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Biomarkers from circulating neutrophil 
transcriptomes have potential to detect 
unruptured intracranial aneurysms
Vincent M. Tutino1,2, Kerry E. Poppenberg1,2, Lu Li3, Hussain Shallwani4, Kaiyu Jiang5, James N. Jarvis5,6, 
Yijun Sun5,7, Kenneth V. Snyder1,4,8,9, Elad I. Levy1,4,8, Adnan H. Siddiqui1,4,8, John Kolega1,10 
and Hui Meng1,2,4,11* 

Abstract 

Background:  Intracranial aneurysms (IAs) are dangerous because of their potential to rupture and cause deadly 
subarachnoid hemorrhages. Previously, we found significant RNA expression differences in circulating neutrophils 
between patients with unruptured IAs and aneurysm-free controls. Searching for circulating biomarkers for unrup-
tured IAs, we tested the feasibility of developing classification algorithms that use neutrophil RNA expression levels 
from blood samples to predict the presence of an IA.

Methods:  Neutrophil RNA extracted from blood samples from 40 patients (20 with angiography-confirmed unrup-
tured IA, 20 angiography-confirmed IA-free controls) was subjected to next-generation RNA sequencing to obtain 
neutrophil transcriptomes. In a randomly-selected training cohort of 30 of the 40 samples (15 with IA, 15 controls), we 
performed differential expression analysis. Significantly differentially expressed transcripts (false discovery rate < 0.05, 
fold change ≥ 1.5) were used to construct prediction models for IA using four well-known supervised machine-
learning approaches (diagonal linear discriminant analysis, cosine nearest neighbors, nearest shrunken centroids, 
and support vector machines). These models were tested in a testing cohort of the remaining 10 neutrophil samples 
from the 40 patients (5 with IA, 5 controls), and model performance was assessed by receiver-operating-characteristic 
(ROC) curves. Real-time quantitative polymerase chain reaction (PCR) was used to corroborate expression differences 
of a subset of model transcripts in neutrophil samples from a new, separate validation cohort of 10 patients (5 with IA, 
5 controls).

Results:  The training cohort yielded 26 highly significantly differentially expressed neutrophil transcripts. Models 
using these transcripts identified IA patients in the testing cohort with accuracy ranging from 0.60 to 0.90. The best 
performing model was the diagonal linear discriminant analysis classifier (area under the ROC curve = 0.80 and accu-
racy = 0.90). Six of seven differentially expressed genes we tested were confirmed by quantitative PCR using isolated 
neutrophils from the separate validation cohort.

Conclusions:  Our findings demonstrate the potential of machine-learning methods to classify IA cases and create 
predictive models for unruptured IAs using circulating neutrophil transcriptome data. Future studies are needed to 
replicate these findings in larger cohorts.
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Background
Intracranial aneurysm (IA) rupture is the primary cause 
of nontraumatic subarachnoid hemorrhage and its devas-
tating sequalae [1]. The risk of rupture can be reduced by 
elective endovascular or surgical treatment [2, 3]. How-
ever, because IAs are almost invariably asymptomatic 
until rupture [4, 5], unruptured aneurysms are usually 
detected incidentally in individuals who are prescribed 
cerebral imaging for other reasons. A blood test capable 
of identifying individuals who harbor unruptured aneu-
rysms would therefore be a significant advance in the 
field.

Circulating blood is a dynamic, information-rich tis-
sue that continuously interacts with the aneurysm. In 
many different disease states, transcriptome profiling has 
been used to discover panels of differentially expressed 
genes in the circulating blood that could serve as useful 
diagnostic markers [6]. This strategy has been success-
fully applied to complex vascular diseases, including IA 
[7–9]. In a recent case–controlled study, we performed 
transcriptome profiling on circulating neutrophils from 
patients with and without IA and discovered an IA-asso-
ciated RNA expression signature (NCBI Gene Expression 
Omnibus Accession Number GSE106520) [10]. This sig-
nature was characteristic of peripheral neutrophil acti-
vation and was able to separate patients with IA from 
controls in several statistical analyses. Although these 
results showed that differences in neutrophil expression 
may be able to  distinguish patients with IA, biomarker 
development from expression data is more complex than 
the identification of differentially expressed genes. Aver-
age expression differences between patients with and 
without IA cannot themselves be used to predict aneu-
rysm on an individual basis [11]. Rather, classification 
algorithms that use discrete expression levels of informa-
tive transcripts to predict the presence of IA from indi-
vidual samples are required.

In this study, we sought to test the feasibility of creat-
ing classification models of unruptured IAs based on 
RNA expression of circulating neutrophils. We recruited 
additional patients with and without unruptured IAs 
(confirmed on angiography), isolated peripheral blood 
neutrophils, and performed next-generation RNA 
sequencing to obtain the neutrophil transcriptomes. Dif-
ferential expression analysis was used to identify highly 
significantly differentially expressed transcripts as fea-
tures for model development. As there was no prec-
edent for the specific type of algorithm best suited for 
IA detection from neutrophil expression differences, we 
applied four widely used supervised machine-learning 
approaches to select a classification model most fitting 
for our data. Trained classification models were then 
validated in an independent testing dataset of neutrophil 

transcriptomes. Furthermore, real-time quantitative 
polymerase chain reaction (qPCR) was used to cor-
roborate expression differences of model transcripts 
in neutrophil samples from a new, separate validation 
cohort of patients with and without IA. Results from this 
study could lay the groundwork for future, larger efforts 
towards developing a blood-based IA diagnostic.

Methods
Study population
This study was approved by the University at Buffalo 
Health Sciences Institutional Review Board (Study No. 
030-474433). Methods were carried out in accordance 
with the approved protocol and written informed consent 
was obtained from all subjects. We included individuals 
who were older than 18 years, spoke English, and had not 
received previous treatment for IA. We excluded indi-
viduals with potentially altered immune systems; includ-
ing patients who were pregnant, had recently undergone 
invasive surgery, were undergoing chemotherapy, had a 
body temperature above 37.78  °C (100  °F), had received 
solid organ transplants, had autoimmune diseases, and 
those who were taking prednisone or any other immu-
nomodulating drugs.

Between December 2013 to May 2016, 106 peripheral 
blood samples were collected from patients undergoing 
cerebral digital subtraction angiography (DSA) at Gates 
Vascular Institute in Buffalo, New York: 51 patients had a 
positive IA diagnosis and 55 had a negative IA diagnosis 
(controls). DSA imaging was used to confirm IA diagno-
sis by either positive or negative angiographic presence 
of IA. Patient medical electronic records were also col-
lected. Reasons for the patients to receive DSA included 
confirmation of findings from noninvasive imaging of 
the presence of unruptured IAs, vascular malformations, 
or carotid stenosis, or follow-up noninvasive imaging of 
previously detected IAs. Prior to RNA expression analy-
sis, we further excluded patients with other known cer-
ebrovascular malformations or extracranial aneurysms, 
including abdominal aortic aneurysms. The presence 
of other cerebrovascular malformations or extracranial 
aneurysms was recorded from both the patient’s opera-
tive report following DSA and their recorded medical 
history.

Neutrophil isolation
During the DSA procedure, 16  mL of blood was drawn 
from the access catheter in the femoral artery and trans-
ferred into two 8 mL, citrated, cell preparation tubes (BD, 
Franklin Lakes, NJ). Neutrophils were isolated within 1 h 
of peripheral blood collection, as described elsewhere 
[12]. Cell preparation tubes were centrifuged at 1700×g 
for 25 min to separate erythrocytes and neutrophils from 
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mononuclear cells and plasma in the peripheral blood 
samples via a Ficoll density gradient. Erythrocytes and 
neutrophils were collected into a 3 mL syringe. Following 
hypotonic lysis of red blood cells, neutrophils were iso-
lated by centrifugation at 400×g for 10 min and disrupted 
and stored in TRIzol reagent (Life Technologies, Carls-
bad, CA) at − 80 °C until further processing. Neutrophils 
isolated in this fashion are more than 98% CD66b+ by 
flow cytometry and contain no contaminating CD14+ 
monocytes [13].

RNA preparation
Neutrophil RNA was extracted using TRIzol, accord-
ing to the manufacturer’s instructions. Trace DNA was 
removed by DNase I (Life Technologies, Carlsbad, CA) 
treatment. RNA was purified using the RNeasy Min-
Elute Cleanup Kit (Qiagen, Venlo, Limburg, Nether-
lands) and suspended in RNase-free water. The purity 
and concentration of RNA in each sample were measured 
by absorbance at 260 nm on a NanoDrop 2000 spectro-
photometer (Thermo Scientific, Waltham, MA), and 
200–400  ng of RNA was sent to our university’s Next-
Generation Sequencing and Expression Analysis Core 
facility for further quality control. Precise RNA concen-
tration was measured at the core facility via the Quant-iT 
RiboGreen Assay (Invitrogen, Carlsbad, CA) with a TBS-
380 Fluorometer (Promega, Madison, WI). The quality 
of the RNA samples was measured with an Agilent 2100 
BioAnalyzer RNA 6000 Pico Chip (Agilent, Las Vegas, 
NV). RNA samples of acceptable purity (260/280 ratio of 
≥ 1.9) and integrity (RIN ≥ 5.0) were considered for RNA 
sequencing.

RNA sequencing
RNA libraries were constructed using the Illumina 
TruSeq RNA Library Preparation Kit (Illumina, San 
Diego, CA). All samples were subjected to 50-cycle, sin-
gle-read sequencing in a HiSeq 2500 system (Illumina) 
and demultiplexed using Bcl2Fastq v2.17.1.14 (Illumina). 
Gene expression analysis was carried out using the Tux-
edo Suite [14–17]. For each sample, short RNA fragment 
data in FASTQ format was compiled and aligned to the 
human reference genome (human genome 19—hg19) 
using TopHat v2.1.13 [17]. To evaluate the quality of RNA 
sequencing, we performed quality control analysis using 
FASTQC [18] and visualized and compared the aggregate 
quality control data using MultiQC [19].

Transcript expression levels were calculated from 
counts using transcripts per million (TPM) normaliza-
tion for comparison of RNA levels between samples. 
Since samples were processed in two batches, we per-
formed batch effect correction using ComBat under 
the default settings in R [20, 21]. This was performed 

on expression data for all transcripts with an average 
TPM > 1.0 in at least one of the two groups (see Addi-
tional file 1: Table S1 for batch information).

Differential expression analysis
Prior to differential expression analysis, neutrophil tran-
scriptomes were randomly divided into two cohorts. 
Based on standard convention [22, 23], and to maximize 
learning while retaining a substantial testing group, 3/4 
(75%) of the samples were allocated to a training cohort 
and 1/4 (25%) was allocated to a testing cohort, each 
containing half IA and half control samples. Although 
the investigators could not be blinded to sample class, 
randomization was performed to unbiasedly allocate 
samples to the training and testing cohorts. Differential 
gene expression analysis in the training cohort was car-
ried out using F statistics to assess differential variation 
in the mean on a transcript-by-transcript basis [24–27]. 
Multiple testing correction was performed by using the 
John Storey  method [28], and q-values were reported 
for each transcript. Transcripts were considered signifi-
cantly differentially expressed at an FDR-adjusted p-value 
(q-value) < 0.05.

Bioinformatics
We performed gene ontology (GO) term enrichment 
analysis using the open source Gene Ontology enRIch-
ment anaLysis and visuaLizAtion tool (GORILLA) on 
all differentially expressed transcripts (q < 0.05) [29]. 
This was done using a background gene list of previously 
published neutrophil RNA expression patterns (average 
fragments per kilo base of transcript per million mapped 
reads, FPKM > 1.0) of three healthy individuals, described 
elsewhere [12]. This tool identified GO terms that are 
enriched in genes with increased or decreased expression 
in IA compared to the background neutrophil expression 
using standard hypergeometric statistics. We reported 
associated GO processes and functions if the enrichment 
FDR-adjusted p-value (q-value) was < 0.20 (20% FDR).

Feature selection for classification model development
Prior to model training, the set of differentially expressed 
transcripts was reduced by filtering. We retained only 
transcripts with an FDR < 0.05 and absolute fold-change 
≥ 1.5. To visualize how those transcripts separated 
samples from patients with and without IAs, we per-
formed principal component analysis (PCA) in R using 
the prcomp package under the default settings [30]. We 
also performed post hoc power estimation following a 
method by Hart et al. [31] for 15 samples in each group, 
with an α = 0.05, and a coefficient of variation and counts 
per million mapped reads of 0.40 and 38, respectively 
[10].
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Model training
Using the selected transcripts, we trained classification 
models using MATLAB Statistics and Machine Learn-
ing Toolbox (MathWorks, Natick, MA) and R biocon-
ductor (https​://www.bioco​nduct​or.org/). Specifically, we 
used four algorithms that have been successfully used 
for disease classification from gene expression data [32]. 
These machine-learning methods included cosine nearest 
neighbors (cosine NN) classification [33], diagonal lin-
ear discriminant analysis (DLDA) [34], nearest shrunken 
centroids (NSC) classification [35], and support vector 
machines (SVM) [36]. Each method was applied to the 
training cohort separately and evaluated with a leave-
one-out (LOO) cross-validation to estimate model per-
formance and prevent overfitting.

k‑NN classification
The k-nearest neighbor method [37] with a cosine metric 
(cosine NN) was employed. The number of neighbors, k, 
was set as 5 for cosine NN. The resulting model classified 
test samples by calculating their distance to each training 
sample. The test sample labels were predicted by choos-
ing the class that was most common among their k-near-
est neighbors.

LDA
We trained a classifier using diagonal LDA (DLDA), 
as described elsewhere [33]. This method seeks the lin-
ear combination of transcripts that best separates two 
classes using a diagonal covariance matrix. The linear 
model coefficients associated with transcripts (discrimi-
nant scores) relayed the importance of each transcript to 
the prediction model [38]. Classification was performed 
by projecting a test sample onto the maximally separat-
ing direction that was determined by discriminant scores 
and calculating the corresponding posterior probability 
of IA.

Nearest centroids classification
We used a modification of the nearest centroids tech-
nique, called NSC [35]. This method calculates class-spe-
cific centroids (standard deviation normalized averages) 
for each transcript and refines them by eliminating those 
with variable expression. Classification was performed 
by comparing the expression of the included model tran-
scripts with the centroids of the two classes and assigning 
it to the class that it was closest to in squared distance 
[35].

SVM
The most complex classification algorithm we imple-
mented was SVM [39]. To separate the binary labeled 

training samples, SVM finds a hyperplane that is maxi-
mally distant from samples of either class. A linear kernel 
was used in model creation. The resulting model classi-
fied test samples by mapping them to a higher-dimen-
sional space and making decisions based on their signed 
distance to the hyperplane.

Model assessment in the training cohort
The performance of each model in the training cohort 
was estimated using the results of the LOO cross-vali-
dation. The model classifications were compared to each 
patient’s clinical diagnosis from imaging, and the true 
positives (TP), true negatives (TN), false positives (FP), 
and false negatives (FN) were counted. Each model’s per-
formance was first assessed by calculating the model’s 
sensitivity, specificity, and accuracy, as follows: 

Based on model predictions, we created receiver oper-
ating characteristic (ROC) curves and calculated the area 
under the ROC curve (AUC) to assess model perfor-
mance [40].

Validation of the models in an independent testing cohort
Classification models were independently tested on 
transcriptomes from the testing cohort. TPM values of 
these model features were input into the models for clas-
sification of IA presence. The classification results were 
compared to clinical diagnoses to calculate the true sen-
sitivity, specificity, and accuracy for each model. ROC 
curves were constructed and AUCs were used to assess 
the performance of each classifier [41].

Cross‑validation over all samples
Because the models were fit using data points from a ran-
domly selected training dataset (n = 30), selection bias 
may introduce inconsistency in model predictions. To 
increase the prediction reliability of the models and to 
create algorithms more generalizable to a broader popu-
lation, we implemented LOO cross-validation using the 
expression levels of the 26 selected transcripts from all 
40 patients for each model. The LOO cross-validation 
method essentially retrained the models in 40 different 
training sets consisting of 39 samples and performed 
testing on the remaining sample. As before, classification 
results were used to calculate sensitivity, specificity, and 
accuracy for each model, as well as to find the AUC of the 
ROC curve for each modified classifier.

Sensitivity = TP/(TP + FN )

Specificity = TN/(TN + FP)

Accuracy = (TP + TN )/(TP + FP + FN + TN )

https://www.bioconductor.org/
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Positive and negative predictive values of the models
On the basis of the cross-validation results over all sam-
ples, we assessed the predictive value of the classification 
models by calculating their positive predictive values 
(PPV) and negative predictive values (NPV) [42]. PPVs 
and NPVs were estimated using the following formulas 
based on Bayes’ theorem [43, 44]:

The PPV and NPV were calculated over a range of 
prevalence from 0 to 100%, noting the reported range of 
IA prevalence (3.2–7%) from the literature [45–48].

Validation of expression differences by qPCR 
in an independent validation cohort
To validate expression differences in the 26 genes in our 
models, quantitative polymerase chain reaction (qPCR) 
was performed. Due to limitations in mRNA volume, 
qPCR was performed on seven model transcripts in 10 
additional patients (independent cohort of 5 with IA and 
5 controls), as described previously [10]. In brief, oligo-
nucleotide primers were designed with a 60  °C melting 
temperature and a length of 15–25 nucleotides to pro-
duce PCR products with lengths of 50–250 base pairs 
using Primer3 software [49] and Primer BLAST (NCBI, 
Bethesda, MD). The replication efficiency of each primer 
set was tested by performing qPCR on serial dilutions 
of cDNA samples (primer sequences, annealing tem-
peratures, efficiencies, and product lengths are shown in 
Additional file 1: Table S2).

For reverse transcription, first-strand cDNA was gen-
erated from total RNA using OmniScript Reverse Tran-
scriptase kit (Qiagen, Venlo, Limburg, Netherlands) 
according to the manufacturer’s directions. qPCR was 
run with 10 ng of cDNA in 25 µL reactions in triplicate 
in Bio-Rad CFX Connect (Bio-Rad, Hercules, California) 
using ABI SYBR Green I Master Mix (Applied Biosys-
tems, Foster City, California) and gene-specific primers 
at a concentration of 0.02 μM each. The temperature pro-
file consisted of an initial step of 95  °C for 10  min, fol-
lowed by 40 cycles of 95 °C for 15 s and 60 °C for 1 min, 
and then a final melting curve analysis from 60  °C to 
95 °C over 20 min.

Gene-specific amplification was demonstrated by a sin-
gle peak using the Bio-Rad dissociation melt curve. Sam-
ples were normalized based on GAPDH, 18s rRNA, and 

PPV =
Sensitivity× Prevalence

Sensitivity× Prevalence +
(

1− Specificity
)

× (1− Prevalence)

NPV =
Specificity× (1− Prevalence)

(

1− Sensitivity
)

× Prevalence + Specificity× (1− Prevalence)

GPI expression, which were run in parallel reactions to 
the genes of interest. These values were used to calculate 
average fold-change between the two groups using the 2−
ΔΔCt method [50]. These values were calculated for each 
housekeeping gene and averaged. Average fold-change 
in gene expression measured by qPCR data in the new 
cohort was then compared to the fold-change calculated 

from RNA sequencing in the training cohort.

Influence of IA size on the 26 classifier transcripts
To determine if aneurysm size could affect classifica-
tion results, we dichotomized the entire IA cohort into 
a “small” (< 5  mm) group and a “large” (≥ 5  mm) group 
and analyzed expression differences of the 26 classifier 
transcripts in samples from patients with IA in the two 
groups separately. The 5  mm aneurysm size cutoff was 
based on data reported by the PHASES study [51], which 
pooled an analysis of six longitudinal investigations [3, 
52–56] and found that aneurysms < 5 mm were less likely 
to rupture than those with larger diameters; IAs between 
7 and 10 mm had 2.7 times greater risk of rupture than 
small IAs (< 5  mm); and IAs > 20  mm had 14.3 times 
greater risk [51]. We investigated fold-changes in the 26 
genes between the “small” IA group and the entire con-
trol group (n = 20) and between the “large” IA group and 
the entire control group (n = 20) to determine if aneu-
rysm size affected their expression pattern.

Results
Study participants
During the study period, we collected 106 blood samples 
(51 from patients with IA, 55 from control subjects) as 
well as angiographic images and medical records data 
from individuals undergoing cerebral DSA. Of the blood 
samples collected, 43 (20 from IA patients, 23 from con-
trols) met our criteria and also had neutrophil RNA of 
sufficient quality and volume for sequencing. A total of 
40 patients (20 with IA and 20 controls) were then chosen 
and randomly divided into a 30-patient training cohort 
(n = 15 IA and n = 15 control) and a 10-patient testing 
cohort (n = 5 IA and n = 5 control). Characteristics of the 
two cohorts are provided in Table 1. These samples were 
of sufficient quality and had an average 260/280 ratio 
of 2.02 (range 1.90–2.12) and an average RNA integrity 
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number (RIN) of 6.88 (range 5.2–8.2) (Additional file 1: 
Table S3). Patients with IAs had only saccular aneurysms 
that ranged in size (greatest diameter) from 1 to 19 mm. 
Five patients with IA had multiple aneurysms (Additional 
file  1: Table  S4). A portion of these samples (n = 22) 
had been previously analyzed in our aforementioned 
study that investigated neutrophil expression differences 
between patients with and without IA [10].

Differential RNA expression in neutrophils from patients 
with IA vs. controls
RNA sequencing data were used to identify differen-
tially expressed neutrophil transcripts between the 15 
patients with IA and 15 controls in the training cohort. 
Overall, our sequencing experiments had an average of 
53.84 million sequences per sample and a 95.4% read 
mapping rate (% aligned) (Additional file  1: Table  S5). 
The volcano plot in Fig. 1a shows neutrophil expression 
differences between IA patients and controls in terms of 
average fold-change in expression and significance level. 
From 12,775 different transcripts with average TPM > 1.0 
across samples  in either group, differential expression 
analysis identified 95 transcripts that were significantly 
differentially expressed (q < 0.05). Gene set enrichment 
analysis performed using these 95 differentially expressed 
transcripts showed that genes with higher levels in the IA 
group were involved in defense response, leukocyte acti-
vation, stem cell maintenance, maintenance of cell num-
ber, cell activation, and stem cell development (Table 2). 
Genes with lower levels in IAs were involved in regula-
tion of glutathione and tetrapyrrole binding. 

Selected transcripts for model training
Prior to model training, we performed feature selection 
by filtering to identify disease-related transcripts and 
reduce the data dimensionality to facilitate downstream 
analysis. Our statistical criteria of false discovery rate 
(FDR) < 0.05 and an absolute fold-change ≥ 1.5 resulted in 
the retention of the 26 transcripts that are shown in red 
in Fig. 1a and listed in Table 3. The PCA in Fig. 1b shows 
that these 26 transcripts could generally discriminate 
patients with IAs from the controls. The top three princi-
pal components represented 47.8% of the variation: PC1 
contained 22.4% variation, PC2 contained 15.3% varia-
tion, and PC3 contained 10.1% variation. Overall, 60% of 
the samples from the IA patients and 80% of those from 
controls could be grouped together by PCA. Further-
more, our post hoc power analysis estimated that in the 
15 vs. 15 training dataset a power of 0.78 was achieved 
in detecting expression differences of at least 1.5 fold at 
an α = 0.05. Thus, our feature selection criteria resulting 
in the identification of the 26 transcripts had a power of 
> 0.78.

Classification models of IA have high performance 
in training and testing datasets
Using the expression of these 26 transcripts, we trained 
the aforementioned four classification models (cosine 
NN, DLDA, NSC, and SVM). Figure 1c shows the sensi-
tivity, specificity, and accuracy of the models, which were 
estimated from LOO cross-validation. There was mod-
erate performance by each classification method, with 
accuracies that ranged from 0.50 to 0.73. Evaluation by 
ROC curve analysis showed a range in AUCs from 0.54 to 

Table 1  Clinical characteristics

Clinical characteristics of the randomly-created training and testing cohorts. With the exception of age, these factors were quantified as binary data points. The clinical 
factors were retrieved from the patients’ medical records via the latest “Patient Medical History” form administered prior to imaging

Training cohort Testing cohort

Control (n = 15) Aneurysm (n = 15) Control (n = 5) Aneurysm (n = 5)

Age (mean ± SE) 59 ± 4.8 63 ± 2.8 63 ± 7.2 52.6 ± 6.6

Age [median (Q1/Q3)] 61 (52.5/71.5) 64 (56.5/68.5) 68 (62/71) 53 (47/54)

Sex (number of patients)

 Female 40% 66.67% 60% 40%

Smoker (number of patients)

 Yes 0% 20% 40% 60%

Comorbidities (number of patients)

 Hypertension 60% 60% 60% 20%

 Heart disease 6.67% 26.67% 40% 0%

 High cholesterol 26.67% 40% 60% 0%

 Stroke history 6.67% 0% 0% 0%

 Diabetes 33.33% 20% 20% 0%

 Osteoarthritis 20% 33.33% 20% 0%
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0.73 (Fig. 1d) across all methods. In this dataset, DLDA 
performed the best, with a sensitivity of 0.67, a specificity 
of 0.80, an accuracy of 0.73, and an AUC of 0.73.

To independently validate the models, we implemented 
them in neutrophil transcriptomes from 10 patients in 
the testing cohort. The PCA in Fig. 2a shows that the 26 
transcripts could discriminate patients with IAs from 
controls in the testing cohort as well. Overall, 100% of the 
samples from IA patients and 80% of those from controls 
could be grouped together by PCA. In the testing cohort, 
the models predicted aneurysm status with a range in 
accuracy from 0.60 to 0.90 (Fig. 2b). The ROC analysis in 
Fig. 2c shows that model AUCs ranged from 0.62 to 0.80. 
In this cohort, the DLDA classification model again per-
formed the best, with a sensitivity of 0.80, specificity of 
1.0, an accuracy of 0.90, and an AUC of 0.80.

Cross‑validation to increase model reliability
To increase model reliability, we applied LOO cross-val-
idation using all patient transcriptomes and refit them 
in all 40 datasets (all combinations of 39 training sam-
ples and 1 testing sample). This analysis revealed that 
model accuracy ranged from 0.63 to 0.80 (Fig.  3a) and 
model AUCs ranged from 0.68 to 0.84 (Fig.  3b). Again, 
the DLDA model performed the best, with a sensitivity 
of 0.65, specificity of 0.95, accuracy of 0.80, and an AUC 
of 0.84.

Models have high negative predictive value
Given their range of performance, we wanted to know 
how useful the models would be at detecting IA. How-
ever, their value would be inherently influenced by the 
prevalence of IA in a given target population. To estimate 
this, we plotted the positive predictive value (PPV) and 

Fig. 1  Neutrophil RNA expression differences between patients with intracranial aneurysms (IA) and IA-free controls, feature selection for 
classification model creation, and model training. a Transcriptome profiling demonstrated 95 differently expressed transcripts (q-value < 0.05) 
between patients with IA and controls. Of these, 26 had a false discovery rate (FDR) < 0.05 and an absolute fold change ≥ 1.5 (in red). b Principal 
component analysis (PCA) using these 26 transcripts demonstrated general separation between samples from patients with IA (60%, circled in 
red) and those from controls (80%, circled in blue). c Estimation of model performance during leave-one-out (LOO) cross-validation in the training 
cohort demonstrated that most models performed with an accuracy of 0.50–0.73. Among the classification models, diagonal linear discriminant 
analysis (DLDA) had the highest combination of sensitivity, specificity, and accuracy (0.67, 0.80, 0.73 respectively). d Receiver operating characteristic 
(ROC) analysis using classifications in the training dataset showed that the models had areas under the curve of 0.54 (support vector machines 
[SVM]) to 0.73 (DLDA). (F-C: fold-change; ABS: absolute value; Cosine NN: cosine nearest neighbors; NSC: nearest shrunken centroids)
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Table 2  Gene ontology (GO) analysis

Gene set enrichment analysis was performed on the 95 significantly differentially expressed genes (q < 0.05) in peripheral blood samples obtained from patients 
with intracranial aneurysms (IA). Significantly enriched ontologies with a false discovery rate (FDR) adjusted p-value (q-value) < 0.20 were considered (FDR of 20%). 
Transcripts with higher expression in IA demonstrated regulation of inflammatory and defense responses, signaling, and cell motility. Significantly enriched ontologies 
in transcripts with lower expression in IA demonstrated regulation of glutathione and tetrapyrrole binding

Category GO term Description p-value q-value

Transcripts with higher expression in intracranial aneurysms (IA)

 Process GO:0031347 Regulation of defense response 5.11E−06 0.0658

 Process GO:0050727 Regulation of inflammatory response 1.01E−05 0.0652

 Process GO:0019934 cGMP-mediated signaling 3.77E−05 0.162

 Process GO:0032101 Regulation of response to external stimulus 3.90E−05 0.125

 Process GO:0031348 Negative regulation of defense response 4.45E−05 0.115

 Process GO:0050728 Negative regulation of inflammatory response 5.21E−05 0.112

 Process GO:0007165 Signal transduction 6.64E−05 0.122

 Function GO:0004908 Interleukin-1 receptor activity 2.25E−06 0.00858

 Function GO:0004872 Receptor activity 7.22E−05 0.138

 Function GO:0060089 Molecular transducer activity 7.22E−05 0.092

 Function GO:0038023 Signaling receptor activity 1.32E−04 0.127

Transcripts with lower expression in IA

 Function GO:0043295 Glutathione binding 1.16E−04 0.148

 Function GO:0046906 Tetrapyrrole binding 1.40E−04 0.134

Table 3  The 26 transcripts selected for classification model training

Significantly differentially expressed transcripts with FDR < 0.05 and absolute fold-change ≥ 1.5. (F-C: fold-change)

Transcript Gene ID Accession no. Log2 (F-C) p-value q-value

PVRL2 5819 NM_002856.2 2.27 5.54E−12 6.94E−09

CYP1B1 1545 NM_000104.3 1.53 4.13E−10 3.88E−07

CD177 57126 NM_020406.3 1.48 8.04E−06 2.91E−03

PDE9A 5152 NM_002606.2 1.45 5.67E−05 9.90E−03

ARMC12 221481 NM_145028.4 1.37 1.38E−12 2.07E−09

OLAH 55301 NM_018324.2 1.15 1.71E−11 1.83E−08

TGS1 96764 NM_024831.7 1.02 1.72E−14 4.31E−11

CD163 9332 NM_004244.5 0.98 2.65E−09 1.99E−06

LOC100506229 100506229 NR_039975.1 0.96 1.23E−05 3.55E−03

OCLN 100506658 NM_002538.3 0.85 4.07E−07 2.37E−04

SEMA6B 10501 NM_032108.3 0.80 7.62E−05 1.19E−02

ADTRP 84830 NM_001143948.1 0.77 1.61E−05 4.47E−03

VWA8 23078 NM_015058.1 0.70 2.56E−06 1.20E−03

MTRNR2L10 100463488 NM_001190708.1 0.63 1.21E−05 3.55E−03

HOXB2 3212 NM_002145.3 0.62 6.25E−05 1.02E−02

EPCAM 4072 NM_002354.2 0.60 1.02E−05 3.50E−03

IL18R1 8809 NM_003855.3 0.59 1.17E−05 3.55E−03

IGSF23 147710 NM_001205280.1 − 0.80 5.87E−05 9.94E−03

PTGES 9536 NM_004878.4 − 0.91 4.78E−05 8.98E−03

G0S2 50486 NM_015714.3 − 0.96 6.71E−06 2.66E−03

FCRL5 83416 NM_031281.2 − 1.26 4.31E−06 1.80E−03

C1orf226 400793 NM_001135240.1 − 1.51 1.27E−14 4.31E−11

UTS2 10911 NM_021995.2 − 1.93 8.85E−14 1.66E−10

HBG2 3048 NM_000184.2 − 1.97 6.62E−10 5.53E−07

CYP26B1 56603 NM_019885.3 − 2.99 4.32E−07 2.37E−04

C1QL1 10882 NM_006688.4 − 3.25 5.16E−22 3.88E−18
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negative predictive value (NPV) for each model (Fig. 3c, 
d) using the sensitivity and specificity reported after the 
LOO cross-validation in all datasets. The rate of aneu-
rysm prevalence found in the literature is between 3.2% 
[45] to 7% [46], and is highlighted in the blue region on 
the graphs in Fig. 3c, d. At 5% prevalence, the PPV of the 
models ranged from 0.10 to 0.41 and NPV ranged from 
0.96 to 0.98. The DLDA classifier had the highest PPV 
(0.41) and NPV (0.98).

Independent validation of expression differences 
by RT‑qPCR
We performed a corroboration study to determine if the 
differential expression of seven model genes could be 
detected in a new population of IA and control patients. 
We used samples from 10 additional patients (5 with IA 
and 5 controls) from which we collected neutrophil RNA 
but did not sequence (see Additional file 1: Table S6 for 
patient information for this cohort and Additional file 1: 

Table S7 for aneurysm information from the IA patients 
in this cohort). These samples were used for quantita-
tive qPCR analysis of CD177, CYP1B1, ARMC12, OLAH, 
CD163, G0S2, and FCRL5, which were selected because 
they were also differentially expressed in our previous 
study [10]. Figure 4 shows the qPCR results of this cor-
roborative study in comparison with expression differ-
ences obtained from RNA sequencing in the training 
cohort. Six of the seven genes demonstrated average fold-
change in the same direction and of similar magnitude 
to those in the original cohort. This provides evidence 
that in ~ 86% (6 of 7) of the tested transcripts the expres-
sion differences between patients with IA and controls is 
consistent. This result may serve as the basis for further 
development of a qPCR-based diagnostic.

Signals of the classifier genes are stronger for larger IAs
To determine if there was a correlation between aneu-
rysm size and differential expression of the 26 neutrophil 

Fig. 2  Performance of the four classification models during model testing. a PCA using the 26 transcripts showed general separation between 
patients with IA (100%, circled in red) and controls (80%, circled in blue). b Validation of the classification models in an independent testing cohort 
of patients demonstrated that DLDA had the best performance, with sensitivity, specificity, and accuracy of 0.80, 1.0, and 0.90, respectively. c ROC 
analysis in the testing cohort also showed that DLDA had the best area under the curve (AUC) (0.80)
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classifier transcripts, we separately compared expression 
levels in patients with “small” and “large” IAs to those in 
all control patients (n = 20). We used the 5  mm aneu-
rysm size cutoff [51], which dichotomized the IA cohort 

(n = 20) into a 10-patient “small” group and a 10-patient 
“large” group. Figure  5 shows the fold-changes between 
the “small” group and control samples (green) and the 
“large” group and control samples (orange) for each of 
the 26 classifier transcripts. These are compared to the 
fold-changes between aneurysm and control samples in 
the entire training cohort as a baseline (solid black line). 
Expression changes were more pronounced in both the 
positive and negative direction in patients with larger 
IAs. On average, the fold-change was 24% greater than 
the baseline for the “large” group, but 35% lower than 
baseline for the “small” group.

Discussion
Neutrophils play a role in the progressive inflammation 
that typifies IAs [57]. We hypothesized that gene expres-
sion patterns in circulating neutrophils could indicate 
the presence of aneurysm. Previously, we found that 
patients with unruptured IAs and aneurysm-free con-
trols had significant RNA expression differences in cir-
culating neutrophils [10]. In the present study, we tested 
the feasibility of developing biomarkers using neutrophil 

Fig. 3  Assessment of model performance by LOO cross-validation of all data, and positive predictive value (PPV)/negative predictive value (NPV). 
a Estimation of model performance showed that the models performed with an accuracy of 0.63–0.80. DLDA had the highest combination of 
sensitivity, specificity, and accuracy (0.65, 0.95, 0.80, respectively). b ROC analysis demonstrated that the models had AUC of 0.68 (NSC) to 0.84 
(DLDA). c Plot showing the PPV of all models across all possible prevalence. The blue region in the figure represents the range of IA prevalence 
reported in the current literature. The best performing model (DLDA) had the highest PPV, and cosine NN demonstrated the poorest PPV. d The 
DLDA model also had the best NPV, but only slightly better than that of the cosine NN, NSC, and SVM models

Fig. 4  Validation of RNA-Sequencing data for seven transcripts 
by quantitative polymerase chain reaction (qPCR). Six of seven 
differentially expressed transcripts in samples from patients with 
and without IA were also differentially expressed in neutrophils in 
the qPCR in an independent cohort. This demonstrates consistent 
expression differences between patients with IA and controls in 
~ 86% (6/7) of the tested transcripts



Page 11 of 16Tutino et al. J Transl Med          (2018) 16:373 

RNA expression levels from blood samples to predict IA 
presence. Using RNA expression profiling in circulating 
neutrophils, we identified 26 transcripts that were highly 
associated with the presence of IA. Machine-learning 
algorithms were then implemented to develop classifi-
cation models to test whether these 26 transcripts could 
predict the presence of an aneurysm.

Classification models of IA using neutrophil RNA 
expression
To our knowledge, this is the first to demonstrate IA pre-
diction from RNA expression patterns in the blood. The 
prediction models we trained had a classification accu-
racy of up to 90% in the test dataset, a level that indicates 
promise for further investigation of RNA expression bio-
markers for IA. Overall, classification by DLDA achieved 
the best performance in our data. This model consistently 
had the highest accuracy and AUC over multiple analy-
ses, including cross-validation during model training 
(accuracy = 0.73, AUC = 0.73), independent model test-
ing (accuracy = 0.90, AUC = 0.80) and cross-validation 
across the entire dataset (accuracy = 0.80, AUC = 0.84). 
See Additional file 1: Table S8 for a summary of the per-
formance of all four models.

We suspect that DLDA outperformed the other meth-
ods because it best accounted for potential intersample 
variability of the 26 transcripts. Modeling techniques that 
broadly survey patterns of gene expression may afford 

better IA classification [58, 59]. The DLDA method does 
this by (1) ranking transcripts by importance, giving more 
weight to the most consistently informative transcripts 
(unlike non-parametric approaches such as NN); and 
(2) using information from all transcripts to project test 
samples to the direction which best separates the classes. 
In this way, a linear combination of transcripts, which 
may be individually inconsistent, can generate a stable IA 
prediction and accommodate for potential intersample 
variability. Additionally, ignoring correlations between 
genes as DLDA does, provided a simple model and pro-
duced lower misclassification rates than more sophisti-
cated classifiers, such as SVM.

In the current study, classifiers were developed based 
on 30 transcriptomes that were randomly selected from 
all available data (n = 40). Randomization was used so we 
could test the viability of IA prediction in patients who 
have potentially confounding covariates (comorbidities 
and demographics). Table  1 shows differences in smok-
ing history between the IA and control groups in the 
training cohort, which may reflect an established associa-
tion between the presence of an IA and smoking [60]. It 
is worth noting that this study was designed differently 
from our previous investigation [10]. There we identified 
an 82-transcript expression signature of IA by transcrip-
tome profiling of a cohort-controlled group of patients, 
whereas in this study the randomly selected training 
cohort was not cohort-controlled. Yet, even with this 

Fig. 5  Comparison of fold-change in expression in patients with “small” (< 5 mm) IAs vs. control and patients with “large” (≥ 5 mm) IAs vs. control. 
The plot shows the fold-change (F-C) in expression of the 26 classifier transcripts identified in the training cohort (n = 30—black line) compared to 
those for “small” IAs (vs. control—green) and “large” IAs (vs. control—orange). Expression changes were more pronounced in both the positive and 
negative direction in patients with larger IAs. Fold-changes across all 26 transcripts in the “large” group were on average 24% higher than those for 
the training cohort, while fold-changes for the “small” group F-C were on average 35% lower



Page 12 of 16Tutino et al. J Transl Med          (2018) 16:373 

difference, 10 of the 26 classifier transcripts (38%) were 
also a part of the previously discovered 82-transcript sig-
nature. These genes include CYP1B1, CD177, ARMC12, 
OLAH, CD163, ADTRP, VWA8, G0S2, FCRL5, and 
C1orf226. Notably, in qPCR validation on seven of these 
genes, six of them (CYP1B1, ARMC12, OLAH, CD163, 
G0S2, and FCRL5) showed consistent expression differ-
ences. These six transcripts may warrant further investi-
gation as they may be most important for IA detection.

Biological role of classifier transcripts
The natural history of IA has been characterized by 
mounting inflammatory responses accompanied by pro-
gressive degradation of the aneurysmal wall [61, 62]. 
This begins during aneurysm initiation, in which a com-
bination of risk factors and hemodynamic stresses elicit 
pro-inflammatory changes in smooth muscle cells that 
lead to overproduction of matrix metalloproteinases 
(MMPs) that degrade the arterial extracellular matrix 
[61, 62]. Once the aneurysmal sac forms, recirculating 
blood in the IA is conducive to inflammatory cell infiltra-
tion into the wall, which is also assisted by an increase of 
chemokines and cytokines in both the aneurysm wall and 
in the plasma within the aneurysm [63, 64]. Recruited 
inflammatory infiltrates also produce MMPs that con-
tinue to degrade the aneurysm wall and advance its 
growth and rupture [57, 62], which can ultimately occur 
when the wall is weakened to the point that it can no 
longer contain the force of the blood pressure [61]. This 
is demonstrated by histological analyses and gene expres-
sion studies of human aneurysmal tissues, which have 
found increased matrix degradation proteins, inflamma-
tory processes, and inflammatory cytokines and chem-
oattractant proteins in the walls of aneurysms [65, 66].

Despite being the most abundant circulating immune 
cell, the role that neutrophils play in IA pathophysiology 
is relatively unknown. However, since neutrophils are 
recruited to sites of injury to coordinate the inflamma-
tory response and attract inflammatory cells (monocytes) 
during other vascular pathologies [67], we initially sus-
pected they may play a similar role in IA. Studies suggest 
that neutrophils reside in intraluminal thrombi that have 
formed on the wall of the aneurysmal sac [68, 69]. There, 
besides secreting MMP-9, activated neutrophils can 
release myeloperoxidase (MPO) and neutrophil gelati-
nase associated lipocalin (NGAL) that can indirectly pro-
mote extracellular matrix degradation and cytotoxicity. 
Elevated levels of MPO, a peroxidase enzyme secreted 
during degranulation, provoke pro-inflammatory cell 
signaling and oxidative stress via increased production of 
reactive oxygen species [70]. Increased NGAL protects 
MMP-9 from degradation, thereby increasing its activ-
ity and promoting wall degeneration [64]. Interestingly, 

levels of MPO and NGAL have been shown to be ele-
vated in the peripheral blood of patients with IAs [64, 
71], which can act in an autocrine manner to promote 
activation of circulating neutrophils [72, 73]. In this 
study, however, we did not observe significantly higher 
expression of the MPO or NGAL genes in circulating 
neutrophils, which suggests that the source of these cir-
culating proteins could be the wall itself or other blood 
cells.

Our data shows that circulating neutrophils from 
patients with IA are peripherally activated. From gene 
ontology analysis on all 95 differentially expressed genes 
(q < 0.05), we found that they have dysregulated inflam-
matory and defense responses, and increased signaling 
and response to stimuli. Increased IL-1 signal transduc-
tion through receptors IL1R1 and IL1R2 has been shown 
to play a major role in neutrophil activation [74–76]. 
Increased neutrophil activation was also evidenced 
through greater expression levels of several CD antigens, 
namely CD36, CD99L2, CD163, and CD177. Specifically, 
CD177 is a marker of neutrophil activation that plays a 
role in migration [77], and CD99L2 is involved in neutro-
phil recruitment to inflamed tissues [78]. These findings 
are consistent with the results of our previous cohort-
controlled study [10], which also showed increased 
peripheral leukocyte activation in neutrophils from IA 
patients.

In the subset of the 26 classifier transcripts, neutro-
phil activation was reflected through the roles of five 
genes (CD177, IL18R1, PVRL2, PDE9A, and PTGES). 
Like CD177, IL18R1 has been shown to be involved in 
neutrophil activation as well as migration via IL-18 sign-
aling [79]. Nectin-2 (PVRL2), a membrane glycoprotein, 
is involved in cell adhesion [80], and has been shown to 
have increased expression in the aneurysm wall tissue 
[81]. Similarly, PDE9A (a cGMP-specific phosphodiester-
ase) is also involved in cell adhesion [80, 82] and, as dem-
onstrated by Li et al. [83], is regulated by two of the most 
active transcription factors in the IA tissue. Furthermore, 
lower PTGES expression may be partially responsible 
for increasing the lifespan of neutrophils, because it is 
involved in p53-induced apoptosis [84]. We suspect that 
capturing neutrophil activation responses involved in IA 
is the reason why the 26-transcript biomarker was able to 
detect IA.

Besides these five genes, nine other transcripts (CD163, 
TGS1, CYP26B1, ADTRP, OCLN, OLAH, C1QL1, FCRL5, 
and IGSF23) in the 26-transcript classifier reflect com-
plex inflammatory processes, albeit not specifically 
attributed to neutrophil activation. For example, CD163, 
which is abundant in the walls of IAs (but typically asso-
ciated with macrophages [85, 86]), has been shown to 
be increased in neutrophils during sepsis [87] and thus 



Page 13 of 16Tutino et al. J Transl Med          (2018) 16:373 

could be contributing to vascular inflammation in IA. 
Expression differences of other transcripts, like TGS1 and 
CYP26B1 (that are differentially expressed in tuberculosis 
[88] and juvenile idiopathic arthritis [12], respectively) 
could be related to neutrophil responses to intravascu-
lar perturbations during IA. Other transcripts—such as 
ADTRP (expressed by macrophages in coronary artery 
plaques) [89], OCLN (increased in activated T-lympho-
cytes and in whole blood during sepsis) [90, 91], OLAH 
(increased in peripheral blood mononuclear cells during 
non-small cell lung cancer) [92], C1QL1 (a complement 
component decreed in glioblastoma multiform) [93], 
FCRL5 (an immunoglobulin receptor that regulates B cell 
response to antigen) [94], and IGSF23 (decreased dur-
ing the inflammatory response associated with mycoes-
trogen exposure) [95]—are involved in inflammation but 
have not been reported to be differentially expressed in 
neutrophils. The roles of the remaining model transcripts 
(e.g., C1orf226, LOC100506229, MTRNR2L10) in neu-
trophils are unknown. Further study into the roles of 
these transcripts in IA may be warranted, as they could 
represent novel predictive targets in neutrophil RNA 
expression.

Taken together, our results suggest that circulating 
neutrophils are peripherally activated in patients with 
IA, which leads to a change in their RNA expression 
profile. We postulate this activation could be caused 
by contact with inflamed aneurysm tissue that often 
contains denuded regions and plaque or thrombus 
[96–98]. Alternatively, the activation may be caused by 
chemokines and cytokines released from the aneurysm. 
Chalouhi et  al. [63] demonstrated that blood inside IAs 
contain increased concentrations of the chemokines 
MCP-1, RANTES, MIG, IP-10, and exotoxin, and che-
moattractant cytokines, including IL-8 and IL-17. Either 
of the above two scenarios may explain why expression 
differences of the 26 classifier transcripts were more 
pronounced in patients with larger IAs, since larger IAs 
provide greater luminal surface area for either contact 
or release of inflammatory mediators. It would be inter-
esting to conduct a longitudinal study of patients with 
growing aneurysms to ascertain the relationship between 
aneurysm development and the effect on gene expression 
in circulating neutrophils.

Limitations
Due to our small sample size, the results in this study 
are rather preliminary. However, we have confidence 
in the discovered classifier transcripts for the follow-
ing reasons. (a) The classifier identified patients with 
IA in an independent testing cohort with 90% accu-
racy. (b) qPCR confirmed expression differences in an 
independent validation cohort. (c) Our post hoc power 

analysis demonstrated > 0.78 power. In the future, we 
could further increase reliability in the model transcripts 
by decreasing the number of features in the data and 
increasing sample size.

Secondly, our classifier was derived from a population 
of patients who had different rates of demographic fac-
tors and comorbidities between aneurysm and control 
patients. It is unclear whether the presence of these con-
founding factors contributes to the differential neutrophil 
expression we detected. We are currently conducting 
research on larger cohorts by including multiple control 
groups with different vascular pathologies (including 
extracranial aneurysms such as abdominal aortic aneu-
rysm) and immunological conditions (both of which 
were excluded in the current study) to narrow down tran-
scripts specific to IA. Finally, although we collected basic 
demographics and information about comorbidities, 
including hypertension and diabetes, there could be oth-
ers factors, such as the presence of immune-metabolism 
mediators in the blood that could affect gene expression 
in circulating neutrophils. Efforts should be made to col-
lect higher fidelity patient health metadata.

Conclusions
We have shown for the first time the feasibility of using 
blood-based biomarkers to detect unruptured IA. A 
model consisting of 26 transcripts predicted IA presence 
with an accuracy of 0.80 and an AUC of 0.84. This bio-
marker reflects gene expression changes due in part to 
activation of circulating neutrophils associated with IA. 
Pending confirmation in larger cohorts, these results sug-
gest an exciting potential to develop blood-based IA tests 
to screen for IA in high-risk populations.

Additional file

Additional file 1. Additional Tables S1–S8.
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