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Abstract 

Background:  Influenza challenge trials are important for vaccine efficacy testing. Currently, disease severity is deter-
mined by self-reported scores to a list of symptoms which can be highly subjective. A more objective measure would 
allow for improved data analysis.

Methods:  Twenty-one volunteers participated in an influenza challenge trial. We calculated the daily sum of scores 
(DSS) for a list of 16 influenza symptoms. Whole blood collected at baseline and 24, 48, 72 and 96 h post challenge 
was profiled on Illumina HT12v4 microarrays. Changes in gene expression most strongly correlated with DSS were 
selected to train a Random Forest model and tested on two independent test sets consisting of 41 individuals profiled 
on a different microarray platform and 33 volunteers assayed by qRT-PCR.

Results:  1456 probes are significantly associated with DSS at 1% false discovery rate. We selected 19 genes with the 
largest fold change to train a random forest model. We observed good concordance between predicted and actual 
scores in the first test set (r = 0.57; RMSE = −16.1%) with the greatest agreement achieved on samples collected 
approximately 72 h post challenge. Therefore, we assayed samples collected at baseline and 72 h post challenge in 
the second test set by qRT-PCR and observed good concordance (r = 0.81; RMSE = −36.1%).

Conclusions:  We developed a 19-gene qRT-PCR panel to predict DSS, validated on two independent datasets. A 
transcriptomics based panel could provide a more objective measure of symptom scoring in future influenza chal-
lenge studies.

Trial registration Samples were obtained from a clinical trial with the ClinicalTrials.gov Identifier: NCT02014870, first 
registered on December 5, 2013
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Background
Seasonal influenza vaccination is widely used but has low 
effectiveness despite annual revaccination [1]. When the 

main circulating influenza strains have drifted away from 
those included in that season’s vaccine, effectiveness can 
be very low [2]. Live attenuated influenza virus vaccines 
have become the preferred vaccine for use in children due 
to the ability to induce T cell responses to the influenza 
virus as well as humoral responses to the external glyco-
proteins, but recent findings of low vaccine effectiveness 
in the US [3, 4] have resulted in the recommendation 
to use inactivated vaccines only in the US this season. 

Open Access

Journal of 
Translational Medicine

*Correspondence:  sarah.gilbert@ndm.ox.ac.uk 
†Adaikalavan Ramasamy and Sarah C. Gilbert contributed equally to this 
work
1 The Jenner Institute, University of Oxford, Old Road Campus Research 
Building, Oxford OX3 7DQ, UK
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12967-017-1235-3&domain=pdf


Page 2 of 11Muller et al. J Transl Med  (2017) 15:134 

Seasonal influenza vaccines cannot provide protection 
against influenza pandemics caused by novel subtypes, 
and much research effort has been directed towards pro-
ducing a ‘universal’ influenza A vaccine that will protect 
against any subtype of influenza A. This has resulted in 
a number of different approaches to vaccination against 
influenza which have entered early phase clinical devel-
opment [5–8]. Seasonal influenza vaccines are licensed 
based on their ability to induce a haemagglutination inhi-
bition (HI) titre of 1:40, but for novel vaccines that are 
designed to act through alternative immune mechanisms 
it will be necessary to demonstrate efficacy of the vac-
cine in preventing disease caused by influenza viruses, in 
humans.

Influenza challenge trials provide one means of test-
ing vaccine efficacy, and whilst they are not inexpensive 
to conduct, are considerably less costly than phase III 
clinical trials involving many tens of thousands of sub-
jects, and may be conducted more rapidly to give a pre-
liminary assessment of the protective efficacy of a novel 
vaccine against seasonal influenza viruses. However, 
conducting efficacy studies in a cohort of humans in a 
quarantine unit presents challenges in the collection of 
sufficient objective data points for analysis. Shedding 
of virus collected in nasal swabs or washes can only be 
measured once per day, up to 7 days after influenza chal-
lenge. Temperature measurements are taken at least 
twice per day but fevers are rare in healthy young sub-
jects after influenza virus challenge. The majority of the 
data that is collected to determine the severity of ill-
ness consists of self-reported symptom scores. Subjects 
record whether each of a list of possible influenza symp-
toms is absent, mild, moderate or severe in a twice daily 
questionnaire. Symptom scoring may be influenced by 
many factors such as the mood of the volunteer, the time 
elapsed since waking, or drinking, or the perception that 
the volunteer should be feeling better in the later part of 
the quarantine period.

Earlier time course transcriptomics analysis of data 
from human influenza challenge trials [9–13] have pri-
marily focused on identifying genes and transcriptional 
dynamics that are different between clinically sympto-
matic from asymptomatic individuals at various time 
points post challenge. The definition for symptomatic 
and asymptomatic varies between studies but is typically 
based on total symptom score in the first few days and 
may include a secondary restriction on virus shedding 
status.

To our knowledge, no studies have attempted to pre-
dict the per individual symptom score using gene expres-
sion data using a minimal set of biomarkers. Such a panel 
would be a more objective measure of symptom scoring 

in future influenza challenge trials and thus improve 
comparability between challenge studies, especially those 
testing different candidate vaccines.

Methods
Influenza challenge study (discovery cohort)
Samples were obtained from a clinical trial (ClinicalTri-
als.gov Identifier: NCT02014870) conducted to deter-
mine the appropriate dose level of live, wild-type A/
California/2009 H1N1 virus stock for future influenza 
challenge studies [14]. Healthy volunteers aged 18–45 
with no detectable HAI titre to the challenge strain 
underwent intranasal administration of virus whilst 
housed in a quarantine unit, and were monitored for 
symptoms of influenza disease and virus shedding. Vol-
unteers in a semi-recumbent position were intranasally 
challenged with 0.5 mL (0.25 mL in each nostril) of either 
1:100 or 1:10 dilution of the neat virus (concentration 
~7.0 × 107 TCID50/mL).

Volunteers were quarantined for 9 days after challenge 
and self-reported twice daily on 16 signs and symptoms 
of influenza. Symptoms were recorded on a modified 
Jackson score 0–3: not noticeable, just noticeable, both-
ersome but can still do daily or bothersome and cannot 
do daily activity. Nasal swabs were taken daily to deter-
mine the live virus shedding load. In consenting subjects, 
blood samples were collected in PAXgene® tubes before 
the challenge and 24, 48, 72 and 96 h post challenge for 
transcriptomics analysis.

RNA extraction and quality control
Whole blood was collected in PAXgene Blood RNA tubes 
(PreAnalytiX) and processed according to the manufac-
turer’s protocol. RNA quantity and quality were assessed 
using a NanoDrop spectrophotometer and Agilent’s 2100 
Bioanalyzer.

High throughput qPCR
Real-time quantitative PCR was performed in a Fluidigm 
system consisting of a BioMark HD instrument, IFC HX 
controller and 96 × 96 dynamic array, as described in the 
manufacturer’s user guide PN 68000088 K1 [15] (“Real-
Time PCR Analysis”, appendixes A and D) and document 
PN 100-2638 D1 [16] (“Gene Expression with the 96.96 
IFC Using Fast TaqMan Assays”). Appendix A in guide 
PN 68000088 K1 was used for the preparation of cDNA 
through reverse transcription and appendix D contains 
the protocol for gene expression analysis using TaqMan 
assays, including a preamplification step. Raw RNA sam-
ples were normalised to 10  ng/μL for the cDNA syn-
thesis and the expression assay involved three technical 
replicates.
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Gene expression microarrays
Blood samples in PAXgene® tubes were thawed over 2 h 
at room temperature and total intracellular RNA was 
extracted using the Blood RNA Kit (Qiagen) accord-
ing to the manufacturer’s instructions. The purity and 
quantity of the isolated total RNA was assessed using 
an Agilent Bioanalyser prior to storage at −20  °C until 
required. Globin mRNA was subsequently depleted 
using the GLOBINclear Kit (Ambion). Depleted RNA 
was then amplified and biotin-labelled using the Total-
Prep RNA Amplification Kit (Illumina) and RNA quality 
assessed using Agilent’s 2100 Bioanalyzer. This was puri-
fied and assessed using the Agilent bioanalyser. Bioti-
nylated cRNA was hybridised to Illumina Human HT-12 
v4 Expression Beadchips according to the manufacturer’s 
instructions. Beadchips were scanned with an Illumina 
iScan machine, and data extracted using the Illumina’s 
GenomeStudio 2011 software.

Microarray analysis
Raw probe level summary were exported from Genom-
eStudio 2011 and imported into R using the beadarray 
package [17]. Probes were background corrected using 
negative control probes followed by quantile normali-
zation using the neqc command [18]. The analysis was 
restricted to probes with a detection p value <0.01 in at 
least 10% of the samples and probes matching to the tran-
script definition of the following databases (in descending 
importance) with at most two mismatches, no insertions 
and a minimum mapping length of 40 bases: GENCODE 
version 23, RefSeq (refMrna.fa) and GenBank (mrna.fa) 
downloaded in August 2015 from http://hgdownload.cse.
ucsc.edu/goldenPath/hg38/bigZips/. A linear model was 
fitted using limma [19] to determine differential expres-
sion adjusted for gender, age, challenge dose and batch 
effects. We used the duplicate correlation option [20] to 
account for intra-patient correlations and weighted the 
arrays by their quality scores [21]. Nominal p values were 
corrected for multiple hypothesis testing using the Benja-
mini–Hochberg procedure [22].

High‑throughput qPCR analysis
We performed TaqMan® Gene Expression assays to 
determine gene expression in the whole-blood RNA iso-
lated from selected participants at baseline and the time 
of maximal symptoms. A panel of 29 primers selected 
for symptom scoring and three control primers were 
measured in triplicates on a 96 × 96 Fluidigm plate. One 
sample and one primer did not meet the quality criteria 
and were removed from the analysis. The raw Ct values 
were then imported into R and normalized to the three 
endogenous control genes (RPL30, GAPDH, and PPIA) 
into log transformed deltaCt values using the HTqPCR 

package in R [23]. The limmaCtData command was used 
to extract fold changes to DSS.

Regression analysis
For the prediction of DSS on external test sets, micro-
array intensities and deltaCt values were used to train 
a random forest model using the R package caret [24]. 
The microarray data for training were the residuals after 
removing the effect of gender, age, challenge dose and 
scan dates. Three technical replicates were averaged. For 
genes with multiple probes, we retain only the highest 
expressing probe. To estimate the training performance, 
training samples were randomly sampled and out of bag 
RMSE (root mean squared error) estimates were used 
to select the optimal tuning parameter mtry. The final 
hyper parameters chosen for the microarray data were 
mtry = 2, ntree = 500, sampsize = 105 and for the qRT-
PCR panel mtry = 19, ntree = 500, sampsize = 33. Test 
sample DSS was then predicted using the trained model 
and prediction performance was evaluated using the 
percent change in RMSE relative to a best guess model 
predicting the overall mean. To select a minimal set of 
predictive features, the VSURF package was used with 
default settings in R [25].

External validation dataset
We used two external datasets from Influenza A chal-
lenge trials to validate our findings. The first is from 
Woods et  al. [13], in which 24 volunteers were experi-
mentally infected with H1N1 (A/Brisbane/59/2007) and 
17 volunteers with H3N2 (A/Wisconsin/67/2005). Blood 
was collected approximately every 8 h for transcriptomics 
analysis but volunteers only self-reported twice daily. We 
downloaded the RMA processed data from Gene Expres-
sion Omnibus website (GSE5428) and only used microar-
ray data (~70%) that was collected within 3 h of symptom 
reporting. The self-reported scores were to ten signs and 
symptoms which was a subset used to define DSS in the 
discovery cohort. The data was generated using Affym-
etrix Human Genome U133A 2.0 Array. We selected the 
highest expressing Affymetrix probe for genes with mul-
tiple probes and matched to the Illumina probes. The 
second dataset was used to confirm results obtained with 
the Fluidigm panel and contains samples from placebo-
vaccinated subjects in an independent H1N1 challenge 
trial (ClinicalTrials.gov Identifier: NCT02071329) con-
ducted by Immune Targeting Systems (ITS) Ltd using 
the same challenge strain and protocols as the discov-
ery cohort. Blood samples were collected from 30 adult 
volunteers before challenge and 72  h post challenge in 
PAXgene® tubes, and RNA was extracted before profiling 
gene expression using the Fluidigm panel as described 
above.

http://hgdownload.cse.ucsc.edu/goldenPath/hg38/bigZips/
http://hgdownload.cse.ucsc.edu/goldenPath/hg38/bigZips/
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Results
Challenge study outcome
A human influenza challenge trial was conducted where 
21 healthy adult volunteers were intranasally challenged 
with live influenza A (wild-type A/California/2009 
H1N1) virus. Each patient was quarantined for 9  days 
after challenge and reported twice daily on 16 signs and 
symptoms of influenza. Symptoms were recorded on a 
0–3 scale and peak symptoms occurred at 72–96 h post 
challenge (Fig.  1a; Additional file  1: Figure S1A, Addi-
tional file 2: Table S1, Additional file 3: Table S2).

Nine volunteers reported no symptoms or only one 
mild symptom within a week of challenge but six of these 
had some detectable amounts of live virus shedding. The 
remaining 12 volunteers reported more than one mild 
symptom and detectable amounts of live virus shedding. 
Volunteer 204 reported a mild nasal congestion before 
and throughout the challenge which we set to zero as we 
felt it was unrelated to the challenge trial.

Whole blood transcriptome microarray analysis
Volunteers self-reported their symptoms twice daily on 
a list of 16 conditions using the modified Jackson scor-
ing on a scale of 0–3 per condition. We calculated the 
daily sum of scores (DSS) using only the morning report, 
which coincided very closely with phlebotomy time for 
samples taken for microarray, by summing up the scores 
over the 16 conditions. The DSS values ranged between 
0 and 23. We identified 1456 probes significantly asso-
ciated with DSS at FDR <1%. To investigate the consist-
ency of the panel of symptoms, we correlated changes in 
expression of all genes for each individual symptom to 
the changes in expression to DSS (Additional file 1: Fig-
ure S1B). The correlation was high and ranged from 0.72 
to 0.96 and fever, fatigue and nasal congestion were the 
highest correlated symptoms. It is interesting to note that 
we obtain a very similar output if we had chosen to ana-
lyse the fold increase in live virus shedding (Additional 
file 4: Figure S2).

DSS biomarker selection and validation
In order to identify the most predictive genes for DSS, we 
selected a stringent cut off of 1% FDR and at least 15% 
unit increase in DSS per log2 unit increase in expres-
sion. This resulted in a list of 21 probes mapping to 19 
candidate biomarkers (Fig.  2; Additional file  5: Figure 
S3). Eleven of the 19 markers are associated to the GO 
category “response to virus” (CCL8, HERC5, IFIT1, 
IFIT3, ISG15, OAS3, OASL, RSAD2, CXCL10, IFI44 and 
IFI44L), 5 of the remaining 8 are associated to the GO 
category “innate immune system” (CCL2, IFI27, IFI6, 
SERPING1 and USP18) and LAMP3 is associated to the 
GO category “adaptive immune response”. Also, 14 of the 

19 genes were previously included in a panviral gene sig-
nature predicting viral shedding [10]. The gene with the 
highest predictive importance, CCL2, was ranked as the 
most predictive gene for laboratory confirmed influenza 
in [11] and in the same study OTOF and SPATS2L have 
been among the 100 most upregulated genes.

We next sought to test the predictive performance of 
this signature using an independent dataset. First we 
trained a random forest model using expression levels of 
the 19 genes in our dataset and predicted DSS in the first 
independent dataset [13]. Despite differences in microar-
ray platforms, challenge virus strains and list of reported 
symptoms, we observed a reduction of 15.7% in root 
mean squared error (RMSE) using predicted DSS com-
pared to a best guess prediction assuming overall mean 
DSS. Predicted values correlated positively and signifi-
cant with observed DSS (r = 0.57; p < 7e−57) and pre-
diction accuracies were consistently high between day 1.5 
until day 4.5 (Fig. 3).

To further elucidate which time point in the discovery 
cohort is most predictive, we partitioned the expression 
of both, training and test data, into the individual time 
points and predicted DSS across all partitions (Addi-
tional file  6: Figure S4). The most increase in accuracy 
was clearly observed, when training on samples from day 
2 to day 4 and predicting on testing samples from day 
1.5 to day 4.2 with an average decrease of 16% in RMSE 
(range −4 to −30%).

Biomarker panel development
To translate these findings into a small scale qRT-PCR 
based assay which can be used for symptom prediction in 
future influenza challenge trials, we selected 19 commer-
cially available primers (Additional file  7: Table S3) for 
the BioMark HD multiplex microfluidic instrument (Flui-
digm, CA, USA). We randomly selected 33 samples from 
our discovery cohort to train the random forest model. 
The technical reproducibility between expression level 
changes associated to DSS in microarrays and Fluidigm 
assays was very high (R2 = 0.75; Additional file 8: Figure 
S5). Samples from the second independent dataset were 
also profiled on the Fluidigm using the same primers.

Validation of biomarker panel and further optimization
A Random Forest model was then trained using delta-Ct 
values of the 19 genes in our cohort to predict DSS in the 
second independent cohort. We observed a strong reduc-
tion in RMSE of 34% compared to a best guess prediction 
assuming the overall mean DSS. The correlation between 
predicted and observed scores was also strong and signif-
icant (r = 0.81, p < 6e−15) (Fig. 4).

To evaluate whether the set of 19 genes can be further 
reduced to an even smaller set of biomarkers, we applied 
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Fig. 1  a Heatmap of summed symptom scores, live viral shedding assay, RT-PCR Influenza A and RT-PCR H1N1. Each row represents one subject 
and each column one time point in days post challenge. b Schematic overview of the three cohorts used and the supervised learning approach 
used for the regression analysis
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the feature selection method VSURV [25, 26]. This method 
eliminates redundant and less informative features recur-
sively using a set of three rules with increasing stringency. 
After the third selection step only two genes, ISG15 and 
CXCL10, were left. Intriguingly, the RMSE reduction was 
still substantial with 26% and correlation between pre-
dicted and observed scores was strong and significant 
(r = 0.73, p < 7e−11; Additional file 9: Figure S6A).

Conversely, we tried to improve the model fit by add-
ing more features. Since viral shedding and reported 
symptom scores are highly correlated, we added an addi-
tional set of ten genes highly correlated with the live viral 
shedding assay to our set of 19 biomarkers and trained 
a random forest model. Predictive performance did 
not improve significantly but remained high, compara-
ble to the original signature (RMSE = −34.9%, r =  0.8, 
p < 2e−14; Additional file 10: Figure S7).

To test whether our signature can be used to accurately 
predict categorized symptom scores and to compare 

prediction performance to previous studies, we cat-
egorized patients into symptomatic and asymptomatic 
depending on presence of any DSS at each time point. 
Prediction accuracy was very high (AUC 0.95; Addi-
tional file  11: Figure S8) and 3/13 symptomatic samples 
were misclassified as asymptomatic and conversely 1/47 
asymptomatic was misclassified as symptomatic.

We also tested the reduced signature of the two genes 
ISG15 and CXCL10 using the linear regression method 
Partial Least Squares to define easier to interpret deci-
sion boundaries (Additional file  9: Figure S6B). Predic-
tion of symptoms classes was less accurate but still high 
(AUC 0.91; Additional file 9: Figure S6C).

Discussion
This study was designed to develop a precise, objec-
tive and cost effective small scale assay to act as a sur-
rogate for symptom scoring in influenza challenge 
trials. We challenged 21 volunteers with wild-type A/

Fig. 2  a Volcano plot showing all 21 probes (19 genes) associated to significant changes in DSS. The threshold was set to 15% change in DSS per 
unit in gene expression and a FDR of 1%. b Heatmap of scaled expression values of the 19 genes significantly associated to changes in DSS
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Fig. 3  Intensities from Illumina ht-12 arrays of the 19 gene signature were used to train a random forest model. The model was used to predict 
symptom scores in an independent test set. a Actual scores were plotted against the predicted values at each day. RMSE decrease and correlation 
values refer to the overall model fit. b Importance of individual markers within the panel of 19 primers. X-axis shows the increase in RMSE if the 
respective gene is left out of the model
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Fig. 4  a The predicted DSS from the qRT-PCR based assay using the deltaCt values from the 19 gene signature as a test dataset were plotted 
against the observed DSS. b The importance of individual markers within the panel of 19 primers is shown in decreasing importance. The x-axis 
shows the increase in RMSE if the respective gene is left out of the model. LVS live viral shedding assay
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California/2009 H1N1 virus and 15 out of 21 volun-
teers or 71% reported at least one mild symptom. This 
is consistent with the previously reported proportion 
of H1N1 infected volunteers who develop clinical ill-
ness after experimental influenza virus infection of 
69% [27]. We generated a whole transcriptome dataset 
on all 21 volunteers and correlated the longitudinal 
transcriptomics data with the self-reported symp-
toms. The most significant differentially expressed 
genes to DSS were then used to establish a qRT-PCR 
based Fludigm assay using commercially available 
primers.

In contrast to previous studies which try to distin-
guish symptomatic and asymptomatic individuals 
[9–11], we established a set of biomarkers optimised 
to detect and differentiate between different levels of 
symptoms. We showed that the continuous range of 
predicted symptom scores can be optionally catego-
rized. Importantly, no baseline sample was misclassified 
when samples were categorized into symptomatic and 
asymptomatic in our qRT-PCR training and test sets. 
This suggests that the misclassified samples collected 
at 72 h post challenge might suffer from the subjective 
nature of self-symptom reporting rather than inaccurate 
prediction.

The 19 biomarker panel was identified using whole 
blood samples from H1N1 infected adult volunteers 
which raises the question of generalizability to other 
influenza strains and cohorts. Zaas et  al. [9] developed 
a 48-gene marker panel to classify H1N1 and H3N2 
infected patients as either symptomatic or asympto-
matic. Apart from 5 genes (CCL8, CD36, CXCL10, 
USP18 and SPATS2L), all 14 genes of the 19 gene signa-
ture were also found in their panel indicating the poten-
tial use of our panel across different strains. Similarly, 
12 of our genes also appear in a published signature to 
detect respiratory infections such as RSV and rhinovirus 
[10]. Herberg et al. [28] compared whole blood samples 
from 19 children hospitalized due to H1N1 infection 
(age 1.6–7.5  years) with 33 control children. Interest-
ingly, 12 genes in their top 15 were also present in our 
panel. These overlaps strongly suggest that our panel can 
also be used to predict symptom scores across different 
influenza strains and age groups as well as for binary 
classification of volunteers into asymptomatic and symp-
tomatic individuals.

There is also evidence that our set of biomarkers could 
have potential cross species application once the prim-
ers have been adopted for species differences. For exam-
ple, Li et al. [29] identified ISG15, our most influential 
predictor, as highly up-regulated in the lung samples 
from H1N1 infected swine using microarrays and qRT-
PCR validation. Another highly influential gene from 

our panel CXCL10 was shown to be consistently upreg-
ulated in H1N1 infected mice, macaques and in swine 
[30].

Interestingly, we observed a significant further 18% 
reduction in RMSE, when we predicted scores based on 
qRT-PCR trained data compared to microarray data. 
One reason might be the well-known underestimation of 
expression changes measured by microarrays compared 
to qRT-PCR [31] which we also clearly observed in our 
screen (Additional file 8: Figure S5) or the higher sensi-
tivity of qRT-PCR. However, we cannot directly compare 
both results due to the different cohorts which were used 
for testing.

Although a 34% reduction in prediction error com-
pared to the mean we observed for our qRT-PCR 
based assay is a good result, we observed four samples 
with discordant prediction (Fig.  4a). The inaccuracies 
observed, seem to be more pronounced when recorded 
DSS were low in the range of one to three. This result 
is not surprising, since minor symptoms are expected 
to be more subjective compared to strong or multiple 
symptoms.

Selecting a very stringent threshold at the microar-
ray level was a design choice deliberately made at a 
very early stage of the study for two reasons. At first, 
we aimed at a cost effective and small set of PCR prim-
ers. Secondly, we sought to restrict the primers to genes 
which were highly and significantly correlated to our 
phenotype after adjusting for differences in variables 
such as age, gender and batch. Alternatively, the choice 
of the genes included in the final signature can be left 
to a feature selection method or a regression algorithm 
penalizing and removing less informative features. This 
however potentially leads to removal of biologically 
relevant genes and to overfitting to the training data at 
hand. When we applied a feature selection method to 
our dataset, we found good predictive ability with even 
two genes (ISG15 and CXCL10). This would enable a 
very cost effective approach to symptom scoring. How-
ever it requires further testing using a larger cohort, if 
such a small set of predictors can be a robust marker for 
symptom scoring.

Conclusions
Taken together, we provide here a comparatively small 
set of genes, which can be used to replace self-reported 
symptom scores in influenza challenge studies with great 
accuracy. All primers described here to test expression 
levels of these genes are commercially available and can 
be readily used to replace or refine self-symptom report-
ing in influenza challenge trials. Therefore, these mark-
ers can in future challenge studies and possibly refine the 
panel once tested on larger cohorts.
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Additional file 1: Figure S1. A, Overview of the 16 recorded symptom 
scores for each patient in the microarray study. B, Correlation matrix of all 
symptoms except ‘Wheezy Chest’. A linear model was analysed as outlined 
in Fig. 1b using limma, but for every symptom separately instead of DSS. 
The resulting fold change estimates of all genes were correlated using 
Pearson’s correlation.

Additional file 2: Table S1. Table with per sample meta data.

Additional file 3: Table S2. Table with per subject daily symptom scores.

Additional file 4: Figure S2. Log2 fold change to DSS versus log2 fold 
change to Live Viral Shedding Assay from two separate linear models. 
Genes significantly differentially expressed at an FDR of 5% to Live Viral 
Shedding Assay and DSS are coloured in red and yellow respectively.

Additional file 5: Figure S3. Scaled, mean centred microarray expres-
sion data (mean 0, standard deviation 1) versus DSS. Symptom scores are 
in log units for visual clarity.

Additional file 6: Figure S4. Heatmap of change in accuracy (units in 
percentage change in RMSE) when training on the subset of samples on 
the x-axis and predicting on the subset of test samples from Woods et al. 
(y-axis). DSS values were log transformed to improve performance on the 
very small training sets for this figure only. Lower values mean an increase 
in accuracy.

Additional file 7: Table S3. Table of TaqMan primer IDs used for the 
Fluidigm 96x96 assay.

Additional file 8: Figure S5. Scatterplot comparing log2 fold changes 
per unit of DSS from Illumina ht12 arrays compared to Fluidigm BioMark 
HD TaqMan assays of 28 selected genes and 3 control genes. One gene, 
MS4A4A, was omitted due to a missing sample for comparability. Biomark-
ers used for machine learning are highlighted in green, housekeepers in 
red and other genes not passing the feature selection process in blue. The 
identity is indicated as a grey line and a linear regression fit is shown in 
blue with a 95% CI in grey.

Additional file 9: Figure S6. VSURF feature selection of most predictive 
features. A, A random forest model was trained with only the two features 
ISG15 and CXCL10 as selected by VSURF. Predicted DSS is shown on the 
x-axis and observed DSS on the y-axis. B, Prediction of Any Symptom 
(DSS > 0) or No Symptom (DSS = 0) classes using the linear classifier 
Partial Least Square (PLS). Decision boundaries of the trained model are 
indicated as well as the samples used for training and testing. C, ROC 
curve indicating the accuracy of the PLS model.

Additional file 10: Figure S7. A, Predicted DSS using the extended 29 
gene signature on Fluidigm as a test dataset versus the observed DSS. B, 
Importance of individual markers within the panel of 29 primers. x-axis 
shows the increase in RMSE if the respective gene is left out of the model. 
LVS = Live Viral Shedding Assay.

Additional file 11: Figure S8. Prediction of Any Symptom (DSS > 0) or 
No Symptom (DSS = 0) classes using a random forest model on Fluidigm. 
A, Prediction probabilities are shown on the y-axis and samples with prob-
abilities <0.5 are classified as No Symptom. B, Importance of individual 
markers for the categorized prediction within the panel of 19 primers. 
x-axis shows the decrease in Gini coefficient if the respective gene is left 
out of the model. C, ROC analysis of the categorized prediction.
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