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Network modules uncover mechanisms 
of skeletal muscle dysfunction in COPD patients
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Abstract 

Background:  Chronic obstructive pulmonary disease (COPD) patients often show skeletal muscle dysfunction that 
has a prominent negative impact on prognosis. The study aims to further explore underlying mechanisms of skeletal 
muscle dysfunction as a characteristic systemic effect of COPD, potentially modifiable with preventive interventions 
(i.e. muscle training). The research analyzes network module associated pathways and evaluates the findings using 
independent measurements.

Methods:  We characterized the transcriptionally active network modules of interacting proteins in the vastus lat‑
eralis of COPD patients (n = 15, FEV1 46 ± 12% pred, age 68 ± 7 years) and healthy sedentary controls (n = 12, age 
65 ± 9  years), at rest and after an 8-week endurance training program. Network modules were functionally evaluated 
using experimental data derived from the same study groups.

Results:  At baseline, we identified four COPD specific network modules indicating abnormalities in creatinine metab‑
olism, calcium homeostasis, oxidative stress and inflammatory responses, showing statistically significant associa‑
tions with exercise capacity (VO2 peak, Watts peak, BODE index and blood lactate levels) (P < 0.05 each), but not with 
lung function (FEV1). Training-induced network modules displayed marked differences between COPD and controls. 
Healthy subjects specific training adaptations were significantly associated with cell bioenergetics (P < 0.05) which, in 
turn, showed strong relationships with training-induced plasma metabolomic changes; whereas, effects of training in 
COPD were constrained to muscle remodeling.

Conclusion:  In summary, altered muscle bioenergetics appears as the most striking finding, potentially driving other 
abnormal skeletal muscle responses.

Trial registration The study was based on a retrospectively registered trial (May 2017), ClinicalTrials.gov identifier:  
NCT03​16927​0

Keywords:  Gene modules, Chronic obstructive pulmonary disease, Exercise training, Systems medicine, Muscular 
weakness
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Background
Patients with chronic obstructive pulmonary disease 
(COPD) show marked individual variability of both clini-
cal manifestations and disease progression with relevant 
implications on prognosis and management [1].

The 2017 GOLD update [2] recommends lung function 
measurements (FEV1) to assess COPD severity; whereas 
both symptoms intensity and history of COPD exacer-
bations are recommended indexes for the modulation 
of pharmacological therapy. However, these patients can 
also show systemic effects [3] and co-morbid conditions 
[4–6] that are independently associated with poor prog-
nosis [1]. Enhanced knowledge of the underlying mech-
anisms of these two phenomena constitutes a key step 
toward a better understanding of COPD heterogeneity 
and its implications in patient management [7].

The current study focuses on the analysis of skeletal 
muscle dysfunction as a characteristic systemic effect of 
COPD, potentially modifiable with preventive interven-
tions, i.e. exercise training [3, 4, 8–10]. Several studies 
addressed the question of training adaptation of COPD 
muscle, ranging from studies investigating expression 
of specific proteins [11–13] to modeling mitochondrial 
mechanisms [10] and systemic exploration of canoni-
cal pathways’ using gene expression [14, 15]. However, 
a comprehensive view of the disease mechanisms, high-
lighting potential biomarkers and pathway dynamics with 
functional implications is still missing. In our study, we 
applied a robust systems biology approach assuming that 
proteins associated to biological functions or diseases 
interact with each other conforming distinct neighbor-
hoods, or network modules, in the human interactome 
[16, 17]. In other words, the network modules consist of 
clusters of active proteins (approximated in the study by 
transcriptionally active genes), showing high probability 
of functional interactions. We hypothesize that the iden-
tification, functional characterization and independent 
functional evaluation of such network modules can help 
to determine how their disturbance may lead to disease 
and how therapy may affect the molecular machinery 
[18].

To further explore the underlying mechanisms of skel-
etal muscle dysfunction, we compared healthy persons 
and COPD patients before and after exercise training. 
In the pre-training analysis (Fig.  1), we described tran-
scriptionally active network modules that are specific to 
the skeletal muscle of COPD patients. Likewise, in the 
assessment of adaptive mechanisms of endurance train-
ing, we compared the differences between COPD and 
healthy muscle adaptation. Functional implications were 
initially explored through the analysis of network mod-
ule associated pathways and representative differentially 
expressed genes. In a subsequent step, we evaluated the 

functional interpretation of the network modules, and 
relevant genes, with previous experimental data obtained 
in the same study groups [19, 20].

To the best of our knowledge the current research pro-
vides an innovative approach by retrieving disease spe-
cific pathway mechanisms and performing an integrative 
analysis of the relationships of transcriptomics with met-
abolic, redox, inflammatory and clinical measurements 
to investigate COPD muscle dysfunction and training-
induced adaptive changes in these patients. We believe 
that the study sheds novel light on underlying mecha-
nisms of the disease with potential implications for the 
design of innovative preventive strategies.

Methods
Study dataset
The current study is based on a dataset of microarray 
gene expression measurements (Human U133 Plus2 
Gene Chips) performed on open biopsies from the 
limb muscle vastus lateralis, reported in [15]. In all par-
ticipants, these were obtained at rest, before and after 
an 8-week high intensity endurance training program 
(Fig.  1a). The study groups (Table  1) included fifteen 
COPD patients and twelve healthy but sedentary age-
matched controls. The training program is explained in 
details in Additional file  1: Section  1 and in the related 
studies [15, 19, 20].

Analysis strategy
Briefly, network modules were identified for each dif-
ferential condition with the HotNet2 algorithm [22] 
(Fig. 1b), using the genes’ adjusted differential expression 
profile and selected protein–protein interaction (PPI) 
networks [17, 23]. Thereafter (Fig. 1c), each module was 
functionally characterized using gene ontology (GO) [24] 
term enrichment analysis and literature mining. Finally, 
(Fig.  1d), the validity of the matched module func-
tions was evaluated using previous experimental data 
(Tables 1, 2).

Statistical analysis
Differential gene expression
To evaluate the baseline (pre-training) effects, we com-
puted the differential gene expression between COPD 
and healthy individuals, referred as COPD disease effects 
(COPD-DE) (Fig.  1a). To evaluate the training induced 
changes in the molecular mechanisms (training effects, 
TE), we investigated the post and pre-training differen-
tial gene expression in COPD (COPD-TE) and healthy 
(Healthy-TE) separately (Fig.  1a). The non-parametric 
rank product method [25] was used to compute the sig-
nificance and false discovery rate (FDR) of differential 
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gene expression, due to its reliable and consistent perfor-
mance with noisy, low sample size measurements.

Network module identification
For each condition, we used the HotNet2 algorithm 
[22] to identify network modules (Fig.  1c), taking into 
account: (i) the FDR of differential gene expression and, 
(ii) publicly-available high quality protein–protein inter-
action (PPI) networks [17, 23] (see Fig.  1b). A statisti-
cal test included in the HotNet2 algorithm was used to 
determine the significance of the number and size of the 
network modules. The HotNet2 algorithm was selected 
due to its specific feature of the use of a heat diffusion/
random walk model to simulate the spread of influ-
ence of protein activity to their physical interaction 
partners. This feature makes this approach less reliant 
on the significance test and enables the identification 
of key proteins with less significant changes but with 

high biological meaning (i.e. due to topology: hub pro-
teins, high betweenness centrality proteins, etc.). For 
more details see extended methods in Additional file  1: 
Section 1.

Functional characterization
We conducted Gene Set Analysis to investigate the 
enrichment of GO terms in modules (Fig.  1c) using the 
clusterProfiler R library [26]. Network modules were 
considered functionally significant if it had at least one 
associated GO term that: (i) had Benjamin–Hochberg 
corrected P value < 0.05; and, (ii) were related to at least 
two module genes.

Evaluation of the module functions with experimental data
To evaluate the identified functions, modules were 
compared with experimental data obtained in the 
same study group (Fig.  1a, Tables  1, 2), firstly the 

Fig. 1  Schematic diagram of the workflow of the study. (a) Study design of the used datasets. COPD patients (n = 15) and healthy controls (n = 12) 
were studied before (BT) and after (AT) an 8-week endurance training program. Measurements of skeletal gene expression [15] were used for 
network modules identification. Differential conditions of COPD disease effects (COPD-DE) and training-induced effects in COPD (COPD-TE) and 
in healthy muscles (Healthy-TE) were analyzed in the study. (b) Network modules were identified for each differential condition with the HotNet2 
algorithm [22], using the gene’s false discovery rate (FDR) adjusted differential expression P values and selected protein–protein interaction (PPI) 
networks [17, 23] as explained in details in Additional file 1: Section 1. Thereafter (c), each module was functionally characterized using gene 
ontology (GO) term enrichment analysis. (d) Correlation of network modules with independent multilevel measurements was analyzed for 
evaluation purposes. Specifically, independent measurements were sampled both pre- and post-training and consisted of physiological parameters 
measured with a constant-work rate exercise at 75% of pre-training maximum peak exercise, inflammatory and redox biomarkers measured in 
plasma and in skeletal muscle [20], as well as plasma metabolomics measured at rest and after exercise [19]
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transcriptional activity of the network modules were 
summarized using their first three principal compo-
nents, i.e. their first three eigengenes [27, 28], which 
on average explained 83% of the modules’ overall vari-
ability. Then, associations of the principal components 
with the previous experimental data [19, 20] were iden-
tified using non-parametrical Kendall correlation and 
selecting those associations with absolute value of rho 
(|R|) ≥ 0.4 and P value (P) < 0.05. Significant differen-
tially expressed genes within functionally significant 
network modules were also considered for comparison 
with previous experimental data.

Results
Study workflow
In the pre-training analysis, we describe transcription-
ally active network modules that are specific to COPD 
patients (Fig.  1a–c). Likewise, in the analysis of the 
training-induced effects, we separately analyze network 
modules that changed in response to training in COPD 
and healthy and compare the differences between them. 
Functional implications of the network modules were ini-
tially determined through the analysis of pathways asso-
ciated to module genes and then specific mechanisms 
were deduced from the gene functions and interactions. 
In a subsequent step, the network modules and repre-
sentative genes of specific pathways are compared with 
previous experimental data obtained in the two study 
groups both showing clear training-induced physiologi-
cal responses, as described in Fig. 1d and in Tables 1 and 
2.

Alterations in skeletal muscle of COPD patients at rest
The pre-training study identified four significant COPD 
specific network modules, that were functionally charac-
terized, on the basis of significantly enriched GO terms 
in the modules (see Additional file 2: Table S5), as: cre-
atine metabolism, Ca2+ dependent binding, TGF-β sign-
aling and Interferon response (Fig. 2a).

Defective skeletal muscle energy metabolism in COPD 
was indicated by the creatine metabolism module. The 
module presented four out of the nine genes of the cre-
atine metabolism pathway significantly down-regulated, 
two related to creatine synthesis (GAMT, GATM) and 
two creatine kinase (CK) genes (CKB, CKMT2). Over-
all, down-regulation of creatine metabolism suggests 
impairment of muscle energy production, which is con-
sistent with studies showing low baseline creatine kinase 
and ATP concentrations [29, 30]; and low post-exercise 
recovery rate in COPD skeletal muscle [31–33].

Table 1  Characteristics of the study groups

Results are expressed as mean ± SD

In the post-training study, lactate measurements during constant-work rate 
exercise were done at the same workload and duration than the pre-training 
exercise protocol

FFMI fat free mass index, FEV1 forced expiratory volume in the first second, FEV1/
FVC FEV1 to forced vital capacity ratio, VO2 peak peak oxygen uptake difference 
post minus pre-training, [La]a arterial lactate concentration difference

Unpaired t test was used to compare controls and COPD, * P < 0.05. Paired t test 
was used to compare post-training and baseline time points in both healthy 
controls and COPD patients, †P < 0.05. Low FFMI was defined as < 17.05 kg/
m2 for men [21]. It is of note that three COPD patients were discarded from the 
analysis because they did not pass the Agilent analysis

Healthy COPD

Sex (M/F) 10/2 15/0

Age, years 65 ± 9 69 ± 7

FFMI, kg/m2 21 ± 2 19 ± 3

FEV1, L (mean % pred) 3.46 ± 0.69 (107) 1.34 ± 0.37 (46)*

FEV1/FVC 0.75 ± 0.04 0.43 ± 0.08*

VO2 peak, L/min (mean VO2 peak/
kg)

1.70 ± 0.5 (22) 0.91 ± 0.3 (14)*

[La]a peak, mEq/L 10.60 ± 2.7 6.8 ± 2.3*

VO2 peak training diff (post–pre), 
L/min

0.25 ± 0.11† 0.14 ± 0.18†

[La]a training diff (post–pre), mEq/L − 4.60 ± 0.6† − 1.5 ± 2†

Table 2  Summary of experimental data obtained from the same study groups

Summary description of the results of previous experimental measurements on plasma metabolomics [19], as well as on both muscle and blood inflammatory 
cytokines and redox status [20], carried out at rest before training and after endurance training. The term training diff refers to training-induced adaptive changes. For 
comprehensive list of measured variables see Additional file 2: Tables S2, S7 for the differentials

Measurements COPD versus health
Summary of results

Plasma metabolomics [19] The two groups showed differences in metabolomic profiles at rest (P < 0.05). Levels of valine, alanine and 
isoleucine were associated with FFMI (P < 0.01 each)

Plasma metabolomics training diff [19] In Healthy, training generated marked changes in amino acids, creatine, succinate, pyruvate, glucose and 
lactate (P < 0.05 each). But, COPD patients only showed lactate decrease (P < 0.05)

Inflammatory cytokines [20] COPD patients showed high levels of circulating cytokines (P < 0.05), not seen in healthy

Inflammatory cytokines training diff [20] No training-induced changes were observed in circulating cytokines levels

Redox status [20] COPD patients showed blood and muscle oxidative stress at baseline. Muscle and blood protein carbon‑
ylation levels were correlated (P < 0.05)

Redox status training diff [20] In COPD patients, protein nitration levels decreased after training
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It is of note that impaired creatine metabolism would 
primarily affect work performance and Ca2+ homeo-
stasis, especially in the presence of oxidative stress [34, 
35]. In line with this, we found clustering of S100 fam-
ily calcium-dependent protein binding genes in the 
Ca2+ dependent protein binding module. The potential 
deleterious effect of the module is well represented by 
the down-regulation of S100A1 gene, which could lead 
to abnormal sarcoplasmic reticulum Ca2+ content and 
fluxes, deteriorating muscle contractility and work per-
formance [36, 37]. Furthermore, several module genes 
(S100B, S100A4, S100A6, MYH9) are related to cell mor-
phogenic processes.

The TGF-β signaling module displayed an interplay of 
genes related to muscle remodeling (SMURF1, SMURF2, 
SMAD7) and cellular stress response (MAP3K2, SPP1). 
Abnormal TGF-β signaling was suggested by up-regula-
tion of its inhibitor SMURF1 and further strengthened 
by the observed down-regulation of SMURF1’s bind-
ing competitor (PDLIM7) [38] potentially leading to 
increased protein degradation by ubiquitination [39]. The 
associated gene functions suggest an interplay between 
TGF-β signaling and oxidative stress, which has been 
reported in the literature highlighting the specific role of 

SMURF1 in these processes [40, 41]. Furthermore, over-
expression of SMURF1 may attenuate IFN-γ-mediated 
immune responses of the Jak-STAT pathway, by inhib-
iting STAT1 [42, 43], positive regulator of IFIT gene 
expression [44], which could explain systematic down-
regulation of these genes in the interferon response 
module.

Evaluation of alterations in COPD patients at rest
In order to evaluate the functions of the COPD specific 
network modules, their association with previous experi-
mental data was analyzed (see Fig.  2b and for details 
Additional file 2: Table S8).

The Creatine metabolism module showed statisti-
cally significant associations with systemic inflamma-
tory markers, namely IFN-γ (|R| = 0.42, P = 0.041), IL7 
(|R| = 0.5, P = 0.016) and CXCL9 (|R| = 0.58, P = 0.003) 
as well as with pre-training blood lactate levels at a con-
stant-work rate exercise at 75% VO2 peak (|R| =  0.49, 
P = 0.013) suggesting relationships between altered cell 
bioenergetics and abnormal inflammatory processes.

The association of the Ca2+ dependent protein binding 
module with muscle mass (FFMI) (|R| = 0.45, P = 0.026) 

Fig. 2  Disease effects (COPD-DE) network modules. a The four network modules associated to COPD disease effects and their composing 
genes. Genes are colored according to their differential regulation, namely: up regulation—red nodes; and down regulation—blue nodes. 
Significantly differentially expressed genes are indicated by * (FDR ≤ 0.05) (for detailed information see Additional file 2: Table S6). b The significant 
correlations of independent measurements with any of the network modules’ first three principal components. Blue squares depict exercise related 
independent variables [19]; red squares show cytokines measured in blood [20]; yellow squares correspond to amino acids measured in serum [19]; 
and, green squares represents redox biomarkers [20]
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and with exercise capacity, expressed by the composite 
BODE index [45] (|R| =  0.47, P =  0.033) confirms the 
physiological impact of defective Ca2+ homeostasis. Such 
an association at module level is further strengthened by 
the correlations of the S100A1 gene expression with both 
VO2 peak (R = 0.52, P = 0.006) (Fig. 3a) and peak work 
rate (Watts peak) (R = 0.53, P = 0.005).

Consistent with the functional analysis, TGF-β sign-
aling module showed significant correlations with 
increased skeletal muscle nitrosative stress in COPD 
patients (|R| =  0.49, P =  0.031), as well as with abnor-
mally low levels of blood valine amino acids (|R| = 0.41, 
P =  0.047). Likewise, blood cytokines IFN (|R| =  0.44, 
P = 0.03) and IL4 (|R| = 0.47, P = 0.024) also showed sig-
nificant associations with the module. At gene level, sta-
tistically significant negative correlations were observed 
between SMURF1 and nitrosative stress levels in skeletal 
muscle of COPD patients (R = −  0.66, P =  0.017), not 
seen in healthy subjects (Fig. 3b).

As expected, interferon response module showed sig-
nificant correlations with IFN (|R| = 0.63, P = 0.015) and 
several other cytokines, which presented elevated blood 
levels in COPD patients (Table 2). Furthermore, the mod-
ule also presented significant relationships with FFMI 
(|R| = 0.47, P = 0.019) and peak work rate (|R| = 0.40, 
P = 0.047) in COPD patients.

Inefficient training‑induced responses in COPD patients
In the analysis of the training-induced effects (TE), we 
identified and evaluated network modules separately for 
COPD patients (COPD-TE) and for healthy sedentary 
subjects (Healthy-TE). The research identified a total of 
six functionally enriched network modules (Fig. 4a).

It is of note that Hippo signaling was the only COPD-
TE specific module; whereas, some genes of the Inter-
feron response were observed in both COPD-TE and 
Healthy-TE. Likewise, Oxidative phosphorylation, Amino 
acid biosynthesis, Epigenetic regulation of metabolic pro-
cesses and Intracellular transport functional modules 
were only observed in Healthy-TE and were named after 
significantly enriched GO terms in the modules.

In COPD-TE, the Hippo pathway module suggests 
abnormal training-induced activation of skeletal muscle 
remodeling, as reported in detail in the extended results 
section in Additional file 1: Section 1.

Endurance training induced inflammatory responses in 
skeletal muscle, as indicated by the Interferon response 
module that showed a consistent increase in gene expres-
sion levels in both COPD-TE and Healthy-TE. The 
module could signal the local inflammatory response 
to muscle damage caused by exercise, which reportedly 
coincides with muscle repair, regeneration, and growth 
[46].

It is of note that the four Healthy-TE network modules 
indicated strong associations of training responses with 
bioenergetics changes and their joint regulation with 
other molecular functions (see extended results in Addi-
tional file 1: Section 2).

Evaluation of training‑induced responses in COPD patients
The analysis of associations between TE network mod-
ules and previous experimental data was carried out in 
COPD-TE and Healthy-TE separately, as displayed in 
Fig.  4b (for details see Additional file  2: Table  S8). We 
observed a significant association between training-
induced increase in peak work rate (Watts) and the inter-
feron response module in the two groups (|R|COPD = 0.48, 
PCOPD =  0.019; |R|Healthy =  0.53, PHealthy =  0.018), sug-
gesting training-induced increase of inflammatory 
responses both in healthy subjects and in COPD patients. 
However, the most relevant findings were the strong 
relationships between Healthy-TE network modules 

Fig. 3  Relationships between genes from COPD specific modules 
(disease effects) and previous experimental data. a The relationships 
between S100A1, from the Ca2+ dependent binding module, and 
VO2max. The two groups, healthy subjects (blue circles) and COPD 
patients (low and normal FFMI, empty and filled squares, respectively) 
fell on the same regression line (R = 0.52, P = 0.006, FDR = 0.026). 
b The relationships between SMURF1 from the TGF-β signaling 
module and skeletal muscle nitrosative stress. A statistical significant 
correlation was seen in the COPD group, both normal and low FFMI 
(R = − 0.67, P = 0.018 and FDR = 0.07), but not in healthy subjects 
(R = − 0.2, P = 0.55)
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Fig. 4  Training effects (TE) network modules. a Active network modules identified in case of COPD-TE, Healthy-TE and in both (shared). Genes are 
colored according to their differential regulation in COPD-TE (inner color of the nodes) and in Healthy-TE (border color of the nodes): up regulation 
with training (red circles), down regulation with training (blue circles). Modules are named after significantly enriched GO terms. Training differential 
expression significance is signed by * for COPD-TE, and § for Healthy-TE (FDR < 0.05) (for detailed information see Additional file 2: Table S6). b The 
significant correlations of the independent measurements with any of the significantly-changed training modules’ first three principal components 
in COPD, depicted as purple dashed lines, and in healthy subjects, depicted as blue dotted-dashed lines. Blue squares depict exercise related 
independent variables; red squares show cytokines measured in blood; and yellow squares correspond to amino acids measured in serum
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associated to different aspects of muscle bioenergetics 
and metabolomics training-induced changes, not seen in 
COPD patients. Likewise, statistically significant associa-
tions were observed between training-induced transcrip-
tional changes at gene level and plasma metabolomics 
responses in healthy subjects, but not in COPD patients, 
as shown in Fig.  5 wherein the relationships between 
training-induced changes the splicing factor SF3A3 
(∆SF3A3) and ∆glutamine are depicted for healthy sub-
jects (RHealthy  =  0.7, PHealthy  =  0.001) and for COPD 
patients (RCOPD = − 0.14, PCOPD = 0.518).

Discussion
The approach adopted in the current study contributed 
to uncover novel interactions among biological pathways 
of skeletal muscle dysfunction in COPD patients, as well 
as suggest biomarkers, while reinforcing previous results 
on the mechanisms related to the disease. The applied 
methodological framework also shows high potential to 
explore relations between clinical and omics platforms, 
facilitating interpretation of biological measurements.

The four network modules identified in the pre-
training analysis (Fig.  2a) correspond to COPD specific 
mechanisms related to abnormal energy production and 
contractility, as well as to alterations in both inflam-
matory and oxidative stress pathways. Moreover, they 
showed significant associations with previous measure-
ments carried out in the same study group (Figs. 2b, 3). 
To be noted that lung function (FEV1) only presented a 
weak negative relationship with the interferon module 
that did not meet the inclusion criteria of the analysis. 
In contrast, several COPD specific modules, and genes 

(Fig. 2b) consistently showed associations with different 
indices reflecting exercise capacity, namely: BODE, VO2 
peak, Watts peak and lactate levels.

The two study groups showed significant physiological 
training effects as displayed in Table  1. The differences 
in the training-induced responses between COPD and 
healthy (Fig.  4a) further contributed to shed novel light 
on the underlying mechanisms of skeletal muscle dys-
function in these patients. The most striking finding was 
that the physiological bioenergetics responses, strongly 
correlated with plasma metabolomics (Fig. 4b), were not 
observed in the patients. Instead, in the COPD group, 
the training-induced changes were mostly related with 
skeletal muscle remodeling (Hippo signaling pathway), 
without significant adaptive changes in oxidative phos-
phorylation and related bioenergetics pathways. It is of 
note that in a post hoc analysis, we explored the impact 
of FFMI on the modules, which consistently indicated 
that training adaptation seen in COPD patients with 
normal FFMI were more similar to the ones of healthy 
subjects than those observed in COPD patients with low 
FFMI (see Additional file  1: Section  2). Regarding the 
training-induced inflammatory responses, the healthy 
and COPD groups only shared part of the genes of the 
network module that indicates increased inflamma-
tory changes induced by training in COPD. It is of note 
that significant associations of peak work rate with the 
inflammatory network modules were observed in the dis-
ease effects (Fig. 2a, b) and in the training-induced effects 
(Fig. 4a, b).

As acknowledged below, the current study cannot 
inform on causality and temporal sequence of the skeletal 
muscle abnormalities observed in the COPD group. The 
marked differences between COPD patients and healthy 
subjects regarding training adaptations of skeletal muscle 
bioenergetics (Fig. 4a) seem to suggest that the abnormal 
energy production, already depicted in the pre-training 
analysis (Fig.  2a), is the most visible and likely the pri-
mary phenomenon of skeletal muscle dysfunction in 
COPD. It is of note that a recent report using data from 
the same study group [10], but focusing on the analysis 
of gene regulatory networks, highlighted the existence of 
significant COPD abnormalities at mitochondrial level 
with impact on skeletal muscle inflammatory responses, 
and explored potential therapeutic strategies.

Abnormal bioenergetics may likely trigger changes 
in skeletal muscle Ca2+ homeostasis, which ultimately 
may lead to impairment of the contractile mechanisms 
and alterations in muscle morphogenesis, as suggested 
by the Ca2+ dependent protein binding module (Fig. 2a) 
and the Hippo signaling pathway module (Fig. 4a). These 
mechanisms might be related to generation of abnormal 
muscle fiber type distribution with increased glycolytic 

Fig. 5  Relationships between genes from Healthy-TE specific 
modules and previous experimental plasma metabolomics data. 
The figure depicts the relationships between training-induced 
changes in both SF3A3, from the Amino acid biosynthesis module, 
and glutamine. A strong correlation was seen in healthy subjects 
(blue circles) (R = 0.70, P = 0.001), but not in COPD patients (low and 
normal FFMI, empty and filled red squares, respectively) (R = − 0.14, 
P = 0.518)
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(Type II and IIX) to oxidative (Type I) fiber ratio in these 
patients [47, 48]. In the study, physiological inflammatory 
response pathways at baseline showed to be inhibited, 
potentially by SMURF1, and most likely be modulated by 
oxidative stress, which might indicate counter-regulatory 
processes related with low-grade systemic inflamma-
tion. The partly abnormal training-induced inflammatory 
responses observed in the study might also constitute a 
secondary phenomenon modulated by nitroso-redox dis-
equilibrium reported in these patients [3, 8, 20].

The network biology techniques used in the current 
study to identify and characterize skeletal muscle net-
work modules are gaining increasing attention in the 
biomedical research field due to their ability to highlight 
complex cellular disease mechanisms [49–51]. An added 
potential of PPI based methods is the constraint that the 
interaction network represents, whose topology already 
encodes basic biological functions [16, 52] and provides 
high performance in predicting biologically meaningful 
pathways [53]. Additionally, the model used in HotNet2, 
simulating the spread of influence of protein activity, 
enables the identification of key proteins with less sig-
nificant changes but with high biological meaning due to 
surrounding expression patterns as well as due to topol-
ogy (e.g. hub proteins, proteins with high betweenness 
centrality, etc.), which complement standard differential 
expression measures with deeper biological insights. We 
believe that the approach adopted in the current study 
facilitates a comprehensive analysis and understanding 
of complex cellular mechanisms overcoming limitations 
of traditional research only addressing analysis of target 
biological pathways. Furthermore, the applied methodol-
ogy has high potential for creating a standardized analy-
sis pipeline for the integrative analysis of multi-level data.

Study limitations
We acknowledge, however, that further longitudinal 
studies are needed to support the above statements, 
as well as to properly clarify the relationships between 
skeletal muscle dysfunction and pulmonary impairment 
provoked by the disease. We also acknowledge that the 
microarray dataset used in the study is lacking stand-
ard qPCR validation of specific biomarkers, which we 
aimed to overcome by showing the high concordance 
of specific markers with qPCR validation of two earlier 
studies on skeletal muscle of patients with COPD (Addi-
tional file 2: Table S9). However, we believe that given our 
system-based approach, the validation of a few genes is 
less relevant compared to the functional evaluation of 
the modules with independent measurements that was 
conducted in the study. Furthermore, the completeness 
and/or bias of the publicly available PPI networks [17, 23] 

are intrinsic limitations of the methodological approach 
which, additionally, does not provide information on 
causality. The rather small sample size constituted a 
problem such that a type II error limiting our interpre-
tations of the results cannot be excluded. Furthermore, 
the limitation of sample size has been addressed using 
robust statistical approaches at each step of the analy-
sis. In particular, when choosing the HotNet2 algorithm 
and its application, as explained in detail in the extended 
methods and, in general, when considering protein–pro-
tein interactions (PPI) network based methods, which 
offer a more robust performance in small sample size 
environments [54] compared to other systems medicine 
approaches [15]. Moreover, the identification of both 
statistically and biologically significant relationships of 
the resulting functional modules (and genes) with pre-
vious experimental multilevel data obtained in the same 
study groups [19, 20] provided additional robustness to 
the evaluation and functional characterization of the 
core findings of the study. Summing up, different fac-
tors emerging from the study design, such as sample 
size, noisy clinical environment and factors originating 
from the modeling technique in use, such as (i) current 
constraints of available PPI networks, (ii) modeling pro-
teins levels with gene expression, (iii) relying on arbitrary 
significance thresholds, and (iv) comparing of measure-
ments of different body compartments (blood, muscle) 
may lead to confounding results, which prompts for 
future validation of the study. The consistency of the 
results, however highlights the potential of biological 
modeling as a preliminary step for future discoveries. The 
above mentioned factors may also explain that the study 
did not identify specific pathways that are known to play 
a significant role in skeletal muscle dysfunction in COPD, 
such as the FoxO signaling pathway [3, 14, 55].

We acknowledge that differences in training intensity 
between healthy subjects and COPD patients (Table  1) 
should be considered in the interpretation of the results. 
However, the findings of the study are supported by the 
following factors: (i) pre-training COPD specific findings; 
and, (ii) qualitative nature of the training-induced differ-
ences between healthy and COPD unlikely explained only 
by differences in training intensity. A final methodologi-
cal consideration is that the COPD group includes only 
males, which constitute an over-representation of this 
gender (Table  1), as compared to current COPD preva-
lence in men. However, no reports on gender specificity 
of the findings have been found neither in the literature 
nor in our dataset (Additional file 1: Figure S5).

Future work
We believe that the current study significantly contrib-
uted to enhance our understanding of skeletal muscle 
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dysfunction in patients with COPD. Further research 
addressing the molecular mechanisms of impaired mus-
cle energy production in these patients should shed light 
on remaining challenges such as, causality, lung-muscle 
interactions and design of cost-effective strategies aiming 
at preventing non-pulmonary effects in COPD patients. 
The central role of impaired bioenergetics seems to 
endorse that promotion of daily physical activity at early 
disease stages may have a role preventing skeletal mus-
cle dysfunction in these patients. We believe that future 
longitudinal studies using the current methodological 
approach will generate further evidence supporting our 
interpretations of the current study findings.

A better knowledge on underlying mechanisms of non-
pulmonary effects of COPD should necessarily lead to 
enhanced patient risk assessment and better health ser-
vice selection. Moreover, continuous progresses in our 
understanding of mechanisms of COPD heterogeneity 
might prompt the need for revisiting the taxonomies of 
obstructive airways diseases.

Conclusions
The research provides a comprehensive view of the core 
mechanisms involved in skeletal muscle dysfunction as a 
systemic effect of COPD. The results indicate that COPD 
patients show impaired training-induced responses in 
skeletal muscle bioenergetics, with abnormal inflamma-
tory changes and altered tissue remodeling, as compared 
to healthy sedentary subjects. The current network medi-
cine approach shows high potential for future longitudi-
nal analyses exploring preventive strategies addressing 
non-pulmonary effects of COPD.
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