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Abstract 

Background: Myalgic encephalomyelitis (ME) is a complex and debilitating disease that often initially presents with 
flu-like symptoms, accompanied by incapacitating fatigue. Currently, there are no objective biomarkers or laboratory 
tests that can be used to unequivocally diagnosis ME; therefore, a diagnosis is made when a patient meets series of a 
costly and subjective inclusion and exclusion criteria. The purpose of the present study was to evaluate the utility of 
four clinical parameters in diagnosing ME.

Methods: In the present study, we utilized logistic regression and classification and regression tree analysis to con-
duct a retrospective investigation of four clinical laboratory in 140 ME cases and 140 healthy controls.

Results: Correlations between the covariates ranged between [− 0.26, 0.61]. The best model included the serum 
levels of the soluble form of CD14 (sCD14), serum levels of prostaglandin E2  (PGE2), and serum levels of interleukin 8, 
with coefficients 0.002, 0.249, and 0.005, respectively, and p-values of 3 × 10−7, 1 × 10−5, and 3 × 10−3, respectively.

Conclusions: Our findings show that these parameters may help physicians in their diagnosis of ME and may addi-
tionally shed light on the pathophysiology of this disease.
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Background
Myalgic encephalomyelitis is a heterogeneous illness 
often characterized by a number of physical symptoms 
and comorbid conditions such as systemic inflammation, 
neurocognitive abnormalities, innate immune activation, 
and gastrointestinal issues [1]. Current estimates indicate 
that up to 4 million individuals in the U.S. are afflicted 
with ME [2], with an annual productivity loss in excess 
of $23 billion in the United States alone [3], underscor-
ing the significant impact of ME as a major public health 
concern both economically and socially.

Little is known regarding the etiology of ME; how-
ever, a number of potential triggers or stressors are typi-
cally reported to coincide with the onset of the disease 
including viral or flu-like symptoms, chemical exposure, 
physical trauma, or emotional distress [4–6]. Based on 
genome-wide association studies (GWAS) and familial 
studies, a genetic predisposition has also been suggested 
to play a role in the disease [7–10]. With the exception of 
perhaps exercise intolerance and general inflammation, 
no ubiquitous physical symptoms or diagnostic biomark-
ers have been identified; therefore, a diagnosis is primar-
ily based on meeting a number of inclusion and exclusion 
criteria [11, 12]. As such, ME is often considered a “het-
erogenous” disease and this limitation has hindered the 
identification of nonsubjective biomarkers [13]. Com-
pounding this issue, current research suggests that previ-
ously described potential biomarkers, such as cytokines, 
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change over time [14] and may vary depending on illness 
duration [15] and severity [16].

In light of the heterogenous nature of ME, a biomarker 
that separates patients into more homogenous sub-
groups, based on clinical presentation would be useful; 
albeit, some progress has been made in this area. For 
instance, Naviaux and coworkers conducted a metabo-
lomics study of ME cases and controls and identified a 
profile, characterized by decreased circulating ceramides 
[17]. A later study by Nagy-Szakal et  al. elaborated that 
the subset of ME cases who present with irritable bowel 
syndrome (IBS) comorbidity have increased plasma cera-
mides [18]. When taken together, these studies imply that 
serum or plasma ceramides may have the necessary sen-
sitivity to subgroup ME cases based on gastrointestinal 
(GI) comorbidity, although these observations will need 
to be evaluated against diseases with overlapping symp-
tomology to show specificity.

While not universally prevalent, a small number 
of immunological parameters have been frequently 
reported to associate with subgroups of ME cases includ-
ing natural killer (NK) cell dysfunction and inflamma-
tory cytokine production. For these reasons, as well as 
other, it is generally accepted that ME has immunologi-
cal underpinnings [19–23]. Currently, the mechanisms 
responsible for these observations remain elusive, but if 
identified, this knowledge would provide a greater under-
standing of ME pathology, potentially leading to effective 
treatment options.

In the present study, we investigated four immunologi-
cal parameters that were chosen based on the following 
rationale: Subjects with ME are often characterized by 
coinfections; therefore, we analyzed the chemotactic 
factor interlerukin-8 (IL-8), which is produced by mac-
rophages and, to a lesser extent, by other cells in response 
to infection. In light of the GI comorbidity, commonly 
associated with ME we measured the soluble form of 
CD14 (sCD14); a surrogate marker of bacterial translo-
cation in the gut [48]. Orthostatic intolerance and atypi-
cally cerebral vasoconstriction following orthostatic 
challenge are often observed in subjects with ME [24, 
25]. Additionally, females commonly report exasperated 
symptoms of premenstrual syndrome and Th1 suppres-
sion is commonly observed as well, all of which are asso-
ciated with prostaglandin E2  (PGE2) production [26–28]. 
Lastly, CD57 expression on natural killer (NK) cells is 
an end-stage marker for their maturation [29]. Previous 
studies suggest that circulating  CD57+/CD3− NK cells 
are increased in association with chronic infections but 
are downregulated in several autoimmune diseases [29]. 
Mounting evidence suggests that ME may have an “auto-
immune-like” etiology [30–35]; therefore, we included 
circulating  CD57+/CD3− NK cells in our analysis.

Methods
Study design
Retrospective analyses of existing clinical data were con-
ducted under a HIPAA authorization waiver, as deter-
mined by the University of Nevada, Reno Institutional 
Review Board (IRB) [Protocol 1213405-1]. From these 
data, four clinical parameters were chosen for investiga-
tion based on their potential diagnostic utility and their 
ability to subgroup ME cases, given their common symp-
toms and medical anamnesis. In the present study, the 
following data were collected: absolute counts of periph-
eral  CD57+/CD3− lymphocytes; serum levels of IL-8, 
(also known as CXCL8); serum levels of the soluble form 
of CD14 (sCD14) and serum levels of prostaglandin E2 
 (PGE2). Age and gender were also recorded to address 
potential age- and gender-related contributions.

Clinical data
Whole blood  (K2EDTA anticoagulant) and serum was 
collected by venipuncture from ME cases at the Him-
munitas Foundation clinic (Brussels, Belgium), and 
transported the same day to R.E.D. Laboratories (Zellik, 
Belgium) for clinical analysis. These analyses were con-
ducted as part of the patient’s initial clinical work-up. 
Laboratory results were search from a sequential acces-
sion series starting in 2013. From these data the first 70 
female and 71 male cases who met the following inclu-
sion criteria were selected: all four parameters were eval-
uated for each subject using blood drawn on the same 
day; and each subject had received a diagnosis of ME 
according the Canadian Consensus Criteria for ME [11]. 
Data from these 70 female cases (age median 44  years; 
age range 16–68  years) and 71 male cases (age median 
43 years; age range 15–67 years) were used in the analy-
sis, as well as data from 70 female (age median 44.5 years; 
age range 14–86  years) and 70 male (age median 
43.5 years; age range 18–70 years) healthy subjects. Con-
trol subjects met the following inclusion criteria: Normal 
white blood cell count, no inflammation, (C-reactive pro-
tein < 1 mg/L), and no clinical history of chronic immune 
disease or diabetes.

PGE2 quantitative determination in human serum
Serum levels of  PGE2 were evaluated using the  DetectX® 
Prostaglandin E2 Immunoassay kit (Arbor Assay, Michi-
gan, USA) according to the manufacturer’s instructions. 
The concentration of  PGE2 in each diluted sample was 
calculated using a four-parameter logistic regression fit-
ting routine provided with the microplate reader analy-
sis software (BioRad, Nazareth, Belgium) and the neat 
concentrations of each sample were obtained by mul-
tiplying this value by the dilution factor. Normal values 
for the assay were previously determined by analyzing 79 
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de-identified samples from 42 female and 37 male healthy 
subjects referred to the laboratory for a general check-up 
screening. Statistical analyses established that no differ-
ences in  PGE2 were linked to age; however, noticeable 
differences were linked to gender. Therefore, gender-spe-
cific median values were established. These median val-
ues were used to standardize all values in the format of 
a ratio. The control range was established using the 10th 
(P10) and 90th (P90) percentile of the healthy popula-
tion as references values, i.e. P10 ratio to median as lower 
limit and the P90 ratio to median as upper limit (Table 1).

Quantification of IL‑8 and sCD14 serum levels
Serum levels of IL-8 were assessed as part of a multi-
plex cytokine panel using the BD Cytometric Bead Array 
Human Inflammatory Cytokines Kit on a BD FACS Canto 
II™ flow cytometer (Becton–Dickinson Biosciences, San 
José, CA, USA). Absolute values were calculated from a 
standard curve using FCAP Array™ software and inter-
assay controls were used for each batch. Similarly, serum 
levels of sCD14 were assessed using BD Cytometric Bead 
Array Human Soluble CD14 Flex Set on the same cytom-
eter, according to the manufacturer’s instructions. Posi-
tive controls and inter-assay controls were run for each 
batch, and unknown values were calculated from a stand-
ard curve generated using protein standards of known 
concentrations.

Quantification of peripheral  CD57+/CD3− lymphocytes
Absolute  CD57+/CD3− lymphocytes counts were evalu-
ated with a BD FACS Canto II™ flow cytometer on anti-
coagulated  (K2EDTA) whole blood using a clinically 
validated lyse no wash protocol. Briefly, 50 µL of whole 
blood was added to BD Trucount™ absolute count-
ing tubes, with 10 µL of PerCP-anti-CD45 (clone 2D1), 
10 µL of PE-anti-CD3e (clone UCHT1) and 10 µL of 
FITC-anti-CD57 (clone HNK-1) antibody and incubated 
for 10 min in the dark. The samples where then and lysed 
with 0.5 mL of BD FACS™ lysing solution and analyzed 
promptly. Lymphocytes were gated based on forward 
and side scatter, collecting a minimum of 1000 counting 

beads, and the cells of interested were identified as the 
 CD57+/CD3− population. Counting beads in the Tru-
count™ tubes were used to calculate the absolute number 
of  CD57+/CD3− lymphocytes per ml of blood.

Statistical methods
Our dataset consisted of the four variables measured for 
70 female controls, 70 male controls, 70 female cases, 
and 71 male cases. One instance of the IL-8 measure 
(22,595,208  pg/mL) was 700-fold greater than the next 
highest IL-8 measure (32,717  pg/mL), and almost 12 
standard deviations above the mean case IL-8 measure. 
This outlier was excluded from the dataset, leaving 69 
female cases and 71 male cases. The data were prelimi-
nary analyzed using a logistic regression model. Addi-
tionally, in order to explore if a diagnostic algorithm 
could be established, we performed a classification analy-
sis using the respective clinical variables in combination 
with age and gender as the covariates and subject status 
(case or control) as the target variable.

Results
Distributions of the four variables were log-transformed 
and tested for normality. As none of the four distributions 
were normal, non-parametric statistical tests were per-
formed. A simple forward and backward logistic regres-
sion was performed on the four biochemical parameters 
and the covariates age and gender. None of the four bio-
chemical parameters were found to be in high correla-
tion with each other, ranging between [− 0.26, 0.61]. The 
best model included the sCD14,  PGE2, IL-8 measures 
with coefficients 0.002, 0.249, and 0.005, respectively, and 
p-values of 3 × 10−7, 1 × 10−5, and 3 × 10−3, respectively.

In order to establish if a potential diagnostic algorithm 
was feasible, we conducted a classification and regression 
tree (CART) analysis using sCD14,  PGE2, IL-8 as predic-
tive variables and subject status as the target variable. 
CART analysis utilizes recursive partitioning of these 
clinical variables into increasingly smaller sets of the 
dependent variable (case or control in our analysis). Dur-
ing each recursion, the binary splits for each dependent 

Table 1 Demographic information and clinical values for the respective study groups

* PGE2 values are given as a ratio to a reference range median; ranges are for females (top) and males (bottom)

Age range Age mean CD57 (cells/mL) sCD14 (ng/mL) PGE2 IL‑8 (pg/mL)
Reference range: 60–360 1430–2800 0.1–2.81*

0.17–6.45
0–15

Female controls (N = 70) 14–86 44.5 76 2654 1.83 13

Female cases (N = 69) 16–68 44 46 3425 7.97 1156

Male controls (N = 70) 18–70 43.5 103 2365 4.00 14

Male cases (N = 71) 15–67 43 58 2918 11.80 697
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variable is examined and the split that optimizes the 
homogeneousness of the two resulting groups, with 
respect to the dependent variable is chosen [36]. CART 
analysis is well-suited for this investigation, as it pro-
duces an algorithm that is amenable for diagnostic data 
purposes. It is also able to classify systems that differ due 
to natural causes and determine the relative importance 
of different variables for identifying homogeneous groups 
within a data set [37].

Using the CART analysis with the Gini splitting 
method, a 16-node decision tree produced a set of “if–
then” logical (split) conditions, based on the biochemical 
parameters, that yielded approximately 90% specificity 
and sensitivity in distinguishing ME cases from controls 
(Table 2). Each node of the decision tree provided a deci-
sion metric based on the subject values of one of the 
three clinical parameters (Fig.  1). A detailed analysis of 
each node with the respective split values are given in 
Additional file 1: Figure S1.

We additionally conducted a CART analysis with all 
four clinical variables, as well as the demographic vari-
ables of age and gender; however, this analysis did not 
significantly improve the predictive outcome (data not 
shown).

Discussion
Diagnosing ME is problematic in that no disease-specific 
biological markers have been described; therefore, a diag-
nosis is made when a patient meets a combination of 
costly and subjective inclusion and exclusion criteria [11, 
12, 38]. For this reason, a convenient diagnostic for ME 
would dramatically improve patient care and decrease 
medical costs. Such a diagnostic would also allow physi-
cians and researchers to objectively follow the efficacy of 
new therapeutics during the course of clinical trials. With 

this in mind, we have conducted a retrospective analysis 
to assess the utility of four clinical laboratory parameters 
in diagnosing ME cases. Three of these were ultimately 
used to conduct a CART analysis in order to identify an 
algorithm that can assist physicians in the use of these 
parameters.

When we conducted our analysis, access to similar data 
from other disease cohorts was not available. These data 
would be necessary to show that the parameters can be 
used to distinguish ME from other diseases with overlap-
ping comorbidities, and thus, represented the principal 
limitation to our study. Additionally, because this was a 
retrospective study that utilized existing data, we were 
not able to establish subgroups based on clinical presen-
tations. The only data available were clinical laboratory 
data, demographic data and disease diagnosis. Although 
acquiring and screening specimens representing these 
other disease cohorts will be the focus of future studies, 
the data and results presented here are an important first 
step in the ultimate goal of developing a specific diagnos-
tic for ME. This study also provides clear unequivocal 
evidence of the immunological underpinnings of ME.

In this study, we analyzed data from 140 ME cases and 
140 healthy controls subjects, composed of approxi-
mately half males and half females in each group. Using 
the two analytical methods, linear regression and CART, 
we determined that gender and age did not significantly 
impact the predictive model, nor did the inclusion of 
absolute  CD57+/CD3− lymphocytes counts. The CD57 
antigen is a sulfated glycan carbohydrate epitope and 
among circulating lymphocytes, is primarily expressed 
on mature NK cells and terminally differentiated T cells. 

Table 2 CART analysis summary of  ME cases and  healthy 
controls

Actual class Total class Percent 
correct (%)

Predicted classes

ME case Control

N = 139 N = 141

Case 140 89.29 125 15

Control 140 90.00 14 126

Total 280

Average 89.64

Overall correct 89.64

Specificity 90.00

Sensitivity 89.29

Precision 89.93

F1 statistic 89.61

Fig. 1 Decision tree produced using CART analysis. Each node 
represents a split value of the independent variable, which 
determines the optimal number cases or controls predicted by the 
analysis. Colored boxes represent the terminal point of the decision 
metric. Blue boxes represent cases and red boxes represent controls. 
A comprehensive version of the decision tree, which defines the 
predictive algorithm, is presented as Additional file 1: Figure S1
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Although its function on NK cells is still a subject of 
ongoing research, CD57 expression is also considered a 
marker for NK cells that are highly mature and terminally 
differentiated [39], and is also generally believed to reflect 
their immunosenescence [40]. NK cell dysfunction has 
been reported to associated with ME by several investiga-
tors [41, 42]; however, recent studies have brought into 
question their diagnostic potential [43]. While differences 
in  CD57+/CD3− lymphocytes counts have been associ-
ated with other neuroimmune diseases [44], their inclu-
sion in our study did not significantly improve its overall 
diagnostic ability. Nevertheless, there may be a number 
of reasons for this. In the present study, we limited our 
subjects to those with a confirmed diagnosis of ME, 
which by definition, implies that other potential causes 
have been ruled out [11]. Notwithstanding, when inves-
tigating diseases with overlapping or similar symptoms, 
including  CD57+/CD3− lymphocyte counts may be ben-
eficial. For instance, Blom et al. reported that tick-borne 
encephalitis virus-induced NK cell activation is primarily 
limited to differentiated  CD57+/CD56dim+ NK cells [45]. 
Additionally,  CD57+ NK cells are routinely implicated in 
herpesvirus infections [46, 47]. Therefore, including this 
parameter may be of utility when establishing or ruling 
out an initial diagnosis of ME.

In this study, we utilized classification and regression 
tree CART analysis to produce a predictive binary deci-
sion tree, that defines the optimal values of each param-
eter as a branch point. Using serum IL-8 as the first node 
in the decision tree and with a cut-off value of > 137.5 pg/
mL, 109 of the 140 ME cases subjects were correctly 
categorized. Moreover, 132 of 140 controls were cor-
rectly categorized as having IL-8 values of ≤ 137.5 pg/mL 
(Additional file 1: Figure S1).

IL-8 is a chemotactic factor that attracts leukocytes, 
such as neutrophils, basophils, and T-cells to sites of 
tissue injury and infection. Upregulation of IL-8 has 
also been reported in association with several chronic 
diseases such as autoimmune and inflammatory dis-
ease [48]. Multiple isoforms of IL-8 are produced 
through alternate splicing and proteolytic cleavage; 
a process that is largely cell-specific. For instance, 
the most common isoform in humans, IL-8(6–77), is 
produced primarily by monocytes and lymphocytes, 
while IL-8(1–77), which is produced by fibroblasts and 
endothelial cells, is likely the second most abundant 
form [49]. Notwithstanding, a wide variety of other 
cells express IL-8 including neutrophils, fibroblasts, 
mast cells, smooth muscle cells and dendritic cells 
[50–54]. Additionally, posttranslational modification 
of IL-8, such as citrullination or deamination, is known 
to lead to altered biological activity [55]. Understand-
ing which isoform of IL-8, and which posttranslational 

modifications are most prevalent in ME may provide 
valuable insight into the underlying pathophysiology of 
the disease.

In our retrospective analysis, we observed IL-8 to be 
significantly upregulated in a large number of ME sub-
jects; however, previous studies have reported inconsist-
ent or contradictory results with respect to IL-8 [19, 23, 
56–58]. For instance, in one study, no difference in serum 
IL-8 levels were observed in ME cases when compared 
to healthy controls [16]; however, another study using 
the same analytical methods, showed significant differ-
ences between short-duration versus long-duration ME 
cases versus controls [15]. These discrepancies may be 
the result of patient selection methods, choice of sample 
matrix (i.e. serum vs. plasma, vs. mRNA) or analytical 
methods. Indeed, the heterogenous nature of the disease 
makes patient selection a perennial difficulty when inves-
tigating ME and the two aforementioned studies support 
this assertion, at least with respect to IL-8.

In that two previously mentioned studies utilized the 
same multiplex product (custom Luminex 51-plex manu-
factured by Affymetrix), and their mean ME results were 
significantly lower than that observed in our study, we 
speculated that the discrepancy may be inherent in assay 
systems. Bead-based and sandwich ELISAs rely on anti-
bodies pairs that are specific for two different epitopes on 
the target protein, therefore, it is reasonable to conclude 
that some antibody pairs may not detect all isoforms of a 
protein. To explore this possibility, we purchased an Affy-
metrix ProcartaPlex™ Simplex IL-8 Luminex kit, which 
utilizes the same bead (region 27) as that used in the mul-
tiplex kit. We then screened the serum of 15 ME cases 
that were part of the present study and also included two 
recombinant IL-8 isoforms as standards; IL-8(6–77) and 
IL-8(1–77). Both isoforms were detected by the assay; 
albeit, IL-8(1–77) was observed to be approximately 
40% of that reported by the manufacturer (1956  pg/mL 
observed vs 5000 pg/mL expected). We also screened the 
15 ME cases using a commercial ELISA kit (Invitrogen, 
IL-8 Human ELISA Kit) and observed the 15 ME cases to 
yield different results between the three assay methods, 
with the results produced by the Affymetrix kit being sig-
nificantly lower than the other two methods, consistent 
with the discrepancy between our study and two previ-
ously mentioned studies (Additional file  2: Table  S1). 
While we did not resolve the issue of potential IL-8 iso-
type differences, it does suggest that the observed differ-
ences between the three studies are likely the result of a 
combination of factors, including patient selection and 
analytical methods. It also emphasizes the reliance of the 
methods described herein when implementing the pre-
dictive model as well as suggests further investigations 
with respect to IL-8 are warranted in ME.



Page 6 of 8De Meirleir et al. J Transl Med          (2018) 16:322 

In additional to  CD57+/CD3− lymphocytes and 
serum IL-8, we also investigated the utility of includ-
ing sCD14 and  PGE2 in our model. CD14, along with 
Toll-like receptor (TLR)-4 and lymphocyte antigen 
96 (MD-2), forms the receptor complex that bind 
lipopolysaccharides (LPS) [59], which are found in 
the outer membrane of Gram-negative bacteria. Pre-
vious reports have identified sCD14 as a nonspecific 
marker of monocyte activation [60] as well as a sur-
rogate marker of bacterial translocation in the gut 
[61]. Therefore, individuals with ME and who present 
with an upregulation of sCD14 are likely to have a GI 
comorbidity. Accordingly, sCD14 may be a useful bio-
marker for subgrouping ME cases, with irritable bowel 
syndrome.  PGE2, on the other hand, regulates multiple 
aspects of inflammation and the functions of different 
immune cells [62]. It is generally acknowledged as a 
mediator of acute inflammation, stimulating chemo-
taxis and activation of mast cells, neutrophils, and 
macrophages, during the early stages of inflammation 
[63–65]. It also has the capacity promote the induction 
of suppressive IL-10 as well as the downregulation of 
several proinflammatory cytokines, thus suppressing 
nonspecific inflammation [62]. Although it can pro-
mote the activation, maturation and migration of pro-
fessional antigen-presenting cells, it has been shown to 
suppress both innate and antigen-specific immunity at 
several levels [62, 66]. Therefore,  PGE2 has proinflam-
matory as well as immunosuppressive properties.

Our model showed that sCD14 can further subgroup 
ME cases with IL-8 levels that satisfy the following 
inequality: 22.0  pg/mL < IL-8 ≤ 137.5  pg/mL. We also 
observed that  PGE2 can be used to subgroup ME cases 
with IL-8 levels that satisfy the following inequality: 
137.5  pg/mL < IL-8 ≤ 240.0  pg/mL (Additional file  1: 
Figure S1). Additional combinations of IL-8, sCD14 
and  PGE2, as articulated in Additional file  1: Figure 
S1, can be used to further subgroup ME cases from 
healthy controls.

Conclusions
In summary, we have conducted a retrospective anal-
ysis of four clinical parameters from ME cases and 
healthy controls and have shown that three of these 
parameters can be used to delineate ME cases and con-
trols with approximately 90% specificity and sensitivity 
using the analytical methods described herein. Fur-
ther studies will be necessary to show if the proposed 
model will be useful in diagnosing ME from diseases 
with overlapping comorbidity.

Additional files

Additional file 1: Figure S1. Comprehensive version of the decision tree 
presented in Fig. 1.

Additional file 2: Table S1. Comparison between three analytical meth-
ods. All values are pg/mL.
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