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Abstract 

Background:  The Connectivity Map (CMAP) database, an important public data source for drug repositioning, 
archives gene expression profiles from cancer cell lines treated with and without bioactive small molecules. However, 
there are only one or two technical replicates for each cell line under one treatment condition. For such small-scale 
data, current fold-changes-based methods lack statistical control in identifying differentially expressed genes (DEGs) 
in treated cells. Especially, one-to-one comparison may result in too many drug-irrelevant DEGs due to random 
experimental factors. To tackle this problem, CMAP adopts a pattern-matching strategy to build “connection” between 
disease signatures and gene expression changes associated with drug treatments. However, many drug-irrelevant 
genes may blur the “connection” if all the genes are used instead of pre-selected DEGs induced by drug treatments.

Methods:  We applied OneComp, a customized version of RankComp, to identify DEGs in such small-scale cell line 
datasets. For a cell line, a list of gene pairs with stable relative expression orderings (REOs) were identified in a large 
collection of control cell samples measured in different experiments and they formed the background stable REOs. 
When applying OneComp to a small-scale cell line dataset, the background stable REOs were customized by filtering 
out the gene pairs with reversal REOs in the control samples of the analyzed dataset.

Results:  In simulated data, the consistency scores of overlapping genes between DEGs identified by OneComp and 
SAM were all higher than 99%, while the consistency score of the DEGs solely identified by OneComp was 96.85% 
according to the observed expression difference method. The usefulness of OneComp was exemplified in drug repo-
sitioning by identifying phenformin and metformin related genes using small-scale cell line datasets which helped to 
support them as a potential anti-tumor drug for non-small-cell lung carcinoma, while the pattern-matching strategy 
adopted by CMAP missed the two connections. The implementation of OneComp is available at https://github.com/
pathint/reoa.

Conclusions:  OneComp performed well in both the simulated and real data. It is useful in drug repositioning studies 
by helping to find hidden “connections” between drugs and diseases.
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Background
There are many strategies for drug repositioning based 
on different data such as chemical structural similarities, 
genetic variation (SNPs-disease correlations, SNPs-drug 
response) and gene expression profiling [1]. The strat-
egy based on gene expression profiling has the advan-
tage that it does not require a great amount of a priori 
knowledge on the diseases or drugs [2–4]. An ideal data-
base of gene expression profiles for drug repositioning 
study should include gene expression profiles of many 
cell lines representing a diverse range of diseases before 
and after drug treatments usually for thousands of drugs 
or candidate drugs. Thus, to create such a data source is 
a huge project and very costive. As far as we know, cur-
rently there are only two such large databases [2]. One is 
the LINCS database, which, however, has only profiled 
978 genes for 25,581 drugs, and the other is the CMAP 
database which has profiled more than 12,000 genes on 
mainly three types of cancer cell lines, MCF7, PC3 and 
HL60, treated with 1309 bioactive small molecules at 
various concentrations [5]. As an important public data 
source, the Connectivity Map (CMAP) [3, 6] has been 
widely applied to study drug repositioning [2, 7, 8] and 
drug action mechanisms [9, 10]. It has been cited over 
940 times in the past 10 years, as shown in the PubMed 
Central database. However, in the CMAP project, usually 
only one drug-treated sample was measured for one drug 
concentration against several control samples. For such 
small cell line datasets, traditional statistical methods 
such as the significance analysis of microarrays (SAM) 
[11, 12] and Student’s t test [13] lack power in identifying 
differentially expressed genes (DEGs) in the treated cells, 
while the commonly used fold-change (FC) method with 
an arbitrary cut-off value [14–16] lacks statistical con-
trol and tends to get many false discoveries. Therefore, 
for drug repositioning studies, CMAP adopts a rank-
based pattern-matching strategy [3] to build “connec-
tions” between disease signature and all gene expression 
changes caused by drug treatments. However, if all the 
genes are used, many drug-irrelevant genes participating 
in building the “connection” may blur the “connection”. 
Therefore, it is necessary to screen treatment-related 
DEGs beforehand.

In contrast to the small number of treated samples, 
there are in total 492, 277 and 229 gene expression pro-
files of control samples, respectively, for MCF7, PC3 and 
HL60, which scatter in different experimental batches of 
CMAP and there are more available in other data sources. 
Thus, it would be desirable to exploit these valuable con-
trol data to aid the differential expression analyses of 
small-scale treated samples. However, gene expression 
profiles from different experimental batches or laborato-
ries cannot be directly compared with each other due to 

experimental batch effects [17, 18]. In addition, different 
factors such as culturing with drug vehicles, transfect-
ing with control siRNAs or just blank controls may also 
influence gene expression profiles of a cell line. Recently, 
we developed an algorithm, RankComp [19], to identify 
DEGs in an individual cancer tissue through comparing 
the relative expression orderings (REOs) within a disease 
sample with the highly stable REOs predetermined in a 
large collection of normal samples. The algorithm finds 
up-regulated and down-regulated genes which lead to the 
disrupted REOs of gene pairs in the disease sample [19].

In this study, by analyzing the gene expression pro-
files of three types of commonly used cancer cell lines, 
HepG2, HCT116 and MCF7, we show that the REOs of 
genes pairs are highly reproducible in the control sam-
ples of a particular cell type, even though these samples 
were collected from different laboratories with different 
cultivation conditions, but widely disrupted after certain 
treatments. Based on this observation, we adapted Rank-
Comp to datasets with only one technical replicate. The 
modified algorithm, named OneComp, was evaluated 
based on data of three cell lines. To demonstrate the use-
fulness of the OneComp algorithm, we applied it to an 
application case study on repositioning two drugs, phen-
formin and metformin, for NSCLC based on the CMAP 
database.

Methods
Data and pre‑processing
Control samples of human cell lines HepG2 for liver 
cancer, HCT116 for colorectal cancer and MCF7 for 
breast cancer from different laboratories were collected 
to build a background gene pairs (Fig. 1). Three datasets, 
GSE41326 [20] for HepG2, GSE7161 [21] for HCT116 
and GSE37820 for MCF7 were used to evaluate the per-
formance of OneComp (Table 1). All the above datasets 
were collected from GEO [22, 23] (http://www.ncbi.nlm.
nih.gov/geo/) and ArrayExpress [24] (http://www.ebi.
ac.uk/arrayexpress/) databases. For the drug-reposition-
ing study, two non-small-cell lung carcinoma (NSCLC) 
sample datasets [25, 26] (GSE7670 and GSE10072) were 
used to build the “query signature” and disease signature 
for NSCLC (Table 2). A large number of control samples 
for MCF7, PC3 and HL60 cell lines were collected from 
CMAP database (Table  2) to build the background sta-
ble gene pairs. Datasets of metformin and phenformin 
treated samples for MCF7, PC3 and HL60 cell lines along 
their control samples were collected from the CMAP 
database (Table 3) to build the drug signatures.

For all the data we used, we downloaded the raw data 
(.CEL files) and used RMA (Robust Multichip Average) 
[27] for background adjustment (Bioconductor Affy 
package). Probe IDs were mapped to Entrenz gene IDs 

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
http://www.ebi.ac.uk/arrayexpress/
http://www.ebi.ac.uk/arrayexpress/
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using the corresponding platform files. If a probe set was 
mapped to multiple or zero genes, the data of this probe 
set were discarded. If multiple probe sets were mapped 

to the same gene, the expression value for the gene was 
summarized as the arithmetic mean of the values of the 
multiple probe sets.

Fig. 1  The control samples of HepG2, HCT116 and MCF7 cell line collected from different laboratories. Samples for each type of cell lines were 
divided into two group, referred to as group1 and group2. Blue pie represents the stable gene pairs1 identified in the group1, red pie represents 
the stable gene pairs2 identified in the group2. The overlap in the pie represent common gene pairs in the stablepairs1 and stablepairs2 and the 
number in the brackets represent the consistency score, which denotes the percentage of common gene pairs in stableparis1 and stableparis2 that 
display the same REO patterns
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Identification of significantly stable REOs in control 
samples
In a sample, the REO of two genes, A and B, is denoted as 
A > B (or A < B) if gene A has a higher (or lower) expres-
sion level than gene B (A and B are used for both gene 
names and their expression values here). In a large col-
lection of control samples for a cancer cell line, gene pairs 
with significantly stable REOs are determined by a bino-
mial test [28] as follows,

where k denotes the total number of control samples, s 
denotes the number of samples that have a certain REO 
pattern (e.g., A > B or A < B) in k normal samples, and 

P = 1−

s−1
∑

i=0

(

k
i

)

(pe)
i(1− pe)

k−i

pe (pe =  0.5 here) is the probability of observing one of 
two REO patterns in a normal sample by chance. For the 
multiple binomial tests, the P values are adjusted by the 
Benjamin and Hochberg method to control the false dis-
covery rate (FDR) [29].

The consistency score for evaluating the reproducibility 
of stable REOs
We defined a consistency score to quantify the consist-
ency between two lists of stable gene pairs separately 
identified from two independent collections of control 
samples measured by different laboratories for a cancer 
cell line. For two lists of stable gene pairs, if there are k 
overlapping gene pairs among which s pairs show the 
same REO patterns, the consistency score is the ratio, s/k. 
The probability of observing a consistency score of s/k by 
chance is evaluated by the binomial distribution model 
[28].

The OneComp method
The OneComp method is a customized version of 
RankComp [19] adapting to one-to-one sample com-
parison where the original RankComp algorithm fails 
to identify reliable DEGs, as demonstrated in “Results” 
section. The major change in OneComp for applica-
tions in one-to-one sample comparison is that the 
selection of gene pairs with stable REOs in the control 
samples. In RankComp, those gene pairs which have 
significantly stable REOs in the control samples are 
selected as the background gene pairs. In OneComp, 
a list of background gene pairs, which are significantly 
stable in the collected control samples, are selected 
and archived for a particular cell line beforehand. 
Given a pair of control sample and treated sample, 
each with only one replicate, the prebuilt background 
gene pairs are screened to exclude those pairs whose 
REOs are not kept in the current control sample. The 
remained stable gene pairs are called the customized 
background gene pairs which are further compared 
with the treated sample to obtain concordant pairs and 
reversal pairs.

Table 1  Details of the three datasets used in the OneComp 
performance evaluation

Dataset Platform Phenotype Sub-datasets Sample no. 
(control vs 
treat)

GSE41326 HepG2 Liver Sub 1 GSM1014792 vs 
GSM1014795

Sub 2 GSM1014793 vs 
GSM1014796

Sub 3 GSM1014794 vs 
GSM1014797

GSE7161 HCT116 Colon Sub 1 GSM172453 vs 
GSM172451

Sub 2 GSM172454 vs 
GSM172452

Sub 3 GSM172457 vs 
GSM172455

Sub 4 GSM172458 vs 
GSM172456

GSE37820 MCF7 Breast Sub 1 GSM928442 vs 
GSM928445

Sub 2 GSM928443 vs 
GSM928446

Sub 3 GSM928444 vs 
GSM928447

Table 2  Description of the datasets used in the drug repositioning

Source Platform Normal/control  
sample size

Cancer/treated  
sample size

Tissues/cell type

GSE7670 GPL96 26 26 Lung tissue

GSE10072 GPL96 49 58 Lung tissue

CMAP GPL96 46 / MCF7

CMAP GPL3921 130 / MCF7

CMAP GPL3921 125 / HL60

CMAP GPL3921 116 / PC3
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The following steps are the same as RankComp [19]. 
Briefly, in a treated cell, the gene pairs which have an 
opposite REO pattern with the customized background 
stable gene pairs are defined as the reversal gene pairs. 
For gene A, if its expression level is lower (or higher) than 
the expression level of gene B in the customized back-
ground gene pairs but opposite in the treated sample, 
then this reversal gene pair is supposed to support the 
up-regulation (or down-regulation) of A in the treated 
sample. Fisher’s exact test is used to test the null hypoth-
esis that the frequency of reversal gene pairs which sup-
port the up-regulation of gene A in the treated sample is 
not different from the frequency of reversal pairs which 
support the down-regulation of gene A in the treated 
sample. When the null hypothesis is rejected, gene A is 
judged to be up- or down-regulated in the treated sam-
ple compared with the control sample if the frequency of 
reversal pairs which support the up-regulation of gene 
A in the treated sample is higher or lower than the fre-
quency of reversal pairs which support the down-regula-
tion of gene A in the treated sample.

The C-language implementation of OneComp and the 
original RankComp method is available at https://github.
com/pathint/reoa [30].

Performance evaluation of OneComp
The performance of OneComp was evaluated based on 
three large datasets of HepG2, HCT116 and MCF7 cell 
lines. For each cell line, we collected a large dataset with 
several technical replicates of both the control and the 
drug-treated groups and identified DEGs with SAM. 

OneComp was applied to identify DEGs from the sub-
sets of the large dataset, each with only a pair of control 
and treated samples, which were evaluated through com-
paring with the DEGs identified by SAM in the full large 
dataset. Those DEGs exclusively identified by OneComp 
were further evaluated according to the observed genes 
expression dysregulation directions (up- or down-regu-
lations) between the treated and control samples in the 
subsets.

The consistency score was also used to quantify the 
consistency between two lists of DEGs. For two lists of 
DEGs, if there are k overlapping DEGs among which s 
genes have the same dysregulation directions (either 
up or down), the consistency score is the ratio, s/k. The 
probability of observing a consistency score of s/k by 
chance is evaluated by the binomial distribution model 
[28].

The drug‑disease reversal score for drug repurposing
We defined a drug-disease reversal score to reflect the 
therapeutic effectiveness of a drug to NSCLC based on 
the hypothesis that the dysregulation directions of the 
DEGs in the disease signature tend to be reversed after 
drug treatment if the drug is therapeutically effective 
to the disease [1]. If k is the number of disease signa-
ture genes overlapping with the drug signature genes, 
among which s genes could be consistent with drug treat-
ment, then the drug-disease reversal score is defined as 
(1  −  s/k). The probability of observing a drug-disease 
reversal score by chance is evaluated by the binomial dis-
tribution model [28].

Table 3  Details of the phenformin and metformin treated cells in the CMAP datasets

Drug Instance id Batch id Concentration (M) Duration (h) Cell type Platform

Phenformin 21 2 0.00001 6 MCF7 HG-U133A

2350 618 0.0000166 6 HL60 HT_HG-U133A

2312 642 0.0000166 6 MCF7 HT_HG-U133A

3622 685 0.0000166 6 MCF7 HT_HG-U133A

4747 700 0.0000166 6 MCF7 HT_HG-U133A

3725 681 0.0000166 6 PC3 HT_HG-U133A

4283 701 0.0000166 6 PC3 HT_HG-U133A

Metformin 1 1 0.00001 6 MCF7 HG-U133A

2 1 0.00001 6 MCF7 HG-U133A

3 1 0.0000001 6 MCF7 HG-U133A

4 1 0.001 6 MCF7 HG-U133A

61 2a 0.00001 6 MCF7 HG-U133A

1858 629 0.0000242 6 HL60 HT_HG-U133A

1694 627 0.0000242 6 MCF7 HT_HG-U133A

5487 737 0.0000242 6 MCF7 HT_HG-U133A

1816 628 0.0000242 6 PC3 HT_HG-U133A

5068 718 0.0000242 6 PC3 HT_HG-U133A

https://github.com/pathint/reoa
https://github.com/pathint/reoa
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In CMAP, without the preselection of DEGs induced by 
a drug treatment, a complex drug-disease scoring scheme 
is used to evaluate the connection between a drug and 
a disease, basically based on the same hypothesis as for 
the reversal score. Readers are advised to see the CMAP 
website (https://portals.broadinstitute.org/cmap/) for the 
definition of the score.

Functional enrichment analysis and protein–protein 
interaction (PPI) network analysis
We used the GO-function algorithm [31], which is based 
on the cumulative hypergeometric distribution model, 
to detect non-redundant GO terms that are significantly 
enriched for the genes of interest.

Based on the PPI data downloaded from SIGNOR Data-
base [32], the PPI network was built by Cytoscape [33].

Results
Stable REOs within a particular type of cell line
As a basis for the applicability of OneComp in the small-
scale cell line experiments with only one or two technical 
replicates, the stability of REOs of gene pairs was evalu-
ated within technical replicates measured by different 
laboratories for a particular cell line. We collected a total 
of 102 control samples of HepG2 cell line measured by 
24 laboratories which had different cultivation environ-
ments (Fig. 1). We randomly divided the datasets from 24 
laboratories into two groups each with 12 laboratories’ 
datasets referred as group1 and group2 (Fig.  1). Then, 
190,294,354 and 189,922,833 gene pairs were identified 
from group1 and group2, respectively, with significantly 
stable REOs (binomial test, FDR < 1%). Between the two 
lists of gene pairs, there are 182,886,518 overlapping gene 
pairs, approximately 96% of the stable gene pairs detected 
in either group, and more than 99.92% of the overlap-
ping gene pairs also have the same REOs (binomial test, 
P < 1.0 × 10−16) (Fig. 1).

Similar results were also observed for the HCT116 and 
MCF7 cell line samples measured by different laborato-
ries (Fig.  1). These results demonstrate that the signifi-
cantly stable REOs of gene pairs are highly reproducible 
across control samples measured by different laboratories 
for a particular cell type.

Performance of RankComp and OneComp in cell data 
with only one technical replicate
Based on the above finding, we applied the RankComp 
to cell data with only one technical replicate. Taking 
HepG2 cell lines as an example, we identified 194,730,608 
gene pairs with significantly stable REOs (binomial 
test, FDR  <  1%) from 102 control samples available in 
GEO or ArrayExpress, defined as the background gene 
pairs (Fig. 1). To mimic the data with only one technical 

replicate, we divided a large dataset (GSE41326) with 
three pairs of technical replicates for HepG2 transfected 
with RNF43 siRNA and negative control into three sub-
datasets, each with a pair of treated and control sample. 
Without using the control sample in each of the subsets 
to filter the background stable gene pairs, RankComp 
identified 13,566 DEGs on average in the three sub-data-
sets. However, the average consistency score between 
the dysregulation directions (up- or down-regulation) 
of the identified DEGs and the dysregulation directions 
observed between the treated and control cells is only 
57.37%, which indicates a large false positive rate. Simi-
lar results were observed for the comparison studies on 
GSE7161 and GSE37820, the datasets for the HCT116 
and MCF7 cell lines, respectively (Fig.  2a). Thus, Rank-
Comp is not suitable for datasets with only one sample, 
indicating that the significantly stable REOs of gene pairs 
identified across the control samples measured by dif-
ferent laboratories might be still unable to completely 
exclude the influences of different cultivation environ-
ments (Fig. 1).

Therefore, we customized the background stable 
REOs by filtering out the gene pairs with reversal REOs 
in the control sample(s) of the analyzed datasets (see 
“Methods”). This customized version of RankComp is 
called OneComp. To evaluate the performance of One-
Comp, we used the DEGs identified by SAM in the 
above-mentioned three large datasets as a “gold stand-
ard”. With FDR < 5%, SAM identified 1896 DEGs in the 
full GSE41326 dataset while OneComp identified 5247 
DEGs on average in the three paired subset samples of 
GSE41326, which included 56.91% (1079) of the DEGs 
identified by SAM. Almost all of these overlapping DEGs 
detected by SAM in the full dataset and by OneComp 
in the subsets, the consistency scores (see “Methods”) 
are all higher than 99% (binomial test, P < 1.0 ×  10−16) 
(Table  4). There are 817 DEGs identified by SAM but 
not by OneComp, which tend to be those without suf-
ficient expression changes to disrupt REOs. The num-
ber of DEGs solely detected by OneComp is much 
larger, 4168, on average. When the FDR threshold was 
increased to 20% for the SAM method, 791 of the 4168 
DEGs were identified by SAM (Additional file  1: Table 
S1). This clearly reflects the very low statistical power of 
SAM when applied to small-scale cell line data sets. The 
remained DEGs solely identified by OneComp for the 
three paired samples were further evaluated according to 
the observed expression difference method. The average 
consistency score is 96.85% which indicates the dysregu-
lation directions identified by OneComp are mostly cor-
rect (Additional file 2: Table S2).

Similar results were observed for the comparison 
studies on GSE7161 and GSE37820, the datasets for 

https://portals.broadinstitute.org/cmap/
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the HCT116 and MCF7 cell lines, respectively (Table 4, 
Additional file  1: Table S1, Additional file  2: Table S2). 
These results suggest that OneComp can be reliably used 
to detect DEGs in cell line data with only one technical 
replicate.

Sample size influence on performance via background 
filtering and building
If two or more three control samples were used for the 
background filtering, the number of detected DEGs 
decreased and the average consistency score remains to 

be close to 100% with a slight increase (Fig.  2b), which 
indicates that it would be sufficient to use only one con-
trol sample to remove the inconsistent background 
REOs.

The influence of the sample size in building the back-
ground gene pairs was also evaluated on the performance 
of the algorithm using the above three datasets. From the 
102 control samples for HepG2, we randomly extracted 
subsets of different sample sizes ranging from 20 to 102 
with a step size of 20. For each sample size, other than 
102 for which all the controls were included, the random 

Fig. 2  Performance of RankComp and OneComp in cell data. a Performance of RankComp in cell data with only one technical replicate. b Sample 
size influence on performance of OneComp via background filtering and building

Table 4  Overlap and consistency of DEGs detected by OneComp and SAM (FDR < 5%)

Pair 1, 2, 3, 4 representing paired control and treated technical replicates 1, 2, 3, 4 within each dataset. Overlap denotes the common DEGs detected in each of the 
pairs by OneComp and the large dataset by SAM. Consistency denotes the percentage of overlapped DEGs that display the same deregulation direction (up- or 
down-deregulation) between OneComp and SAM (FDR < 5%). P denotes the significance of the consistency (binomial test). POG denotes the percentage of the DEGs 
identified by SAM (FDR < 5%) that are consistently detected by OneComp ((FDR < 5%)

Dataset DEGs by SAM Sub-datasets DEGs by OneComp Overlap POG (%) Consistency (%)

GSE41326 1896 Sub 1 5084 1069 56.33 99.91

Sub 2 5217 1092 57.49 99.82

Sub 3 5440 1075 56.43 99.53

GSE7161 1280 Sub 1 4770 917 71.64 100.00

Sub 2 4595 932 72.81 100.00

Sub 3 4568 890 69.53 100.00

Sub 4 6973 909 70.94 99.89

GSE37820 633 Sub 1 3734 314 49.76 100.00

Sub 2 3657 327 51.82 100.00

Sub 3 3950 321 50.87 100.00
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sampling experiment and the followed analysis were 
repeated 100 times. As shown in Fig. 2b, when the control 
sample size increases from 20 to 102, the average number 
of detected DEGs increases from 4331 to 5247 gradually, 
and meanwhile the average precision increases slightly 
from 96.17 to 97.84%. The same trend was observed for 
HCT116 and MCF7 (Fig. 2b). These results suggest that 
the performance of OneComp improves as the back-
ground control sample size increases (Fig. 2b). However, 
when the background control sample size is greater than 
40, the performance gain is minor, suggesting a suitable 
lower bound of control sample size for building the con-
trol REOs background.

Drug repositioning using DEGs detected by OneComp
It was reported recently that antidiabetic biguanide drugs 
such as phenformin and metformin have therapeutic 
potential to treat NSCLC [34–37]. Here, we analyzed 
whether there exists a “connection” between biguanides 
based on DEGs induced by the drug treatments and 
NSCLC. As a comparison, the approach recommended 
by the CMAP project was also used to analyze the “con-
nection” [3, 6].

According to the CMAP approach, a “query signa-
ture” which includes 10–500 of both up- and down-
regulated probe sets should be built first. Using SAM 
with FDR  <  5%, we found 8480 differentially expressed 
probe sets between NSCLC and lung normal tissues 
reproducibly in GSE7670 and GSE10072 measured 
on the HG-U133A platform. Among the differentially 
expressed probe sets, 641 probe sets were selected with 
a fold-change (FC) value larger than 2 in both the data-
sets as the “query signature” of NSCLC. We used this 
“query signature” to search drugs which have links with 

NSCLC in the CMAP database through the CMAP por-
tal website (https://portals.broadinstitute.org/cmap/). 
The results showed that none of the mean drug-disease 
scores between NSCLC and phenformin were signifi-
cant (Table 5), providing no support for the therapeutic 
potential to NSCLC. None of the drug-disease scores 
between NSCLC and metformin were significant either 
(Table  5). However, the drug signature used in the 
CMAP-recommended approach is a list of genes which 
were obtained according to their fold-changes of gene 
expressions in the drug-treated sample versus the control 
sample, which tend to include a large proportion of genes 
which are irrelevant to drug treatment [16]. This problem 
may blur the “connection” between the drugs and the dis-
ease (Fig. 3).

Therefore, we attempted to reduce the influence of the 
irrelevant genes by focusing on the DEGs induced by 
drug treatment when assessing the “connection”. Using 
the HL60, MCF7 and PC3 control samples scattered in 
different experimental batches of CMAP (Table  2), we 
identified a list of gene pairs with significant stable REOs 
(binomial test, FDR < 1%) for each of the three cell lines. 
If a cell type was measured on different platforms, sta-
ble REOs were detected separately for each platform, 
and the consistent REOs across platforms were used as 
the final background REOs landscape [38]. With the 
background landscape, OneComp was used to identify 
DEGs for each of the phenformin-treated samples with 
FDR  <  5% (Table  5). For each of the three cell types, a 
common drug signature was defined as the DEGs that 
have the same dysregulation directions in at least two 
samples treated by phenformin with different doses. Fur-
thermore, we mapped the aforementioned 8480 probe 
sets to 5760 genes using the corresponding platform 

Table 5  Results of the drug repositioning for phenformin and metformin

N present the number of the cell samples treated by the phenformin or phenformin at different dose
a  CMAP approach do not provide these data

Methods CMAP name Overlap genes Reversal score N P value

Approach recommended by CMAP Phenformin_HL60 /a − 0.7880 1 1

Phenformin_MCF7 /a 0.5070 4 1

Phenformin_PC3 /a − 0.2880 2 0.9887

Metformin_HL60 /a − 0.6700 1 1

Metformin_MCF7 /a − 0.2910 7 0.5039

Metformin_PC3 /a 0.4890 2 1

Approach based on OneComp Phenformin_HL60 1180 0.4271 1 1

Phenformin_MCF7 489 0.6094 4 < 0.0001

Phenformin_PC3 190 0.6053 2 0.0023

Metformin_HL60 1028 0.5564 1 0.0002

Metformin_MCF7 1296 0.5872 7 < 0.0001

Metformin_PC3 122 0.6148 2 0.0071

https://portals.broadinstitute.org/cmap/


Page 9 of 13He et al. J Transl Med  (2017) 15:198 

files and considered these genes as the disease signature. 
The reversal scores were calculated between the disease 
signature and the drug signatures (see “Methods”). The 
reversal score between the NSCLC disease signature 
and phenformin drug signature is 0.6094 for MCF7 cell 
line and 0.6053 for PC3 cell line, which are significantly 
higher than expected by random chance (binomial test, 
P < 0.0001 and 0.0023, respectively) (Table 5). Similarly, 
we observed that all of the three reversal scores between 
metformin and NSCLC were significant (Table  5). The 
results indicates the therapeutic potential of both phen-
formin and metformin to NSCLC, and this conclusion is 
supported by a few previous studies [34–37].

The NSCLC disease signature in this study was 
obtained from the lung adenocarcinoma (LUAD) samples 
since LUAD is the main subtype of NSCLC. To evalu-
ate the influence of disease stages on the drug-disease 
reversal score, we analyzed two groups of the NSCLC 
samples according to their therapeutic methods [39, 40], 
stage II to IIIA mainly treated by surgery combined with 

chemotherapy, and stage IIIB to IV treated by chemo-
therapy only. For the six drug-disease reversal scores 
obtained for the two drugs based on three types of cell 
lines, five scores support the therapeutic potential of the 
drugs to the stage II to IIIA patients (P  <  5%). For the 
stage IIIB to IV patients, four of the six scores support 
the therapeutic potential of the drugs (Additional file 3: 
Table S3). These results suggested the therapeutic poten-
tial of phenformin and metformin to NSCLC patients at 
different stages, although slight differences might exist.

If the DEGs up- or down-regulated in the disease sig-
nature could be reversed by the drug treatment, they 
were defined as the drug-target disease genes for the 
drug. Based on the two list of drug-target disease genes 
for phenformin and metformin identified from MCF7, 
which showed the most significant P values, we explained 
the possible anti-NSCLC mechanisms of the two drugs, 
respectively, through gene ontology (GO) enrichment 
analysis and protein–protein interaction (PPI) net-
work analysis. The 761 drug-target disease genes for 

Fig. 3  Genes irrelevant to drug treatment may blur the “connection” between a drug and a disease. Blue dots and bars represent the up-regulated 
genes; red dots and bars represent the down-regulated genes; black bars represent the non-regulated genes
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metformin were enriched in six functional categories 
of GO (hypergeometric distribution model, FDR  <  5%), 
including cell cycle, DNA replication, chromosome con-
densation and other key cellular processes as described 
in Additional file 4: Table S4. We further built a one-step 
protein–protein interaction (PPI) network for these 761 
DEGs. As show in Fig. 4a, the top five hub-genes with the 
highest degrees in the network were MAPK1, MAPK14, 
PPARGC1, SRC and AKT1 which mainly function in pro-
liferation, cell growth and energy metabolism. The 298 
drug-target disease genes associated with phenformin 
were enriched in no pathway (hypergeometric distribu-
tion model, FDR < 5%). This may be due to too few genes. 
By controlling P < 5% instead of FDR < 5%, 16 significant 
GO functional categories were found which include cell 
proliferation, cell cycle and other cellular processes as 
described in Additional file  5: Table S5. Similarly, PPI 
network analysis showed that the top five hub-genes 
(MAPK9, PPARG, CHEK1, TP53 and CDK1) are mainly 
involved in proliferation and cell cycle (Fig. 4b), too. The 
above results indicate that phenformin and metformin 
may have therapeutic potential through suppressing 
the proliferation, growth and energy metabolism of the 
NSCLC cells [41, 42].

Discussion
We demonstrated that the REOs of gene pairs are highly 
stable in control samples measured in different laborato-
ries for a particular cell line. Thus, it is feasible to build 
a stable REO background landscape for a particular cell 
line using a large collection of control samples previously 
measured in different laboratories. For applications to 
small-scale cell datasets, the stable REO background is 
customized by filtering out the REOs which are not kept 
in the control sample(s) of this dataset. Then, OneComp 
can be used to identify DEGs effectively with statistical 
control with the customized stable REOs background. 
Through the analysis on phenformin and metformin 
treated samples, we showed that the detected DEGs in 
small-scale cell data with only one or two technical rep-
licates are valuable in the studies for drug repositioning.

Nevertheless, there are also several inherent limita-
tions to use the proposed method for the analysis of small 
datasets. Although the average consistency scores of the 
overlapping DEGs between every two technical repli-
cates within GSE41326 are up to 98.20% which indicated 
that these DEGs with the same dysregulation directions 
should be true dysregulated genes, there are 42.54% of 
DEGs on average that were detected in only one technical 
replicate. The average consistency score of non-common 
DEGs is only 43.45% if we compare these DEGs identi-
fied in one subset with the observed expression differ-
ence directions in another subset. This suggests that 

approximately 32.46% of the overall dysregulated genes 
detected in one subset of GSE41326 may be unrelated to 
the biological state of our interest. Similar results were 
also observed for the GSE7161 and GSE37820 datasets 
(Additional file  6: Figure S1). Fortunately, based on the 
assumption that an effective drug should be able to coun-
terbalance the perturbations caused by a disease [3, 6], 
these unrelated genes will not disturb drug repositioning 
study deeply in searching the connection between a drug 
signature and a disease signature. In fact, our method has 
made much progress compared to the method recom-
mended by the CMAP project as it tends to delete most 
of the drug unrelated genes (Fig. 3).

In the application case study for drug repositioning, 
the drug-disease reversal score was used in our method 
to quantify the connection between a disease signature 
and a drug signature. An ideal drug repositioning model 
should use the disease samples in restrictive stages and 
subtypes to produce the disease signature and use the cell 
lines corresponding to the disease tissue types to produce 
the drug signature. However, because the drug treatment 
profiles in CMAP were performed only on MCF7, PC3 
and HL60 cancer cell lines, we used the three drug-signa-
tures separately identified from the drug-treated MCF7 
(for breast cancer), PC3 (for prostate cancer) and HL60 
(for promyelocytic leukemia cancer) cell lines for each of 
the two biguanide drugs (phenformin and metformin) to 
infer the “connection” between the drugs and NSCLC. 
The underlying hypothesis behind the CMAP project 
is that there are similar (or significantly overlapped) 
changes in the gene expression profiles of cell lines 
obtained from different cancer types exposed to the same 
drug. Here, we observed that, based on the data for three 
types of cancer cell lines, two of the three reversal scores 
between phenformin and NSCLC and all of the three 
reversal scores between metformin and NSCLC were 
significant (P < 1%), supporting the therapeutic potential 
of both metformin and phenformin to NSCLC. This also 
indicates a high consistency between the drug-signatures 
from drug-treated MCF7, PC3 and HL60, partially sup-
porting the above-mentioned hypothesis. Nevertheless, 
this hypothesis needs to be fully addressed by evaluating 
whether the drug-signatures identified from multiple cell 
lines for different diseases or the same disease are signifi-
cantly overlapped if treated by the same drug.

Conclusions
In this study, we revealed that REOs of genes pairs are 
highly reproducible in the control samples of a particular 
cell type. Based on this finding, we customized the Rank-
Comp method to the application scenario of identifying 
DEGs in small-scale cell line experiments with only one 
or two technical replicates. The method performed well 
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Fig. 4  The PPI links between the NSCLC signature DEGs which could be reversed with phenformin treatment (a) or metformin treatment (b)
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in simulated small-scale cell datasets. Using the DEGs 
identified by OneComp between antidiabetic biguanide 
drugs (phenformin and metformin) treated samples and 
corresponding control samples, we built “connections” 
between biguanides and NSCLC. The “connections” 
are statistically significant and support biguanides as 
potential anti-tumor drugs for NSCLC, while the pat-
tern-matching strategy adopted by CMAP missed these 
“connections”. Therefore, OneComp method is useful in 
drug repositioning studies by helping to find more hid-
den “connections” between drugs and diseases.
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