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Abstract 

Background:  Identification of miRNA-disease associations has attracted much attention recently due to the func‑
tional roles of miRNAs implicated in various biological and pathological processes. Great efforts have been made 
to discover the potential associations between miRNAs and diseases both experimentally and computationally. 
Although reliable, the experimental methods are in general time-consuming and labor-intensive. In comparison, 
computational methods are more efficient and applicable to large-scale datasets.

Methods:  In this paper, we propose a novel semi-supervised model to predict miRNA-disease associations via ℓ1
-norm graph. Specifically, we first recalculate the miRNA functional similarities as well as the disease semantic similari‑
ties based on the latest version of MeSH descriptors and HMDD. We then update the similarity matrices and associa‑
tion matrix iteratively in both miRNA space and disease space. The optimized association matrices from each space 
are combined together as the final output.

Results:  Compared with four state-of-the-art prediction methods, our method achieved favorable performance 
with AUCs of 0.943 and 0.946 in both global LOOCV and local LOOCV, respectively. In addition, we carried out three 
types of case studies on five common human diseases, and most of the top 50 predicted miRNAs were confirmed 
to be associated with the investigated diseases by four databases dbDEMC, PheomiR, miR2Disease and miRwayDB. 
Specifically, our results provided potential evidence that miRNAs within the same family or cluster were likely to play 
functional roles together in given diseases.

Conclusions:  Taken together, the experimental results clearly demonstrated the utility of the proposed method. We 
anticipated that our method could serve as a reliable and efficient tool for miRNA-disease association prediction.

Keywords:  miRNA-disease association, ℓ1-norm graph, Semi-supervised learning

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/
publi​cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
MicroRNAs (miRNAs) are small single-stranded RNAs 
that repress mRNA translation and trigger mRNA deg-
radation at the post-transcriptional level. Since the dis-
covery of the first two miRNAs in mammalian cells, 
there has been a tremendous and growing interest among 
researchers to investigate the role of miRNAs in normal 
cellular as well as the disease processes [1]. Compelling 

evidence have demonstrated the fundamental impor-
tance of miRNAs in normal development, differentiation, 
growth control and in human diseases such as cancer 
[2]. For instance, the overexpression of miR-193a-3p and 
miR-224 increases cell proliferation in renal cell carci-
noma by directly targeting ST3GallV via PI3K/Akt path-
way [3], and miR-197 induces epithelial–mesenchymal 
transition and invasion through the downregulation of 
HIPK2 in lung adenocarcinoma [4]. Emerging evidence 
also suggested that substitution of tumor suppressive 
miRNAs or inhibition of oncogenic miRNAs could be 
used to develop novel treatment strategies [5]. Therefore, 
the identification of the disease-related miRNAs is of 
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great significance for the new drug design and therapeu-
tic development for complex human diseases.

Great efforts have been made to discover potential 
associations between miRNAs and diseases using experi-
mental approaches. Jones et  al. found that miR-186-5p 
was involved in the prostate cancer cell proliferation and 
invasion through qRT-PCR and western blot [6]. Similarly, 
Cui et  al. found that the decreased miR-337 expression 
was significantly associated with tumor stage and lymph 
node metastasis of hepatocellular carcinoma based on the 
analysis of transfection of miR-337 mimics [7]. Although 
reliable, experimental methods are generally time-con-
suming and cannot be applied to large-scale datasets. With 
the accumulation of multiple data sources, a number of 
computational methods have been developed to predict 
reliable miRNA-disease associations [8–10]. Under the 
assumption that functionally related miRNAs tend to be 
involved in phenotypically similar diseases and vice versa, 
Jiang et  al. developed the first computational model to 
prioritize the disease-related miRNAs by constructing a 
scoring system based on hypergeometric distribution [11]. 
Following their seminal work, Chen et  al adopted global 
network similarities and developed random walk with 
restart to infer potential miRNA-disease associations [12]. 
Shi et al. also used the random walk with restart to calcu-
late an enrichment score by integrating the miRNA target 
information as well as the protein–protein interactions 
[13]. Xuan et  al. first calculated the miRNA functional 
similarity by taking miRNA family and cluster information 
into account, and then prioritized disease-related miRNAs 
in terms of the weighted k most similar neighbors [14]. 
However, their method cannot be applied to diseases with-
out any known associated miRNAs. To solve this issue, 
they proposed another approach called MIDPE based 
on bilayer random walk model later on, in which differ-
ent categories of nodes were assigned different transition 
weights [15]. Mørk et al. inferred the miRNA-disease asso-
ciations by coupling known and predicted miRNA-protein 
associations with protein-disease associations text mined 
from the literature. Besides linking miRNAs to diseases, 
it directly suggested the underlying proteins that can be 
further validated experimentally [16]. By taking advantage 
of tissue-specific miRNA expression profiles and miRNA 
target information, Zhao et al. calculated the enrichment 
significance of the known pathway over gene clusters to 
identify cancer-related miRNAs [17]. Nonetheless, their 
method relies on tissue-specific miRNA expression pro-
files, which might be difficult to obtain sometimes. Chen 
et  al. first calculated the within-score and between-score 
from the view of miRNA and diseases respectively, and 
then combined them together to obtain final scores for 
the prioritization of the miRNA-disease associations [18]. 
Liu et al. implemented random walk on a heterogeneous 

network which was constructed by integrating multi-
ple data sources, including gene functional similarities, 
miRNA-target gene associations, miRNA-lncRNA asso-
ciations, lncRNA similarity and etc., which improved the 
prediction accuracy of previous methods [19]. Recently, 
Chen et al. proposed Heterogeneous Graph Inference for 
MiRNA-Disease Association (HGIMDA) by iteratively 
updating the association matrix based on the miRNA 
functional similarity matrix and disease semantic similar-
ity simultaneously [20]. The leave-one-out cross validation 
demonstrated that HGIMDA achieved comparable results.

Several machine learning-based models were also 
developed to predict potential miRNA-disease associa-
tions. Jiang et al. extracted a set of features for each posi-
tive and negative miRNA-disease association and trained 
a support vector machine (SVM) for the classification 
[21]. Chen et  al. constructed a continuous classification 
function based on regularized least squares to reflect the 
probability of each miRNA related to a given disease [22]. 
Pasquier et al. represented distributional information on 
miRNAs and diseases in a high-dimensional vector space 
and the miRNA-disease association scores were calcu-
lated in terms of their vector similarity [23]. Shen et  al. 
developed a computational method based on collabora-
tive matrix factorization for miRNA-disease association 
prediction by integrating miRNA functional similarity, 
disease semantic similarity and known miRNA-disease 
associations [24]. Luo et  al. developed a collective pre-
diction model based on transductive learning to sys-
tematically prioritize disease-related miRNAs. They 
calculated a relevance score for each association and 
updated the network structure iteratively until conver-
gence [25]. Chen et al. presented a novel computational 
model called MKRMDA in which Kronecker regularized 
least squares were calculated based on multiple kernels 
for miRNA-disease association prediction [26]. However, 
there were several parameters involved in their model 
and how to appropriately choose proper values is not a 
trivial task. They further proposed a model of Extreme 
Gradient Boosting Machine for MiRNA-Disease Asso-
ciation (EGBMMDA). For each miRNA-disease pair, 
they formed an informative feature vector by combining 
results obtained from statistical measures, graph theoret-
ical measures and matrix factorization results. The fea-
ture vector was then used to train a regression tree under 
the gradient boosting framework [27]. Recently, Fu and 
Peng proposed a deep ensemble model called DeepMDA 
which extracts high-level features from similarity infor-
mation using stacked autoencoders [28]. The miRNA-
disease associations were then predicted based on a 
three-layer neural network. Xiao et al. presented a graph 
regularized non-negative matrix factorization method 
for identifying miRNA-disease associations. Experiment 
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results indicated that their method could effectively pri-
oritize disease-associated miRNAs with higher accuracy 
compared with other alternatives [29].

Another family of methods considers the network 
topology when predicting miRNA-disease associations. 
Sun et  al. presented a computational method named 
NTSMDA that utilized the known miRNA-disease net-
work topological similarity to exploit potential disease-
related miRNAs [30]. You et  al. proposed a Path-Based 
MiRNA-Disease Association (PBMDA) prediction 
model. They first constructed a heterogeneous graph 
consisting of three interlinked sub-graphs and then used 
depth-first algorithm to infer potential miRNA-disease 
associations [31]. However, the maximum length of paths 
cannot be larger than four due to the exponential com-
putational complexity. Chen et al. developed a computa-
tional model named NDAMDA that not only considered 
the direct network distance between two miRNAs or 
diseases but also took their respective mean network dis-
tances to all other miRNAs or diseases into account [32]. 
They further proposed to use the graphlet interaction to 
analyze the complex relationships between miRNA or 
disease pairs in a graph. Specifically, they counted the 
number of different graphlet interaction isomers to cal-
culate relevance scores for miRNA-disease associations. 
Nevertheless, their method cannot scale to graphlets that 
contain more than four nodes [33].

Although existing methods have achieved remark-
able performances, there are still some limitations to 
be solved. Briefly, due to the intrinsic noise as well as 
the incompleteness existing in the current datasets, it 
is difficult to obtain reliable similarity matrices for both 
miRNAs and diseases. Moreover, the fact that no true 
negative datasets were validated might influence the 
prediction performance of the machine learning-based 
methods. Consequently, how to predict miRNA-dis-
ease associations reliably and effectively still remains 
a challenging task. To solve the above problems, in 
this paper, we first recalculate the similarity matrices 
for both miRNAs and diseases with the latest version 
of Mesh database (http://www.ncbi.nlm.nih.gov/) and 
HMDD [34]; we then propose a novel semi-supervised 
prediction method based on ℓ1-norm graph model. 
Specifically, both miRNA and disease similarity matri-
ces could be adaptively re-weighted during the itera-
tion process and the label matrix could be updated 
accordingly. To demonstrate the effectiveness of our 
method, we apply global leave-one-out cross validation 
(global LOOCV) and local leave-one-out cross valida-
tion (local LOOCV) to evaluate the prediction perfor-
mance. The experiment results show that our method 
achieved AUCs of 0.943 and 0.946 for global LOOCV 
and local LOOCV, respectively. The case studies on five 

common human diseases further confirm the utility of 
our method. Together, we present a novel framework 
for miRNA-disease association prediction and envision 
it being a useful tool for future clinical analysis.

Methods
Disease semantic similarity
According to the previous study [35], we downloaded 
the latest MeSH descriptors from the National Library 
of Medicine (http://www.nlm.nih.gov/) and only kept the 
items from Category C for diseases, which resulted in 
11,572 unique items. As described in [35], the relation-
ship among different diseases can be represented as a 
Directed Acyclic Graph (DAG). For a given disease d, its 
DAG can be denoted as DAG = (d, T(d), E(d)), where T(d) 
represents all the ancestor nodes of d and d itself, and E(d) 
represents all direct edges connecting the parent nodes to 
child nodes. The contribution Dd(t) of a disease t in DAGd 
to the semantics of disease d could be calculated by:

Based on Eq.  (1), the semantic value DV of a given 
disease d could be defined as follows:

Apparently, diseases with more common items will 
have greater semantic similarities. Finally, the semantic 
similarity score between two diseases i and j is defined 
as follows:

Moreover, the similarity of a given disease d and a 
group of diseases Dt =

{

dt1, dt2, . . . , dtk
}

 was defined by:

By using Eq.  (3), we could obtain the semantic simi-
larities for each disease pair. For convenience, we denote 
the disease semantic similarity matrix as Wd, where 
the entity Wd(i, j) represents the semantic similarity 
between disease i and disease j. The computed disease 
similarity matrix was provided in Additional file 1.

Human miRNA‑disease association data
The latest version of human miRNA-disease association 
data (v2.0) was downloaded from HMDD [34]. Besides, 

(1)

{

Dd(d) = 1
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we also downloaded the latest version of existing miR-
NAs that was released on March 2018 from miRBase 
[36], which record 4796 human miRNAs. To keep con-
sistent of data from different sources and eliminate as 
many false positives as possible, associations with miR-
NAs and diseases that were not recorded in miRBase and 
MeSH were excluded [37]. As a result, 6088 associations 
between 550 miRNAs and 328 diseases were used in the 
subsequent analysis (Additional file 2). Adjacency matrix 
A is adopted to represent the miRNA-disease associa-
tions. For a given miRNA i and disease j, A(i, j) = 1 if i is 
related to j, and A(i, j) = 0 otherwise.

MiRNA functional similarity
To calculate the functional similarity between two miR-
NAs M1 and M2, we need to measure the contributions 
from similar diseases that are associated with both of 
them [35]. Let DT1 and DT2 represent the related diseases 
of miRNA M1 and M2, respectively. The functional simi-
larity of M1 and M2 is then calculated as follows:

where S(dt, DT) measures the similarity of a given dis-
ease dt and a set of diseases DT and its definition is given 
in Eq.  (4). We use Wm to denote the miRNA functional 
similarity matrix, where the entity Wm(i, j) represents 
the functional similarity between miRNA i and miRNA j. 

(5)

MISIM(M1,M2)

=

∑

1≤i≤|DT1|
S(dt1i,DT2)+

∑

1≤j≤|DT2|
S
(

dt2j ,DT1

)

|DT1|+|DT2|

The computed miRNA similarity matrix was provided in 
Additional file 3.

The proposed method
To effectively predict the potential miRNA-disease 
associations, we here propose a novel semi-supervised 
method based on ℓ1-norm graph model (Fig.  1). Let n 
and m denote the number of miRNAs and diseases in our 
dataset, respectively. The dimension of the known asso-
ciation matrix A is thus n × m. Let us first consider the 
miRNA space. Given the association matrix A as well as 
the miRNA functional similarity matrix Wm, our goal is to 
obtain an indicator matrix Qm ∈ R

n×m that could reflect 
the association probability between certain miRNAs and 
diseases. Since the solution to the traditional graph based 
semi-supervised learning is sensitive to noise and outliers 
[38, 39], we define the ℓ1-norm-based objective as follows:

where qim and qjm represent the i-th and j-th column of 
Qm, respectively. Um is a diagonal matrix with the i-th 
diagonal element to control the impact of the initial asso-
ciations from A.

Let pm denote a n2-dimensional vector of which the 
((i − 1)*n + j)-th element is Wm
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Fig. 1  An overall workflow of the proposed method
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which gives us the ℓ1-norm representation of our objec-
tive function. It is widely known that the ℓ1-norm usu-
ally generates sparse solutions and thus the solution to 
Eq.  (7) will provide a more confident prediction results 
for potential miRNA-disease associations [40]. However, 
Eq. (7) is non-smooth and difficult to be solved efficiently 
[41]. To overcome this issue, we further defined a re-
weighted similarity matrix as follows:

where the similarity matrix Wm can be updated during 
each iteration. By integrating Eq. (8) into Eq. (6) and tak-
ing the derivative of Eq. (6) with respect to Qm, we have:

(7)
min
Qm

�pm�1 + Tr(Qm − A)TUm(Qm − A)

(8)W̃m
ij =

Wm
ij

2

∥

∥

∥
qim − q

j
m

∥

∥

∥

2

(9)
L̃mQm + Um(Qm − A) = 0

⇒ Qm =
(

L̃m + Um

)−1

UmA

where L̃m = D̃m − W̃m is the Laplacian matrix and D̃m 
is a diagonal matrix with the i-th diagonal element as 
∑

j W̃
m
ij  . Note that L̃m is dependent on W̃m , we develop 

an iterative algorithm to solve Qm until convergence. 
Similarly, we define the ℓ1-norm based objective for the 
disease space as follows:

where Qd ∈ R
m×n is the label matrix to be solved. Follow-

ing the same procedure presented above, we could obtain:

Combining Eq. (9) with Eq. (11), we could obtain the final 
prediction result Qfinal:

The procedure of the proposed method is summarized 
in Algorithm  1. According to previous literature [38], 
Algorithm 1 is guaranteed to converge to the global opti-
mum of the problem.
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Results
Performance evaluation
To validate the prediction ability of our method, we 
implemented leave-one-out cross validation (LOOCV) 
where each known association was left in turn as the test 
sample and the rest of the known associations were used 
for optimization. LOOCV can be conducted in two ways, 
i.e. global LOOCV and local LOOCV. In global LOOCV, 
the test sample was ranked with all the other uncon-
firmed miRNA-disease associations, whereas in local 
LOOCV the test sample was ranked with all the uncon-
firmed associations of a given disease. Test samples with 
predicted values higher than a given threshold were con-
sidered as successful predictions. To intuitively evaluate 
the prediction performance, we adopted receiver operat-
ing characteristics (ROC) curve and calculated the area 
under the ROC curve (AUC). The larger the AUC, the 
better the prediction performance. Moreover, we com-
pared our method with five state-of-the-art approaches, 
i.e. HGIMDA [20], EGBMMDA [27], DeepMDA [28], 
NTSMDA [30] and PBMDA [31]. As mentioned before, 
HGIMDA was an efficient prediction framework based 
on heterogeneous graph inference. EGBMMDA was an 
effective classification method based on extreme gradient 
boosting machine while DeepMDA was a deep ensemble 
classification model. Both NTSMDA and PBMDA took 
advantage of different network topological characteris-
tics to prioritize disease-related miRNAs. The experi-
mental results were demonstrated in Fig.  2. As a result, 
HGIMDA, EGBMMDA, DeepMDA, NTSMDA and 
PBMDA obtained AUCs of 0.877, 0.919, 0.908, 0.884 and 
0.923 in global LOOCV, respectively. For local LOOCV, 
the five methods also obtained comparable AUCs of 
0.765, 0.923, 0.901, 0.917 and 0.929, respectively. Notably, 
our method achieved the highest AUCs of 0.943 and 0.946 
in both global LOOCV and local LOOCV, which clearly 
demonstrated the superior performance of our method 

in predicting potential miRNA-disease associations. In 
addition, we calculated the statistical significance of per-
formance improvement gained by our method over the 
other methods to further validate the effectiveness of our 
method. Specifically, we first computed an AUC value for 
each disease and obtained a vector consisting of 328 AUC 
values for each method. We then assessed the statistical 
significance of difference between AUC values by Wil-
coxon signed rank test. As shown in Table 1, our method 
significantly improved the prediction performance with 
respect to the other five methods.

We next examined the computational cost of all meth-
ods by evaluating their computational time and memory 
needed for each run. Experiments were performed on 
a computer cluster where each node is equipped with 2 
AMD Dual-Core Opteron 8218 processors and 16  GB 
memory. As shown in Table 2, our method could achieve 
superior performance with a reasonable amount of com-
putational resources.

Case studies
To further demonstrate the prediction ability of the pro-
posed method, we carried out three types of case studies 
on five common diseases. Four databases dbDEMC [42], 
PhenomiR [43], miR2Disease [44] and miRwayDB [45] 
were used to validate the prediction results in all five case 
studies. Specifically, dbDEMC is an integrated database 
that records differentially expressed miRNAs in human 
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Fig. 2  Comparison results between our method and the other five prediction methods in terms of (a) global LOOCV and (b) local LOOCV

Table 1  Statistical significance of difference in performance 
between the proposed method and the other five methods

P-values were calculated by Wilcoxon signed rank test

HGIMDA EGBMMDA DeepMDA NTSMDA PBMDA

P-value 1.59e−46 1.21e−29 2.43e−27 2.42e−25 3.24e−23
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cancers detected by high-throughput method, while 
PhenomiR, miR2Disease and miRwayDB provide infor-
mation about differentially regulated miRNA expression 
in diseases and other biological processes or pathways 
completely generated by manual curation of experienced 
annotators. Since the miRNAs recorded in dbDEMC, 
miR2Disease as well as miRwayDB are annotated in their 
mature sequence form, we matched the candidate miR-
NAs with those recorded in the three aforementioned 
databases according to the miRNA nomenclature pro-
vided from miRBase. Besides, to validate our case study 
results across all the four databases, we selected 16 com-
mon diseases among them for the subsequent analysis. 
Due to space limitations, we only provided the validation 
results of five diseases here and the results of the other 
diseases can be found in additional files. For the first type 
of case studies, we applied our method to predict the 
potential associations between miRNAs and three given 
diseases, i.e. Lung Neoplasms, Ovarian Neoplasms and 
Prostatic Neoplasms based on the known associations in 
HMDD v2.0 (Additional file 4).

Lung cancer is the leading cause of cancer death 
among men and women worldwide, with an incidence 
of over 200,000 new cases per year coupled with a very 
high mortality rate [46]. Great efforts have been made to 
investigate the functional roles of miRNAs in lung cancer 
cell progression and resistance to therapy. For instance, 
recent studies have identified that miR-15a-3p could 
induce apoptosis in lung cancer cell lines and thus serve 
as a potential biomarker for apoptosis-modulating thera-
pies in lung cancer treatment [47]. However, promising 
findings of a lung cancer-associated miRNAs in one study 
is inadequate to support a solid report, more studies 
would be needed to cross validate the discovery. Here, we 
carried out our first case study on this lethal disease and 
prioritized the top 50 ranked miRNAs by our method. 
As shown in Table 3, 49 out of the 50 predicted miRNAs 
were confirmed by experimental findings recorded in 
at least one of the four databases dbDEMC, PhenomiR, 
miR2Disease and miRwayDB. Specifically, three of the 
top four predicted miRNAs (i.e. hsa-mir-16-1, hsa-
mir-16-2 and hsa-mir-15) were validated by all the data-
bases. The only unconfirmed miRNA was hsa-mir-520b. 
Intriguingly, we observed that other miRNAs (i.e. hsa-
mir-520d, hsa-mir-520c and hsa-520a) within the same 

miRNA family of hsa-mir-520b were all confirmed by 
dbDEMC. Therefore, hsa-mir-520b might also function 
as a potential regulator in the tumorigenesis and progres-
sion of lung cancer.

Ovarian neoplasms is the fifth most common cause 
of cancer deaths in women and has the highest mor-
tality rate among all the gynecological malignancies. 
Its lethality is largely due to the difficulties in detect-
ing it at an early stage and lack of effective treatments 
for patients with an advanced or recurrent status [48, 
49]. Consequently, there is an urgent need to identify 
prognostic and predictive markers for early detection. 
Various miRNAs such as miR-200 family and let-7 

Table 2  Computational time and memory needed for each run of all methods

ℓ1-norm HGIMDA EGBMMDA DeepMDA NTSMDA PBMDA

Programming Language R MATLAB R Python 2.7 R Python 2.7

Time (min) < 3 < 1 < 1 < 10 < 1 < 60

Memory (GB) 4 4 4 12 4 16

Table 3  Top 50 predicted miRNAs associated with  lung 
neoplasms based on known associations in HMDD

I, II, III and IV represent dbDEMC, PhenomiR, miR2Disease and miRwayDB, 
respectively

Rank miRNA Evidence Rank miRNA Evidence

1 hsa-mir-125b-2 I; II; III 26 hsa-mir-328 I; II

2 hsa-mir-16-1 I; II; III; IV 27 hsa-mir-122 I; II; IV

3 hsa-mir-16-2 I; II; III; IV 28 hsa-mir-424 I; II

4 hsa-mir-15a I; II; III; IV 29 hsa-mir-520d I

5 hsa-mir-199a-2 I; II 30 hsa-mir-99a I; II; III; IV

6 hsa-mir-218-1 I; II; III 31 hsa-mir-449a I; II

7 hsa-mir-451a I 32 hsa-mir-302a I; II

8 hsa-mir-106b I; II 33 hsa-mir-302b I; II

9 hsa-mir-92a-2 I; II 34 hsa-mir-342 I; II

10 hsa-mir-133a-2 I; II 35 hsa-mir-151b I

11 hsa-mir-15b I; II; III 36 hsa-mir-449b I; II

12 hsa-mir-378a I 37 hsa-mir-152 I; II

13 hsa-mir-193b I; II 38 hsa-mir-485 I; II

14 hsa-mir-130a I; II; III 39 hsa-mir-345 I; II; III

15 hsa-mir-429 I; III 40 hsa-mir-373 I; II

16 hsa-mir-141 I; II; III; IV 41 hsa-mir-204 I; II; III

17 hsa-mir-151a I 42 hsa-mir-302c I; II

18 hsa-mir-19b-2 I; II 43 hsa-mir-144 I; II; IV

19 hsa-mir-708 I; IV 44 hsa-mir-520c I

20 hsa-mir-10a I; II; IV 45 hsa-mir-194-1 I; II; IV

21 hsa-mir-149 I; II 46 hsa-mir-296 I; II

22 hsa-mir-195 I; II; III 47 hsa-mir-23b I; II

23 hsa-mir-20b I; II 48 hsa-mir-520a I

24 hsa-mir-24-1 I; II 49 hsa-mir-520b Unconfirmed

25 hsa-mir-625 I 50 hsa-mir-28 I; II
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paralogs have been proposed as potential therapeu-
tic targets for disseminated or chemoresistant ovarian 
tumors. We implemented our method to prioritize the 
candidate miRNAs for ovarian neoplasms and the top 
50 predicted miRNAs are given in Table  4. Similarly, 
49 out of the 50 predicted miRNAs were confirmed 
by at least one databases from dbDEMC, PhenomiR, 
miR2Disease and miRwayDB. The only unconfirmed 
miRNA was hsa-mir-181a-2. As a matter of fact, in vivo 
experiments have implicated that miR-181a could mod-
ulate TGF-β signaling to induce and maintain epithe-
lial–mesenchymal transition and further affect ovarian 
cancer cell survival [50]. In addition, three miRNAs 
(hsa-mir-181a-1, hsa-mir-181b-1 and hsa-mir-181b-2) 
from the same miRNA family of hsa-mir-181a-2 were 
all supported to be associated with ovarian cancer by 
dbDEMC. Together, our prediction provided new evi-
dence for its association with ovarian cancer.

Prostatic neoplasms is the most prevalent non-
skin cancer among men worldwide and is commonly 
found in men over 50 years of age. Although it has an 

indolent course, prostate cancer remains the third-
leading cause of cancer death in men [51]. In recent 
years, the miRNA profiling studies demonstrate that 
miRNAs may act independently or in partnership with 
other transcription factors to regulate gene transcrip-
tion, which ultimately leads to perturbed cellular pro-
cesses in prostate cancer [52]. For instance, it has been 
suggested that hsa-miR-29b could act as an antimeta-
static miRNA for prostate cancer cells at multiple steps 
in a metastatic cascade by regulating epithelial–mes-
enchymal transition signaling [53]. The top 50 prostate 
cancer-related miRNAs predicted by our method is 
listed in Table 5. As a result, 49 of the top 50 predicted 
miRNAs were confirmed to be associated with pros-
tate cancer by at least one database from dbDEMC, 
PhenomiR, miR2Disease and miRwayDB. The only 
unconfirmed miRNA was hsa-mir-429. Actually, stud-
ies have demonstrated that the downregulation of miR-
429 inhibits cell proliferation by targeting p27Kip1 in 
human prostate cancer cells. Our prediction results 
further confirmed its association with prostate cancer.

Table 4  Top 50 predicted miRNAs associated with ovarian 
neoplasms based on known associations in HMDD

I, II, III and IV represent dbDEMC, PhenomiR, miR2Disease and miRwayDB, 
respectively

Rank miRNA Evidence Rank miRNA Evidence

1 hsa-mir-143 I; II; III 26 hsa-mir-124-3 I; II

2 hsa-mir-29c I; II; III 27 hsa-mir-181b-2 I

3 hsa-mir-222 I; II 28 hsa-mir-24-1 I

4 hsa-mir-15a I; II 29 hsa-mir-107 I; II

5 hsa-mir-210 I; II 30 hsa-mir-196a-1 I

6 hsa-mir-205 I; II 31 hsa-mir-26a-2 I; III

7 hsa-mir-142 I; II; III 32 hsa-mir-26a-1 I; II; III

8 hsa-mir-181a-1 I; II 33 hsa-mir-27b I

9 hsa-mir-9-2 I; II; III; IV 34 hsa-mir-106a I; II

10 hsa-mir-9-3 I; II; III; IV 35 hsa-mir-122 I; II

11 hsa-mir-1-2 I 36 hsa-mir-10a I

12 hsa-mir-7-1 I; IV 37 hsa-mir-378a I

13 hsa-mir-181a-2 Unconfirmed 38 hsa-mir-23b I; II; III

14 hsa-mir-218-2 I 39 hsa-mir-193a I; II

15 hsa-mir-150 I; II; III; IV 40 hsa-mir-451a I

16 hsa-mir-124-1 I; II 41 hsa-mir-204 I; II

17 hsa-mir-7-2 I; II; IV 42 hsa-mir-24-2 I; II

18 hsa-mir-196a-2 I 43 hsa-mir-708 I

19 hsa-mir-124-2 I; II 44 hsa-mir-18b I

20 hsa-mir-7-3 I; IV 45 hsa-mir-196b II

21 hsa-mir-199b I; II; III 46 hsa-mir-103a-1 I

22 hsa-mir-19b-2 I 47 hsa-mir-135a-1 I

23 hsa-mir-181b-1 I 48 hsa-mir-135a-2 I

24 hsa-mir-15b I; II 49 hsa-mir-137 II

25 hsa-mir-195 I; II; III 50 hsa-mir-206 II; III

Table 5  Top 50 predicted miRNAs associated with prostatic 
neoplasms based on known associations in HMDD

I, II, III and IV represent dbDEMC, PhenomiR, miR2Disease and miRwayDB, 
respectively

Rank miRNA Evidence Rank miRNA Evidence

1 hsa-mir-155 I; II 26 hsa-mir-196a-2 I; II

2 hsa-mir-18a I; II 27 hsa-mir-429 Unconfirmed

3 hsa-mir-19a I; II 28 hsa-mir-199b I; II; III

4 hsa-mir-19b-1 I; II; III 29 hsa-mir-
181b-2

I; II; III

5 hsa-let-7a-3 I; II; III 30 hsa-mir-150 I; II

6 hsa-let-7a-2 I; II; III 31 hsa-mir-138-2 II

7 hsa-mir-29c I; II; IV 32 hsa-mir-138-1 II

8 hsa-mir-9-1 I; II 33 hsa-mir-125a I; II; III

9 hsa-mir-181a-1 I; II; III 34 hsa-mir-24-1 I; II; III

10 hsa-mir-210 I; II; III 35 hsa-mir-30a I; II; III

11 hsa-mir-7-1 I; II; IV 36 hsa-mir-196a-1 I; II

12 hsa-mir-181a-2 I; II 37 hsa-mir-192 I

13 hsa-mir-9-2 I; II 38 hsa-mir-302b I; II

14 hsa-mir-9-3 I; II 39 hsa-mir-451a I

15 hsa-mir-10b I; II; III 40 hsa-mir-103a-2 I

16 hsa-mir-7-2 I; II; IV 41 hsa-mir-302a I; II; IV

17 hsa-mir-142 I; II 42 hsa-mir-20b I

18 hsa-let-7f-2 I; II; III 43 hsa-mir-18b I

19 hsa-let-7i I; II 44 hsa-mir-10a I; II; III

20 hsa-let-7e I; II 45 hsa-mir-302c I; II

21 hsa-let-7 g I; II; III 46 hsa-mir-24-2 I; II; III

22 hsa-mir-7-3 I; II; IV 47 hsa-mir-137 II

23 hsa-let-7f-1 I; II; III 48 hsa-mir-206 I; II

24 hsa-mir-218-2 I; II; III 49 hsa-mir-149 I; II; III

25 hsa-mir-19b-2 I; II; III 50 hsa-mir-135a-1 I; II; IV
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To demonstrate the applicability of our method to 
diseases without any known miRNAs, we carried out 
the second type of case studies for Breast neoplasms 
(Additional file  5). Breast neoplasms is a malignant 
tumor that forms from the uncontrolled growth of 
abnormal breast cells. Recent research on miRNAs has 
implicated that the loss of tumor suppressor miRNAs 
or overexpression of oncogenic miRNAs can lead to 
breast cancer tumorigenesis or metastasis [54]. In this 
case study, we first removed all 237 miRNAs that were 
confirmed to be associated with breast neoplasms by 
HMDD v2.0, and then prioritized all the 550 candidate 
miRNAs by our method. As shown in Table 6, 47 out of 
the top 50 predicted miRNAs were verified by HMDD 
v2.0, and all of them were further confirmed by at least 
one database from dbDEMC, PhenomiR, miR2Disease 
and miRwayDB.

Lastly, we conducted the third type of case studies for 
Hepatocellular Carcinoma in which the older version of 

HMDD was used to prioritize miRNAs with the given 
disease and the latest version of HMDD (i.e. v2.0) was 
adopted to evaluate the prediction results (Additional 
file 6). Concretely, there were 1475 known associations 
involving 281 miRNAs and 129 diseases recorded in the 
older version of HMDD. The top 50 ranked miRNAs 
predicted by our method were listed in Table  7. As a 
result, 38 out of them were confirmed by HMDD v2.0, 
and all of them were validated by at least one of the four 
databases dbDEMC, PhenomiR, miR2Disease and miR-
wayDB. Notably, we found that although hsa-mir-9-1, 
hsa-mir-132, hsa-mir-194-1 and hsa-mir-9-2 were not 
recorded in HMDD v2.0, they were all confirmed by 
the four databases, indicating their potential functional 
roles in the pathogenesis of Hepatocellular Carcinoma. 
In summary, all the three types of case studies further 
validated the effectiveness and reliability of our method 
in uncovering potential associations between miRNAs 
and diseases.

Table 6  Top 50 predicted miRNAs associated with breast neoplasms based on known associations in HMDD

I, II, III and IV represent dbDEMC, PhenomiR, miR2Disease and miRwayDB, respectively

Rank miRNA Evidence Rank miRNA Evidence

1 hsa-mir-21 HMDD; I; II; III; IV 26 hsa-mir-29a HMDD; I; II; IV

2 hsa-mir-155 HMDD; I; II; III; IV 27 hsa-mir-92a-2 HMDD; I; II

3 hsa-mir-17 HMDD; I; II; III 28 hsa-mir-223 HMDD; I; II; IV

4 hsa-mir-20a HMDD; I; II; III 29 hsa-mir-181a-1 HMDD; I; II; III

5 hsa-mir-125b-1 HMDD; I; II; III; IV 30 hsa-mir-29b-1 HMDD; I; II; III

6 hsa-mir-92a-1 HMDD; I; II 31 hsa-let-7b HMDD; I; II

7 hsa-mir-18a HMDD; I; II; III 32 hsa-mir-200c HMDD; I; II; III

8 hsa-mir-145 HMDD; I; II; III 33 hsa-mir-29c HMDD; I; II; III

9 hsa-mir-16-1 HMDD; I; II 34 hsa-mir-181a-2 HMDD; I; II; III

10 hsa-mir-34a HMDD; I; II; IV 35 hsa-mir-200a HMDD; I; II; III; IV

11 hsa-mir-19b-1 HMDD; I; II; IV 36 hsa-mir-29b-2 HMDD; I; II; III

12 hsa-mir-125b-2 HMDD; I; II; III; IV 37 hsa-let-7c HMDD; I; II

13 hsa-mir-146a HMDD; I; II; III; IV 38 hsa-mir-19b-2 I; II; IV

14 hsa-mir-19a HMDD; I; II; IV 39 hsa-mir-150 I; II

15 hsa-mir-16-2 HMDD; I; II 40 hsa-mir-210 HMDD; I; II; III

16 hsa-mir-221 HMDD; I; II; III 41 hsa-mir-34c HMDD; I

17 hsa-let-7a-1 HMDD; I; II; III 42 hsa-mir-1-1 HMDD; I; II; IV

18 hsa-mir-143 HMDD; I; II; III 43 hsa-let-7d HMDD; I; II; III

19 hsa-let-7a-3 HMDD; I; II; III 44 hsa-mir-182 HMDD; I; II; III

20 hsa-mir-126 HMDD; I; II; III 45 hsa-mir-214 HMDD; I; II; IV

21 hsa-mir-15a HMDD; I; II 46 hsa-mir-9-1 HMDD; I; II; III; IV

22 hsa-mir-31 HMDD; I; II; III 47 hsa-mir-106b HMDD; I; II

23 hsa-let-7a-2 HMDD; I; II; III 48 hsa-mir-142 I; II; IV

24 hsa-mir-200b HMDD; I; II; III; IV 49 hsa-let-7i HMDD; I; II; III

25 hsa-mir-222 HMDD; I; II; III 50 hsa-mir-181b-1 HMDD; I; II; III; IV
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Discussion
The experimental results presented above clearly demon-
strated the superior performance of our method. More-
over, the results of case studies on five common human 
diseases further confirmed the utility of the proposed 
method. Intriguingly, we noticed that for lung neoplasms 
and ovarian neoplasms, miRNAs within the same fam-
ily of the unconfirmed miRNAs in the top 50 predicted 
miRNAs were essentially verified to be related with the 
investigated diseases by dbDEMC. As a matter of fact, 
evidence have demonstrated that miRNA family/clus-
ter could function together in various pathological pro-
cesses, such as miR-200 family, let-7 family and etc. [55, 
56]. Therefore, our results provided new evidence that 
miR-520 family and miR-181 family might play vital roles 
in lung neoplasms and ovarian neoplasms, respectively.

The success of our model could be largely attributed to 
the following two reasons. Firstly, the ℓ1-norm imposed 
on our objective function could generate sparse solutions, 
which makes our method robust to the incompleteness 
of current datasets. Secondly, both of the reconstructed 

miRNA functional similarities as well as the disease seman-
tic similarities could be adaptively re-weighted according to 
the learned label matrix during each iterations. As a result, 
miRNAs or diseases with higher similarities will get more 
similar predicted labels and vice versa. However, there are 
still rooms for improvements in our model. In essence, 
since the miRNA functional similarity matrix as well as dis-
ease semantic similarity matrix was updated separately in 
their own spaces, our model is expected to be more effec-
tive if we could combine the two optimization spaces in a 
more reasonable manner. Besides, more data sources such 
as miRNA sequence similarities and miRNA family infor-
mation should be integrated into our model to further 
improve the prediction ability of our model.

Conclusion
MiRNAs have been established as key metastasis regu-
lators in diverse disease types. The ability of these small 
non-coding RNAs to regulate gene expression has gen-
erated much interests in exploiting them as potential 
therapeutic biomarkers in human diseases [57]. The 

Table 7  Top 50 predicted miRNAs associated with  hepatocellular carcinoma based on  known associations in  the  older 
version of HMDD

I, II, III and IV represent dbDEMC, PhenomiR, miR2Disease and miRwayDB, respectively

Rank miRNA Evidence Rank miRNA Evidence

1 hsa-mir-155 HMDD; I; II; III; IV 26 hsa-mir-214 HMDD; I; II; III

2 hsa-mir-16-1 HMDD; I; II; III; IV 27 hsa-mir-150 HMDD; I; II; III

3 hsa-let-7a-3 HMDD; I; II; III 28 hsa-mir-181b-2 HMDD; I; II; III

4 hsa-let-7a-2 HMDD; I; II; III 29 hsa-mir-29c HMDD; I; II

5 hsa-mir-15a HMDD; I; II; III 30 hsa-mir-133a-1 I; III; IV

6 hsa-let-7a-1 HMDD; I; II; III 31 hsa-mir-24-1 HMDD; I; III

7 hsa-let-7b HMDD; I; II; III 32 hsa-mir-132 I; II; III; IV

8 hsa-mir-16-2 HMDD; I; II; III; IV 33 hsa-mir-15b HMDD; I

9 hsa-let-7d HMDD; I; II; III 34 hsa-mir-194-1 I; II; III; IV

10 hsa-let-7c HMDD; I; II; III 35 hsa-mir-205 HMDD; I; III; IV

11 hsa-mir-143 I; II; III 36 hsa-mir-9-3 I; III; IV

12 hsa-let-7i HMDD; I; II 37 hsa-mir-9-2 I; II; III; IV

13 hsa-let-7f-2 HMDD; I; II; III 38 hsa-mir-25 HMDD; I; II; III

14 hsa-mir-29b-1 HMDD; I; IV 39 hsa-mir-200c HMDD; I; II

15 hsa-mir-181b-1 HMDD; I; II; III 40 hsa-mir-373 HMDD; I

16 hsa-mir-126 HMDD; I; II; III 41 hsa-mir-429 I; IV

17 hsa-mir-133a-2 I; III; IV 42 hsa-mir-302b HMDD; I; II; IV

18 hsa-let-7f-1 HMDD; I; II 43 hsa-mir-339 I; II

19 hsa-mir-29a HMDD; I 44 hsa-mir-210 HMDD; I; II

20 hsa-let-7 g HMDD; I; II; III 45 hsa-mir-30c-1 HMDD; I; II; III

21 hsa-mir-141 HMDD; I; II; III; IV 46 hsa-mir-34b I

22 hsa-mir-106b HMDD; I; II; III 47 hsa-mir-206 I

23 hsa-mir-146b HMDD; I 48 hsa-mir-181a-2 HMDD; I; II; III

24 hsa-mir-9-1 I; II; III; IV 49 hsa-mir-107 HMDD; I; III

25 hsa-mir-181a-1 HMDD; I; II; III 50 hsa-mir-196a-2 HMDD; I
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accumulating amount of data from multiple sources have 
posed great opportunities in the identification of miRNA-
disease associations based on computational models at 
a large scale. In this paper, we presented a novel semi-
supervised prediction model based on ℓ1-norm graph. 
To alleviate the influences of the intrinsic noise existing 
in the current datasets, we first recalculated the miRNA 
functional similarities and disease semantic similarities 
with the latest version of Mesh descriptors and HMDD. 
We then introduced an effective ℓ1-norm based objec-
tive function and iteratively updated the confidence 
for unconfirmed miRNA-disease associations in both 
miRNA space and disease space. The experimental results 
of global LOOCV and local LOOCV intuitively dem-
onstrated the effectiveness of the proposed method. In 
addition, the comparison results between our method 
and five state-of-the-art methods further confirmed the 
superior performance of our method. More importantly, 
our method could require a reasonable amount of com-
putational resources to achieve comparable results. Lastly, 
the ability of our method in predicting potential miRNA-
disease associations was verified by the three types of case 
studies performed on five common diseases. In summary, 
our method could serve as a reliable and efficient tool to 
detect novel associations between miRNAs and diseases.
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