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Abstract 

Background:  Accumulating clinical researches have shown that specific microbes with abnormal levels are closely 
associated with the development of various human diseases. Knowledge of microbe–disease associations can pro‑
vide valuable insights for complex disease mechanism understanding as well as the prevention, diagnosis and treat‑
ment of various diseases. However, little effort has been made to predict microbial candidates for human complex 
diseases on a large scale.

Methods:  In this work, we developed a new computational model for predicting microbe–disease associations by 
combining two single recommendation methods. Based on the assumption that functionally similar microbes tend 
to get involved in the mechanism of similar disease, we adopted neighbor-based collaborative filtering and a graph-
based scoring method to compute association possibility of microbe–disease pairs. The promising prediction perfor‑
mance could be attributed to the use of hybrid approach based on two single recommendation methods as well as 
the introduction of Gaussian kernel-based similarity and symptom-based disease similarity.

Results:  To evaluate the performance of the proposed model, we implemented leave-one-out and fivefold cross 
validations on the HMDAD database, which is recently built as the first database collecting experimentally-confirmed 
microbe–disease associations. As a result, NGRHMDA achieved reliable results with AUCs of 0.9023 ± 0.0031 and 
0.9111 in the validation frameworks of fivefold CV and LOOCV. In addition, 78.2% microbe samples and 66.7% disease 
samples are found to be consistent with the basic assumption of our work that microbes tend to get involved in the 
similar disease clusters, and vice versa.

Conclusions:  Compared with other methods, the prediction results yielded by NGRHMDA demonstrate its effec‑
tive prediction performance for microbe–disease associations. It is anticipated that NGRHMDA can be used as a 
useful tool to search the most potential microbial candidates for various diseases, and therefore boosts the medical 
knowledge and drug development. The codes and dataset of our work can be downloaded from https://github.com/
yahuang1991/NGRHMDA.
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Background
Mammalian hosts have a close relationship with micro-
organisms which colonize niches including the urogeni-
tal tract, skin, upper and lower respiratory tract, intestine 
and internal organs [1]. Many important biological inter-
actions and processes arise from a diverse variety of 
microbes, and therefore human microbiome is emerging 
as an essential “organ” governing health and disease [2–
4]. For example, commensal bacteria from around 500–
1000 species inhabiting the skin have been reported to 
be involved in educating immune system in response to 
infection and injury, and maintaining homeostatic con-
trol of skin inflammation [5]. The presence of nearly 1014 
bacterial cells from more than 10,000 microbial species in 
human internal environment provides diverse gene prod-
ucts which induce different biochemical and metabolic 
activities [6–8]. Even though the massive contribution of 
microbes has been revealed, a detailed understanding of 
mechanisms underlying host–microbe interactions and 
their impact on different human diseases remains largely 
elusive [9].

The composition of endogenous microbial community 
can undergo constant changes and differ from person to 
person owing to different environmental variable such 
as host diet [10, 11], season [12], smoking [13], hygiene 
and use of antibiotics [14]. The deviant compositions 
of microbial community can lead to varying degrees 
of damage to the tissues of hosts and further induces 
diverse diseases [15]. And the abundance distribution of 
microbes has also been reported to be associated with 
several human diseases [16]. For example, low microbial 
diversity can cause obesity and inflammatory bowel dis-
ease [17, 18], while high microbial diversity in the vagina 
is linked to bacterial vaginosis [19]. Pathogenic microbes 
can endure selective pressures of their environment with 
different strategies, and this genetically distinct popula-
tion of microbes is usually regarded as contributor for 
different diseases such as allergic asthma [20], colorec-
tal carcinoma [21], necrotizing enterocolitis [22, 23], 
atopic dermatitis [24] and psoriasis [25]. For example, 
Skov et al. have reported that the toxins from Streptococ-
cus and Staphylococcus aureus can function as superan-
tigens which boost the development of guttate psoriasis 
by bypassing the normal control of T cell activation [26]. 
Socransky et  al. have observed that subgingival plaque 
is associated with several major microbial complexes 
including Fusobacterium, Porphyromonas gingivalis, 
Prevotella and Treponema [27]. Sze et al. have also iden-
tified an increase of the Firmicutes phylum and Burk-
holderia in patients with very sever chronic obstructive 
pulmonary disease (COPD) by Pyrotag sequencing [28].

With the development of experimental tools such as 
PCR, high-throughput sequencing and MALDI-TOF 

mass spectrometry (MS) as well as new sampling and 
culture strategies, much progress has been made towards 
discovering the mechanisms of microbial pathogenesis 
and microbe–disease associations [16, 29, 30]. Although 
an increasing amount has been discovered and recorded 
about the associations between microbes and diseases, 
technological hurdles remain to detect microbe–dis-
ease associations on a large scale [9]. Rather than a 
‘one-bacterium, one-disease’ model, diseases are usually 
cased and influenced by the dynamic interplay between 
host and microbe and the complex activity of microbial 
community. Experiment-based methods for identifying 
microbe–disease associations usually need a long and 
densely sampled time series to observe many individuals 
with different traits because of different host pressures 
and the dynamic microbial behavior. In addition, the 
host–microbe interactions involved in different diseases 
are still hard to be verified as accidental or obligatory 
based on the transcriptomics [31].

Even though the regulatory mechanism by way of 
which microbial participators get involved is still not 
well known, further ventures into identification of 
microbe–disease associations would boost diagnostic 
and therapeutic support for the clinical management 
of patients. Knowledge about microbe–disease asso-
ciations can provide valuable insights into understand-
ing complex disease mechanisms. For example, gastric 
and duodenal ulcers and Whipple’s disease, which were 
considered as noninfectious in origin, have been reclas-
sified as infectious ones after the identification of asso-
ciated pathogenic organisms [32]. In addition, knowing 
the disease-causing microbes can also illuminate newer 
ways to promote disease diagnosis and therapy. For 
example, fecal microbiota transplantation has recently 
proved to be a safe and feasible treatment option for 
clostridium difficile infection (CDI) [14], which tries to 
rebuild healthy microbial community by reintroducing 
normal flora via donor feces. Detecting novel microbial 
participators engaging the disease development is clearly 
important for the application of this treatment. Pre-
dicting new microbe–disease associations is expected 
to select the most potential candidates for validation 
experiments and therefore to accelerate the researches 
and reduce cost. However, little effort has been made to 
develop prediction models for referring novel microbe–
disease associations. Recently, the first database stor-
ing microbe–disease association data called HMDAD 
has been built by Ma et  al. by manually curating from 
large-scale pubic literatures and the researchers discov-
ered that the microbe-based disease network has strong 
overlaps with those disease network constructed based 
on genes, symptoms, chemical fragments and drugs. 
Specifically, HMDAD mainly focuses on non-infective 
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diseases which are rarely clinically studied from a micro-
bial perspective.

In this work, we have proposed a neighbor- and graph-
based combined recommendation model for human 
microbe–disease association prediction (NGRHMDA). 
This model is mainly based on the assumption that 
functionally similar microbes tend to intertwine in the 
development of similar disease, similar with the basic 
hypothesis of recommended systems that users who owns 
the same/similar likings will like similar kinds of items. 
NGRHMDA model is combined by two separate recom-
mendation model, one of which is neighbor-based col-
laborative filtering and the other is based on topological 
information of known microbe–disease bipartite graph. 
And this model combines symptom-based similarity 
and Gaussian kernel-based similarity for measuring dis-
ease and microbe similarity. To evaluate the effectiveness 
of the proposed model, two evaluation frameworks (i.e. 
lease-one-out and fivefold cross validations) have been 
implemented on HMDAD database, and the correspond-
ing ROC curves have been computed. As a result, the 
ensemble model of NGRHMDA yielded an average AUC 
of 0.9023 ± 0.0031 for fivefold cross validation and AUC 
of 0.9111 for LOOCV, which increased at least 0.0169 
and 0.0130 from the single models. In addition, the sta-
bility of the model was showed to be improved by com-
bining. The prediction results showed additional disease 
similarity, like symptom-based similarity we explored, 
can improve the prediction performance of NGRHMDA, 
and fully demonstrated that the proposed model is fea-
sible and effective to predict potential microbe–disease 
association on a large scale.

Materials
The database explored in this work was downloaded 
from the Human Microbe–Disease Association Database 
(HMDAD, http://www.cuilab.cn/hmdad) in Sep, 2016 
[33]. In the most previous studies from which the data 
of HMDAD database collected, microbe–disease asso-
ciations were discovering from genus-level information 
by using 16s RNA sequencing techniques. And for those 
microbes which were detected in an above genus level, 
HMDAD keeps the original names. In total, there are 
483 microbe–disease associations collected in HMDA by 
exploring 61 public publications. We further removed the 
redundant associations, and as a result, there are 450 dis-
tinct microbe–disease associations (covering 39 human 
diseases and 292 microbes) remained in the final dataset.

Methods
Neighbor‑based prediction model
In the field of recommendation system, collaborative fil-
tering (CF) was proposed to make automatic predictions 

about the interests of users by considering personal pref-
erences and user and item attributes. There are two main 
categories of memory-based CF: one is user-based rec-
ommendation and the other is item-based recommenda-
tion [34, 35]. User-based CF is a heuristic which suggests 
products by searching similar users while item-based CF 
makes prediction by considering item similarity. Two 
methods have similar implementation but consider the 
different perspectives to make predictions.

In this work, we combined user-based and item-
based CF to compute the association possibility for each 
microbe–disease pairs by considering other pairs sharing 
the same microbes/diseases, which we call “neighbors”. 
For measuring disease similarity, we combined Gauss-
ian kernel-based and symptom-based similarity into an 
integrated one. We constructed a microbe–disease adja-
cent matrix based on HMDAD dataset as A in which Aij 
denotes the association between disease i and microbe 
j (1 denotes associated and 0 denotes non-associated). 
Gaussian kernel-based disease similarity can be com-
puted as follow:

where

Here, γd is a normalized Gaussian standard deviation 
based on the disease vectors and parameter input γd′ (γd′ 
was set as 0.5); Ak,* denotes the k-th row vector of matrix 
A; nd is the number of diseases in HMDAD database 
(here, nd =  39). By this way, a 39 ×  39 disease similar-
ity matrix can be constructed. In addition, we further 
introduced the symptom-based disease similarity scores 
which were previously proposed based on co-occurrence 
of disease/symptom terms in PubMed bibliographic 
records by Zhou et al. [36]. And then an integrated dis-
ease similarity matrix was constructed by averaging:

Similarly, microbe similarity matrix was constructed by 
computing Gaussian distances:
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where γm is a normalized Gaussian standard deviation 
based on the microbe vectors and parameter input γd′ 
(γd′ was set as 0.5); A*,k denotes the k-th column vector 
of matrix A; nm is the number of microbes in HMDAD 
database (here, nm =  292). For now, there has been no 
scoring method proposed for microbe functional simi-
larity. And functional similarity could not be explained 
solely by homology and phylogenetic relatedness. We did 
not introduce additional microbial similarity as disease 
did. Based on the computed microbe and disease simi-
larity matrix, we computed the association possibilities 
by using user-based and item-based CF. Here, microbes 
and diseases were regarded as “items” and “users” respec-
tively. Given a microbe–disease pair (say di and mj), its 
association possibility was computed as follow:

And the final prediction matrix (say NS) was computed 
based on the average of Sdisease and Smicrobe:

Graph‑based prediction model
Since user-item associations can be easily represented in 
a bipartite graph, there are an increasing number of rec-
ommended algorithms proposed based on graph-based 
methods [37–39]. Most of these models performed ran-
dom walk algorithms like PersonalRank [40] to character-
ize the similarity between nodes of the user-item network, 
and links between users who share high rating for some 
items are more likely to accumulate walk counts because 
random walk favors large-weighted connections. However, 
the current version of HMDAD database is relatively small 
and sparse, which would lead long walks to be meaning-
less. Therefore, we adopted a two-step diffusion approach 
on the microbe–disease bipartite graph instead. In order 
to take microbe and disease similarities into account, we 
constructed two new integrated adjacency matrixes (i.e. Ad 
and Am) based on symptom-based disease similarity and 
Gaussian kernel-based microbe similarity:

In this way, two new adjacent matrixes with the same 
size of A could be constructed. In the first step of this dif-
fusion approach, each disease node would be assigned 
weights based on the degrees of its associated microbes 

(6)Sdisease(di,mj) =

∑nd
k=1 DS(di, dk) · Ak ,j

nd

(7)Smicrobe(di,mj) =

∑nm
k=1MS(mj ,mk) · Ai,k

nm

(8)NS(di,mj) =
Sdisease(di,mj)+ Smicrobe(di,mj)

2

(9)Ad = DS · A

(10)Am = A ·MS

and the two new adjacent matrixes. In other words, 
microbe nodes would transfer their correlation degrees, 
which are recorded in Am and Ad, to their associated 
diseases:

Here, s(dj) denotes to the nd × 1 weight vector of dis-
ease node dj assigned by its connected microbe nodes; 
Am(i,j) and Ad(i,j) denote the entities in the row i and col-
umn j of Am and Ad matrix, respectively; α (α was set 
as 0.5) is a damping factor to balance the contribution 
between Am and Ad. In the second step, the weight infor-
mation of disease nodes would return back to their asso-
ciated microbe nodes in a similar way with Eq. (11).

Here, β (β was set as 0.5) is a damping factor to balance 
the contribution between Am and Ad. In this way, s′(mj) 
could be constructed as a nd ×  1 vector which records 
the association possibilities of mj to each disease can be 
computed. As a result, the final prediction matrix based 
on this graph-based diffusion method (say GS) can be 
constructed by jointing nm column vectors of s′ as follow:

Combined recommendation model for microbe–disease 
associations
Recent research in the field of recommendation sys-
tem has demonstrated that the ensemble strategy can 
improve the performance of basic prediction model in 
some case [41–43]. There are a variety of recommenda-
tion algorithms have been proposed for different pur-
poses and considerations, and the hybrid models can 
overcome some problems of the single model such as 
cold start and the sparsity problem. In this work, the 
two single proposed prediction models make predic-
tion from distinct perspectives: neighbor-based CF tries 
to consider the similar neighbor and graph-based scor-
ing method tries to utilize the topological information of 
microbe–disease bipartite graph (see Fig. 1). Therefore, it 
would be promising to combines them into an integrated 
prediction result. Given two scoring matrixes predicted 
by neighbor-based and graph-based model (say NS and 
GS), we computed the final association possibilities for 
each microbe–disease pairs by simply taking the average 
since NS and GS share the same size:
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Here, the entity of S(i,j) denotes the final association 
possibility between disease i and microbe j predicted by 
the combined model.

(14)
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2
i = 1 . . . nd j = 1 . . . nm

Results
Leave‑one‑out cross validation
To evaluation the prediction ability of our NGRHMDA 
model, we here implemented LOOCV by using the pro-
posed model to compute the association possibilities of 
microbe–disease pairs in HMDAD database. Specifically, 
each recorded microbe–disease association would be 
used as testing sample and further predicted by training 

Fig. 1  Flowchart of NGRHMDA model
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the other known microbe–disease associations. And we 
computed the rank of each left-out testing sample by 
considering all uncertain microbe–disease pairs which 
cannot find any known relevance evidences as candidate 
samples. The predicted score which obtained a higher 
rank than the given threshold would be regarded as a 
successful prediction. We further computed the receiver-
operating characteristics (ROC) curves of each predic-
tion experiment based on the corresponding true positive 
rates (TPRs, sensitivity) and the false positive rates (FPRs, 
1-specificity) with different thresholds. Here, sensitivity 
denotes the percentage of the testing samples obtain-
ing higher ranks than the given threshold, and specific-
ity means the percentage of the rest testing samples with 
lower ranks than the threshold. We finally computed the 
areas under ROC curve (AUC) to evaluate the prediction 
performance numerically. AUC value of 1 indicates a per-
fect perdition while that of 0.5 demonstrate purely ran-
dom performance.

To evaluate the efficiency of the hybrid approach, we 
performed the microbe–disease association prediction 
on HMDAD database by using the two single models 
(i.e. neighbor-based and graph-based model) and their 
combined model, respectively. In addition, we further 
explored the effectiveness of additional information of 
symptom-based disease similarity by simply removing it 
from the neighbor-based model. As a result, the compari-
son results demonstrated the effectiveness of our hybrid 
approach as well as the introduction of other different 
similarity information (see Fig.  2). Specifically, NGRH-
MDA model obtained the best performance among these 
four model, yielding AUC of 0.9111 while the other two 
single models, neighbor-based and graph-based model, 
yielded AUCs of 0.9050 and 0.8932, respectively. In addi-
tion, the introduction of symptom-based disease simi-
larity was shown to bring obvious improvement in the 
prediction performance in terms of the increased AUC 
value from the basic neighbor-based model.

Fivefold cross validation
To further evaluate the prediction accuracy and sta-
bility, fivefold cross validation was also implemented 
on HMDAD database. Specifically, all the recorded 
micro-disease associations were randomly divided into 
5 roughly equal-sized parts of which 4 were used for 
model learning and the rest one was used as the test-
ing samples for model evaluation. Similar with LOOCV, 
all the uncertain microbe–disease pairs without known 
relevance evidences were regarded as potential candi-
dates. To decrease the bias brought from the random 
sample division, fivefold cross validation was repeated 
100 times by randomly dividing the samples in each 
time. As a result, NGRHMDA model yielded the highest 

average AUC of 0.9023 ±  0.0031 among the four mod-
els; graph-based model yielded an average AUC of 
0.8871 ± 0.0026; neighbor-based model yielded an aver-
age AUC of 0.8935 ±  0.0041. Without introducing the 
symptom-based disease similarity, the performance of 
basic neighbor-based model dropped to an average AUC 
of 0.8834 ± 0.0034 (see Table 1).

The prediction performance has demonstrated the reli-
able and effective predictive ability of NGRHMDA for 
microbe–disease associations by only using the known 
microbe–disease associations and symptom-based dis-
ease similarity. And the low standard deviation of AUC 
yielded by NGRHMDA suggests the performance stabil-
ity improved by the adopted hybrid approach. Therefore, 
we implemented NGRHMDA on HMDAD database to 
fill the microbe–disease adjacent matrix and prioritize 
the candidate microbes for each kind of disease. The pre-
dicted results were publicly released, which may provide 
valuable insights and clues for future microbial experi-
ments and clinical research (see Additional file  1: Table 
S1). It is anticipated that the most potential microbe–dis-
ease pairs with high ranks would be verified by the future 
studies.

Comparison with other methods
In this section, in order to evaluate the effectiveness of 
the proposed model, we compare the prediction perfor-
mance of NGRHMDA model with some other predic-
tion techniques including singular value decomposition 
(SVD), latent factor model (LFM) and Katz method. 
We simply performed SVD on the microbe–disease 
adjacency matrix and reconstructed it to fill the values 
of uncertain samples. Aside from neighborhood and 
graph-based methods, latent factor model is becoming 
a popular model for collaborative filtering in the field of 
recommendation system. It is based on a matrix factori-
zation method and predicts ranks by optimizing users’ 
and items’ latent factors (also called latent features) 
[44, 45]. We here utilize the standard LFM method on 
HMDAD database by setting the size of latent factors as 
100 and using gradient descent to optimize the latent fac-
tor matrixes. Katz was also explored for the performance 
comparison, which is a traditional and popular social 
network analysis method. It was also previously used for 
develop prediction model for microRNA-disease [46] 
and gene-disease associations [47]. We here combined 
Katz method with symptom-based disease similarity and 
Gaussian-kernel similarity to perform microbe–disease 
association prediction on HMDAD database.

To evaluate the prediction performance of the com-
parison experiment, LOOCV was implemented and 
the corresponding ROC curves and AUC values were 
computed (see Fig. 3). As a result, the proposed model, 
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NGRHMDA, yielded the highest AUC of 0.9111; SVD-
based model yielded AUC of 0.2170; latent factor model 
yielded AUC of 0.8250; and Katz-based model yielded 
0.8644. The comparison result further demonstrated the 
promising prediction ability of NGRHMDA for microbe–
disease associations.

Correlation analysis of microbe and disease clusters
For the purpose of assessing the effectiveness of NGRH-
MDA, in this section, we further investigate into the 
common pattern of the microbes associated with each 
single type of disease and, inversely, the diseases associ-
ated with each single type of microbe. Specifically, we 
used the microbe–microbe similarity scores to represent 
a type of microbe with a feature vector. For example, with 
a constructed microbe–microbe similarity matrix MS in 
which entity MS(i,j) denotes the similarity between the 
i-th and the j-th microbe, the feature vector of the first 
type of microbe would be the first column vector of MS 
matrix. In a similar way, the feature vectors of diseases 
could be obtained from the DS matrix.

For those 68 types of microbes which have more than 
two records in HMDAD database, we compute the corre-
lation scores of their associated disease cluster and take 
the average. The average of correlation scores measures 
how similar the different diseases associated with the 
same type microbe are. We regard the mean of autocor-
relation matrix of DS matrix as the baseline. In addition, 
in order to draw a more reliable conclusion, we highlight 
the samples having significantly higher or lower correla-
tion score than the baseline by using a difference thresh-
old of a standard deviation (see the red and green star 
points in Fig. 4). As a result, we found that 78.2% (18/23) 
highlighted samples were found to be consistent with our 
assumption that microbes tend to get involved in similar 
diseases. In addition, our assumption is also supported by 
the result that the average correlation score of associated 
disease clusters for single type of microbe achieves 0.3690, 
which is significantly higher than the baseline of 0.3121.

Besides, a similar statistics analysis was also imple-
mented on the microbe clusters associated with each 
single type disease (see Fig. 5). Considering the diseases 

Fig. 2  Prediction performance of NGRHMDA and three single models in terms of ROC curve and AUC based on leave-one-out cross validation

Table 1  Performance comparison among four different computation models in the framework fivefold cross validation

Method Fivefold cross validation result

NGRHMDA 0.9023 ± 0.0031

Graph-based single model 0.8871 ± 0.0026

Neighbor-based single model with symptom-based similarity 0.8935 ± 0.0041

Neighbor-based single model without symptom-based similarity 0.8834 ± 0.0034
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recorded in HMDAD database have associations with 
approximately 11 types of microbes in average, we thus 
focus only on the 6 types of diseases which have more 
than 10 records. As a result, 66.7% (4/6) samples were 
found to be consistent with our assumption that diseases 
tend to be associated with similar microbes. In addi-
tion, the average correlation score of associated microbe 

clusters for single type of disease achieves 0.6098, which 
is significantly higher than the baseline of 0.5661. It 
should be noted that the adjacency matrix for known 
microbe–disease associations is still far from complete 
due to the current limited knowledge. Therefore, it is 
anticipated that the conclusion could be confirmed more 
reliably with more clinical observations in the future.

Fig. 3  Comparison results of NGRHMDA with SVD-based, LFM-based and Katz-based prediction models in terms of ROC curve and AUC based on 
leave-one-out cross validation
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Disccusion
There are an increasing number of clinical evidences 
showing that the involvement of specific microbe with 
abnormal levels can significantly influence the devel-
opment of various kinds of human diseases including 
the noninfectious ones. Detecting the disease-causing 
microbes for specific diseases can boot the understand-
ing of disease mechanism and provide valuable infor-
mation for the prevention, diagnosis and treatment of 
various diseases. However, little effort has been devoted 
to develop computational model for predicting microbe–
disease associations on a large scale. In this work, we 
explored the HMDAD database which collects detected 
microbe–disease associations from previously pub-
lished experimental reports to predict the most potential 
microbial candidates for different diseases. NGRHMDA 
was proposed by combining two single recommendation 
prediction models which are based on neighbor informa-
tion and graph topology, respectively. In addition, it has 
an open frame which allows different types of microbe/
disease similarity (e.g. symptom-based disease similar-
ity, disease phenotypic similarity and disease seman-
tic similarity) to be introduced by combining with the 
Gaussian-kernel based similarity. Leave-one-out and 
fivefold cross validation were implemented for perfor-
mance evaluation. As a result, NGRHMDA yielded reli-
able results with AUCs of 0.9111 and 0.9023 ± 0.0031 in 
the evaluation frameworks of LOOCV and fivefold CV, 
respectively, which fully demonstrated the effectiveness 
of the proposed model. We anticipate that the microbe–
disease associations which were predicted as potential 

candidates with high ranks will be confirmed by future 
experimentally observations.

NGRHMDA solves the problem of predicting disease-
causing microbes in a similar way with recommenda-
tion system which predicts ratings for items that the user 
may have an interest in. That is, NGRHMDA predicted 
association possibilities for each microbe–disease pair by 
regarding microbes and diseases as “items” and “users” 
respectively based on the assumption that functionally 
similar microbes tend to be involved in the mechanism of 
similar diseases. Two single prediction models combined 

Fig. 4  Correlation of disease clusters associated with single type of microbes

Fig. 5  Correlation of microbe clusters associated with single type of 
diseases
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by NGRHMDA make prediction from different perspec-
tives, and therefore are expected to provide comprehen-
sive information based on the training data. By using the 
hybrid approach, NGRHMDA was demonstrated to have 
obvious performance improvement from the single mod-
els in terms of prediction accuracy and stability. In addi-
tion, the introduction of additional disease similarity also 
proves to be useful for the performance improvement. 
Compared with other prediction techniques, NGRH-
MDA model has obvious advantages with high prediction 
performance for microbe–disease association predic-
tion. As an unsupervised learning model, NGRHMDA 
does not need any negative samples for learning and can 
be implemented to microbes/diseases with the informa-
tion of known associated diseases/microbes. Therefore, it 
is anticipated that NGRHMDA can be used as a feasible 
and effective computational tool for searching microbial 
candidates for various disease on a large scale.

However, some limitations still exist in the current ver-
sion of NGRHMDA. First, it still needs manual interven-
tion to adjust model parameters such as the two damping 
factors (i.e. α and β) of graph-based model, which may 
hinder the prediction performance when performing on 
different databases. In addition, similar with the diversity 
problem of recommendation models, NGRHMDA may 
excessively “recommend” some well-studied microbes, 
which are known to be associated with many diseases, to 
the query disease. Finally, NGRHMDA cannot be applied 
to new diseases/microbes which have no any known 
microbe/disease association. Further name matching 
method for disease and microbe inputs may solve this 
problem to some extent.

Abbreviations
COPD: chronic obstructive pulmonary disease; MS: mass spectrometry; 
CDI: clostridium difficile infection; NGRHMDA: neighbor- and graph-based 
combined recommendation model for human microbe–disease association 
prediction; LOOCV: lease-one-out cross validation; Fivefold CV: fivefold cross 
validation; HMDAD: Human Microbe–Disease Association Database; CF: col‑
laborative filtering; ROC: receiver-operating characteristic; TPR: true positive 
rate; FPR: false positive rate; AUC: the areas under ROC curve; SVD: singular 
value decomposition; LFM: latent factor model.

Authors’ contributions
YAH conceived the algorithm, carried out analyses, prepared the data sets, car‑
ried out experiments, and wrote the manuscript. ZHY, XC and GYY designed 
performed. SWZ and ZAH analyzed experiments. All authors read and 
approved the final manuscript.

Author details
1 Department of Information Engineering, Xijing University, Xi’an 710123, 
China. 2 School of Information and Control Engineering, China University 

Additional file

Additional file 1: Table S1. We publicly released the predicted of 
microbes for each disease, which may offer valuable information and 
clues for biological experiments.

of Mining and Technology, Xuzhou, China. 3 College of Computer Science 
and Software Engineering, Shenzhen University, Shenzhen 518060, China. 
4 Academy of Mathematics and Systems Science, Chinese Academy of Sci‑
ences, Beijing 100190, China. 

Acknowledgements
YAH was supported by the National Natural Science Foundation of China 
under Grant No. 61702424. ZHY was supported by the National Natural Sci‑
ence Foundation of China under Grant No. 61572506. XC was supported by 
the National Natural Science Foundation of China under Grant No. 61772531 
and National Center for Mathematics and Interdisciplinary Sciences, CAS.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
The datasets analysed during the current study are available from the cor‑
responding author on reasonable request.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Funding
The publication costs for this article were funded by the corresponding 
author’s institution. The publication funding came from National Natural Sci‑
ence Foundation of China under Grant No. 61572506 and No. 61772531.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

Received: 12 April 2017   Accepted: 18 September 2017

References
	1.	 Sommer F, Bäckhed F. The gut microbiota—masters of host development 

and physiology. Nat Rev Microbiol. 2013;11(4):227–38.
	2.	 Methé BA, Nelson KE, Pop M, Creasy HH, Giglio MG, Huttenhower C, 

Gevers D, Petrosino JF, Abubucker S, Badger JH. A framework for human 
microbiome research. Nature. 2012;486(7402):215.

	3.	 Consortium HMP. Structure, function and diversity of the healthy human 
microbiome. Nature. 2012;486(7402):207–14.

	4.	 Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI. Human 
nutrition, the gut microbiome and the immune system. Nature. 
2011;474(7351):327–36.

	5.	 Rup L. The human microbiome project. Indian J Microbiol. 2012;52:315.
	6.	 Shah P, Fritz JV, Glaab E, Desai MS, Greenhalgh K, Frachet A, Niegowska 

M, Estes M, Jäger C, Seguin-Devaux C. A microfluidics-based in vitro 
model of the gastrointestinal human-microbe interface. Nat Commun. 
2016;7:11535.

	7.	 Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett C, Knight R, Gordon JI. 
The human microbiome project: exploring the microbial part of our‑
selves in a changing world. Nature. 2007;449(7164):804.

	8.	 Bhavsar AP, Guttman JA, Finlay BB. Manipulation of host-cell pathways by 
bacterial pathogens. Nature. 2007;449(7164):827–34.

	9.	 Kumar N, Lin M, Zhao X, Ott S, Santana-Cruz I, Daugherty S, Rikihisa Y, 
Sadzewicz L, Tallon LJ, Fraser CM. Efficient enrichment of bacterial mRNA 
from host-bacteria total RNA samples. Sci Rep. 2016;6:34850.

	10.	 David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, 
Ling AV, Devlin AS, Varma Y, Fischbach MA. Diet rapidly and reproducibly 
alters the human gut microbiome. Nature. 2014;505(7484):559–63.

	11.	 Muegge BD, Kuczynski J, Knights D, Clemente JC, González A, Fontana 
L, Henrissat B, Knight R, Gordon JI. Diet drives convergence in gut 

http://dx.doi.org/10.1186/s12967-017-1304-7


Page 11 of 11Huang et al. J Transl Med  (2017) 15:209 

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

microbiome functions across mammalian phylogeny and within humans. 
Science. 2011;332(6032):970–4.

	12.	 Davenport ER, Mizrahi-Man O, Michelini K, Barreiro LB, Ober C, Gilad Y. 
Seasonal variation in human gut microbiome composition. PLoS ONE. 
2014;9(3):e90731.

	13.	 Mason MR, Preshaw PM, Nagaraja HN, Dabdoub SM, Rahman A, Kumar 
PS. The subgingival microbiome of clinically healthy current and never 
smokers. ISME J. 2015;9(1):268–72.

	14.	 Donia MS, Cimermancic P, Schulze CJ, Brown LCW, Martin J, Mitreva M, 
Clardy J, Linington RG, Fischbach MA. A systematic analysis of biosyn‑
thetic gene clusters in the human microbiome reveals a common family 
of antibiotics. Cell. 2014;158(6):1402–14.

	15.	 Nothnagel EA, McNeil M, Albersheim P, Dell A. Host-pathogen interac‑
tions. Plant Physiol. 1983;71(4):916-26.

	16.	 Medzhitov R. Recognition of microorganisms and activation of the 
immune response. Nature. 2007;449(7164):819–26.

	17.	 Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, 
Sogin ML, Jones WJ, Roe BA, Affourtit JP. A core gut microbiome in obese 
and lean twins. Nature. 2009;457(7228):480–4.

	18.	 Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, 
Pons N, Levenez F, Yamada T. A human gut microbial gene catalogue 
established by metagenomic sequencing. Nature. 2010;464(7285):59–65.

	19.	 Fredricks DN, Fiedler TL, Marrazzo JM. Molecular identification of bacteria 
associated with bacterial vaginosis. N Engl J Med. 2005;353(18):1899–911.

	20.	 Taube C, Müller A. The role of Helicobacter pylori infection in the devel‑
opment of allergic asthma. Expert Rev Respir Med. 2012;6(4):441–9.

	21.	 Sobhani I, Tap J, Roudot-Thoraval F, Roperch JP, Letulle S, Langella P, 
Corthier G, Van Nhieu JT, Furet JP. Microbial dysbiosis in colorectal cancer 
(CRC) patients. PLoS ONE. 2011;6(1):e16393.

	22.	 Mai V, Young CM, Ukhanova M, Wang X, Sun Y, Casella G, Theriaque D, 
Li N, Sharma R, Hudak M. Fecal microbiota in premature infants prior to 
necrotizing enterocolitis. PLoS ONE. 2011;6(6):e20647.

	23.	 Mshvildadze M, Neu J, Shuster J, Theriaque D, Li N, Mai V. Intestinal 
microbial ecology in premature infants assessed with non-culture-based 
techniques. J Pediatr. 2010;156(1):20–5.

	24.	 Kong HH, Oh J, Deming C, Conlan S, Grice EA, Beatson MA, Nomicos E, 
Polley EC, Komarow HD, Murray PR. Temporal shifts in the skin microbi‑
ome associated with disease flares and treatment in children with atopic 
dermatitis. Genome Res. 2012;22(5):850–9.

	25.	 Gao Z, Tseng C-H, Strober BE, Pei Z, Blaser MJ. Substantial altera‑
tions of the cutaneous bacterial biota in psoriatic lesions. PLoS ONE. 
2008;3(7):e2719.

	26.	 Skov L, Baadsgaard O. Bacterial superantigens and inflammatory skin 
diseases. Clin Exp Dermatol. 2000;25(1):57–61.

	27.	 Socransky S, Haffajee A, Cugini M, Smith C, Kent R. Microbial complexes in 
subgingival plaque. J Clin Periodontol. 1998;25(2):134–44.

	28.	 Sze MA, Dimitriu PA, Hayashi S, Elliott WM, McDonough JE, Gosselink 
JV, Cooper J, Sin DD, Mohn WW, Hogg JC. The lung tissue microbiome 
in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 
2012;185(10):1073–80.

	29.	 Patel R. MALDI-TOF MS for the diagnosis of infectious diseases. Clin Chem. 
2015;61(1):100–11.

	30.	 Corthésy B, Gaskins HR, Mercenier A. Cross-talk between probiotic bacte‑
ria and the host immune system. J Nutr. 2007;137(3):781S–90S.

	31.	 Sturdevant DE, Virtaneva K, Martens C, Bozinov D, Ogundare O, Castro N, 
Kanakabandi K, Beare PA, Omsland A, Carlson JH. Host–microbe interac‑
tion systems biology: lifecycle transcriptomics and comparative genom‑
ics. Futur Microbiol. 2010;5(2):205–19.

	32.	 Nathan C. Fresh approaches to anti-infective therapies. Sci Transl Med. 
2012;4(140):140sr142.

	33.	 Ma W, Zhang L, Zeng P, Huang C, Li J, Geng B, Yang J, Kong W, Zhou X, Cui 
Q. An analysis of human microbe–disease associations. Brief Bioinform. 
2016;18:85–97.

	34.	 Aggarwal CC. Neighborhood-based collaborative filtering. 
In: Recommender systems. Cham: Springer; 2016. p. 29–70. 
doi:10.1007/978-3-319-29659-3

	35.	 Bell RM, Koren Y. Improved neighborhood-based collaborative filtering. 
In: KDD cup and workshop at the 13th ACM SIGKDD international confer‑
ence on knowledge discovery and data mining. New York: Citeseer; 2007. 
p. 7–14.

	36.	 Zhou X, Menche J, Barabási A-L, Sharma A. Human symptoms—disease 
network. Nat Commun. 2014;5:4212.

	37.	 Yao W, He J, Huang G, Cao J, Zhang Y. A Graph-based model for context-
aware recommendation using implicit feedback data. World Wide Web. 
2015;18(5):1351–71.

	38.	 Reddy PK, Kitsuregawa M, Sreekanth P, Rao SS. A graph based approach 
to extract a neighborhood customer community for collaborative filter‑
ing. In: International workshop on databases in networked information 
systems. Berlin: Springer; 2002. p. 188–200.

	39.	 Culha A, Skabar A. Graph-based collaborative filtering using rating nodes: 
a solution to the high ratings/low ratings problem. In: Australasian joint 
conference on artificial intelligence. Berlin: Springer; 2015. p. 136–48.

	40.	 Haveliwala TH. Topic-sensitive pagerank. In: Proceedings of the 11th 
international conference on World Wide Web. New York: ACM; 2002. p. 
517–26.

	41.	 Barragáns-Martínez AB, Costa-Montenegro E, Burguillo JC, Rey-López M, 
Mikic-Fonte FA, Peleteiro A. A hybrid content-based and item-based col‑
laborative filtering approach to recommend TV programs enhanced with 
singular value decomposition. Inf Sci. 2010;180(22):4290–311.

	42.	 Burke R. Hybrid recommender systems: survey and experiments. User 
Model User-Adap Inter. 2002;12(4):331–70.

	43.	 Gunawardana A, Meek C. A unified approach to building hybrid recom‑
mender systems. In: Proceedings of the third ACM conference on recom‑
mender systems. New York: ACM; 2009. p. 117–24.

	44.	 Shen Y, Jin R. Learning personal + social latent factor model for social 
recommendation. In: Proceedings of the 18th ACM SIGKDD international 
conference on knowledge discovery and data mining. New York: ACM; 
2012. p. 1303–11.

	45.	 Hofmann T. Latent semantic models for collaborative filtering. ACM Trans 
Inf Syst (TOIS). 2004;22(1):89–115.

	46.	 Zou Q, Li J, Hong Q, Lin Z, Wu Y, Shi H, Ju Y. Prediction of microRNA-
disease associations based on social network analysis methods. BioMed 
Res Int. 2015;2015:810514.

	47.	 Singh-Blom UM, Natarajan N, Tewari A, Woods JO, Dhillon IS, Marcotte EM. 
Prediction and validation of gene-disease associations using methods 
inspired by social network analyses. PLoS ONE. 2013;8(5):e58977.

http://dx.doi.org/10.1007/978-3-319-29659-3

	Prediction of microbe–disease association from the integration of neighbor and graph with collaborative recommendation model
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Background
	Materials
	Methods
	Neighbor-based prediction model
	Graph-based prediction model
	Combined recommendation model for microbe–disease associations

	Results
	Leave-one-out cross validation
	Fivefold cross validation
	Comparison with other methods
	Correlation analysis of microbe and disease clusters

	Disccusion
	Authors’ contributions
	References




