via the 106-
CDS panel with a cut-point of 6.20 mut/Mb, immuno-
therapy with nivolumab plus ipilimumab improved the 
1-year PFS rate to 0.67, which was markedly higher than 
the 1-year PFS rate (0.25) of the predicted low-TMB 
patients. Similarly, the 1-year PFS rate of the predicted 
high-TMB patients was 0.61, being markedly higher 
than the 1-year PFS rate (0.13) of the predicted low-
TMB patients after pembrolizumab treatment. However, 
we considered that the cut-point of the 106-CDS panel, 
which was set at a median panel score in training data-
set, may not be the optimal threshold for predicting the 
efficacy of various immunotherapy drugs. In order to 
assess the effect of specific cut-points for predicting the 
efficacy of immunotherapy, we additionally set the cut-
points of our CDS panel at upper tertiles (9.17 mut/Mb) 
and quartiles (12.13 mut/Mb) of panel scores in training 
dataset, respectively, and estimated in the two test data-
sets. The univariate survival analyses revealed that the 
106-CDS panel with the cut-point of the upper quartiles 
(12.13 mut/Mb) had the optimal predictive performance 
(log-rank p = 0.0079, HR = 3.81, 95% CI 1.33–10.93, 
Additional file 7: Figure S1A) than the median (log-rank 
p = 0.0018, HR = 3.35, 95% CI 1.51–7.42, Fig.  3a) and 
upper tertiles (log-rank p = 0.0298, HR = 2.59, 95% CI 
1.07–6.27, Additional file 7: Figure S1B) as cut-pionts for 
the patients treated with nivolumab plus ipilimumab in 
the Matthew dataset. While, it had the weakest perfor-
mance (log-rank p = 0.1258, HR = 2.58, 95% CI 0.72–9.21, 
Additional file 7: Figure S1C) than the median (log-rank 
p = 0.0020, HR = 5.06, 95% CI 1.63–15.69, Fig.  3c) and 
upper tertiles (log-rank p = 0.0081, HR = 5.82, 95% CI 
1.33–25.51, Additional file 7: Figure S1D) for the patients 
treated with pembrolizumab in the Rizvi dataset. These 
results suggest that the 106-CDS panel with a cut-point 
of 6.20 mut/Mb can effectively predict patients poten-
tially benefiting from immunotherapies, but the optimal 
cut-point for a specific immunotherapy drug needs fur-
ther exploration in a large-scale clinical trial.

The larger the number of genes included in the muta-
tion panel, the higher the expected correlation with the 
TMB. Our results show that although the number of 
genes in the 106-CDS panel is twofold less than that of 
the 324-gene [19] and 341-gene [22] panels, our 106-CDS 
panel displayed better performance in predicting the 
efficacy of immunotherapy. Although the length of the 
106-CDS panel (0.34  Mb) was longer than the 24-gene 
panel (0.18 Mb), its performance was markedly better in 
predicting the efficacy of immunotherapy. These results 
indicate that the 106-CDS panel of mutations may have 
higher antigenicity, which needs further confirmation.

Functional annotation revealed that several genes 
including TP53 [38], AMER1 [39], and TEX15 [40] in the 
106-CDS panel are involved in DNA repair and cell cycle 
arrest, playing a key role in genomic instability. DE genes 
between the two groups classified using the 106-CDS 
panel with a cut-point of 6.20 mut/Mb were significantly 
enriched in several pathways associated with genomic 
instability, such as DNA repair [34], DNA replication 
[35], and chromosome segregation [36]. These functional 
analyses indicate that compared with low-TMB patients 
predicted using the 106-CDS panel, the high-TMB 
patients potentially have higher genomic instability and 
are more likely to harbour neoantigens.

Conclusions
The CDS mutation panel spanning only 0.34  Mb can 
effectively predict the efficacy of immunotherapy for 
LUAD patients through accurate estimation of the TMB. 
This small panel is preferable for clinical samples because 
of its low cost and time consumption.
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