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Abstract 

Hydrogen sulfide (H2S), previously only considered a toxic environmental air pollutant, is now increasingly recognized 
as an important signaling molecule able to modulate several cellular pathways in many human tissues. As dem-
onstrated in recent studies, H2S is produced endogenously in response to different cellular stimuli and plays differ-
ent roles in controlling a number of physiological responses. The precise role of H2S in inflammation is still largely 
unknown. In particular, the role of H2S in the regulation of the inflammatory response in acute and chronic infections 
is being actively investigated because of its potential therapeutic use. To study the effect of H2S as an anti-inflamma-
tory mediator during bacterial infections, we developed an ex vivo model of primary cells and cell lines infected with 
Mycoplasma. Our data demonstrate a dichotomic effect of H2S on the NF-kB and Nrf-2 molecular pathways, which 
were inhibited and stimulated, respectively.
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Background
There is a growing interest in “medical gasses” for their 
antibacterial and anti-inflammatory properties. In this 
review, we focus on hydrogen sulfide (H2S), an endog-
enous gaseous mediator that has gained increasing rec-
ognition as an important player in modulating acute 
and chronic inflammatory diseases. Therefore, under-
standing the H2S-mediated mechanism of action during 
the inflammatory response to infection/s is essential for 
developing H2S-releasing compounds as candidate drugs 
[1].

Among the numerous effects attributable to H2S, many 
studies, both in vivo and in vitro, have demonstrated its 
protective anti-inflammatory role in lung pathologies 
such as asthma and COPD [2]. In addition, it has been 
observed a cardio-protective effect [3], together with 
pro-angiogenic [4] and vasorelaxing effects mediated by 
KATP channel opening [5, 6]. Other studies also demon-
strated the inhibitory effect of H2S on platelet aggregation 

[7] and its antiapoptotic [8] and cytoprotective action [9]. 
Recently, endogenous H2S production and exogenous 
H2S administration were both demonstrated to play an 
important role in modulating viral-induced chemokine 
secretion and viral replication [10, 11].

However, it’s not well known whether H2S impacts the 
outcome of bacterial infection.

In this review we focus mainly on the effects of H2S 
during Mycoplasma infection. Mycoplasma was used 
as a bacterial model of acute infection, since it has been 
associated with the onset and the progression of several 
human pathologies [12–15]. We also discuss the poten-
tial use of H2S-releasing compounds as candidate drugs 
able to relieve the inflammatory response caused by 
Mycoplasma.

Mycoplasmas
Mycoplasmas (class Mollicutes, mollis  =  soft and 
cutis  =  skin, in Latin) are the smallest and simplest 
organized prokaryotic organisms, ranging from 0.1 to 
0.3 μm in diameter and up to 98 μm in length, capable to 
self-reproduction [16]. In contrast to the rest of the bac-
teria, Mycoplasma do not have a cell wall, but have a sim-
ple plasma membrane composed of sterols. Mycoplasmas 
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display a dominant spherical shape, modulated by the 
presence of a cytoskeleton, that contributes also to cell 
division (the reproduction occurs by binary fission) and 
to their motility [17].

Mycoplasmas have a circular double-stranded genome, 
with a low guanine-cytosine (G + C) content, that is very 
variable among strains of the same Mycoplasma species 
[18]. The variability is due to repetitive elements, con-
sisting of segments of protein genes, different in size and 
number, or insertion sequence elements (IS). The size is 
limited and ranges from less than 600–2200 kb. Because 
of their small genome size, Mycoplasma have restricted 
metabolic capabilities and their replication and survival 
depend on factors synthesized by the host in vivo or taken 
up by the growth medium in vitro [19]. Mycoplasma spe-
cies are parasites that can be found everywhere in nature. 
In the human body they usually exhibit organ and tissue 
specificity, with preferential localization in the mucous 
surface of the respiratory and urogenital tracts, in the 
eyes, in the alimentary canal, in the mammary glands and 
in the joints [17]. Mycoplasma are considered membrane 
surface parasites, however some species can enter the 
cells and become intracellular residents [20, 21].

Mycoplasmas and human diseases
Although most Mycoplasmas belong to the normal 
human bacterial flora and thus considered commen-
sal inhabitants, a few species are pathogens, with a sig-
nificant negative impact on the cellular metabolism and 
physiology. They can be both associated with infectious 
diseases and post-infection pathologies, and frequently 
persist as chronic, asymptomatic infections both in 
humans and animals [22]. Mycoplasmas can cause a wide 
variety of diseases, including acute respiratory illness 
[15], genitourinary tract infections [23], joint infections 
[13, 14] and neurologic disorders [24].

Seven species of Mycoplasma are related to human 
pathologies: Mycoplasma pneumoniae, Mycoplasma ure-
alyticum, Mycoplasma genitalium, Mycoplasma hominis, 
Mycoplasma fermentans, Mycoplasma penetrans and 
Mycoplasma pirum [25]. The mechanisms responsible for 
their potential pathogenic role are the subject of a num-
ber of current investigative efforts. Deregulated cellular 
activation leading to production of pro-inflammatory 
cytokines plays an important role in bacterial-induced 
pathologies. Though they lack lipopolysaccharides 
(LPS), all Mycoplasma species activate monocytes-
macrophages, lymphocytes and fibroblasts through 
membrane-bound lipoproteins present in their bacterial 
membranes which act as agonists of the heterodimeric 
Toll-like receptors 2 and 6 (TLR2 and TLR6) [26]. Conse-
quently, by regulating specific transcription factors, they 

promote the expression of pro-inflammatory cytokines, 
thus affecting several important cellular functions [17, 
27–29].

Mycoplasma is part of the human microbiome, and 
epidemiological studies and recent genomic sequence 
analysis clearly indicate the involvement of human 
microbiome in early stages of cellular transformation and 
cancer progression [30]. The presence of Mycoplasma 
may facilitate tumorigenesis by promoting cellular trans-
formation [31, 32], as shown by many studies in vitro in 
bronchial epithelial cells [33], in hepatocytes [34], in oral 
tissues [35], in human prostate cells [36, 37] and cervi-
cal cells [38]. Although the molecular basis of Myco-
plasma’s oncogenic potential are still under investigation, 
a few studies have demonstrated increased frequency 
of chromosomal instability and malignant transforma-
tion in long-term Mycoplasma infected cell cultures. 
The Mycoplasmas involved (Mycoplasma fermentans, 
Mycoplasma penetrans and Mycoplasma hyorhinis) not 
only caused accumulation of chromosomal abnormali-
ties, but also phenotypic changes of the transformed 
cells [39–41]. In other studies, long-term infection of 
mouse embryo fibroblasts with Mycoplasma fermentans 
or Mycoplasma penetrans demonstrated spontaneous 
cellular transformation and overexpression of the H-Ras 
and c-myc proto-oncogenes [42]. Consistent with its pro-
posed role in cellular transformation, Mycoplasma infec-
tion reduced activation of p53 and induced constitutive 
activation of NF-κB [43].

Another factor involved in DNA stability is DNA meth-
ylation. DNA methylation is an essential element in tran-
scriptional regulation and is one of the major epigenetic 
mechanisms leading to DNA remodeling. Many stress-
inducing factors and/or DNA-damaging agents can inter-
fere with the effectiveness of the DNA-methyltransferases 
(DNA-MTases) to modify the DNA by converting cyto-
sine to 5-methylcytosine at CpG dinucleotides [44]. In 
this regard, it was demonstrated that when Mycoplasma 
hyorhinis’s CG- and GATC-specific MTase is expressed 
in human cell lines, it translocates to the nucleus, 
contributing to the methylation process. This unpro-
grammed change in the human genome landscape has 
been associated with the stimulation of pro-oncogenic 
pathways [45]. However, so far no carcinogenic roles for 
any Mycoplasma have been demonstrated in vivo, where 
Mycoplasmas have been isolated and only associated to 
cancer by analyzing different specimens (infectious tis-
sues, neoplastic tissues and body fluids) from patients, 
without any demonstration of a causative effect. In par-
ticular, Mycoplasmas have been found in precancerous 
lesions as well as in malignant tissues from patients with 
stomach, colon, ovarian and lung cancers [46].
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NF‑κB and Nrf2: two molecular pathways involved 
in inflammation
The inflammatory response is characterized by the coor-
dinated activation of various signaling pathways that 
regulate expression of both pro- and anti-inflamma-
tory mediators in resident tissue cells and leukocytes 
recruited from the blood. Arguably, the most important 
of these pathways involves the nuclear factor kappa B 
(NF-κB) family of transcription factors, acting as mas-
ter regulators of immune and inflammatory processes in 
response to both injury and infection.

Nuclear factor kappa B is considered a “rapid-acting” 
primary transcription factor: it is always present in the 
cells in an inactive state and does not require new protein 
synthesis in order to become activated. For this reason it 
is among the first responders to cellular and exogenous 
stimuli such as stress, cytokines, free radicals, ultra-
violet irradiation and ionizing radiation, oxidized LDL, 
bacterial or viral antigens and reactive oxygen species 
(ROS) [47, 48]. The mammalian NF-κB family includes 
five proteins: NF-κB1 (p50), NF-κB2 (p52), RelA (p65), 
RelB and c-Rel. All these proteins share a Rel homology 
domain in their N-terminus. RelA, RelB, and c-Rel have 
a transactivation domain in their C-termini. In contrast, 
the NF-κB1 and NF-κB2 proteins are synthesized as 
large precursors (p105 and p100), and they need to be 
processed by the ubiquitin/proteasome pathway to gen-
erate the mature NF-κB subunits, p50 and p52, respec-
tively. Two NF-κB signaling pathways exist in the cells: 
the classical (canonical) pathway and the alternative 
(non-canonical) pathway [47]. In unstimulated cells, the 
NF-κB dimers are sequestered in the cytoplasm by a fam-
ily of inhibitors, called IκBs (Inhibitor of κB). These pro-
teins contain multiple copies of a sequence called ankyrin 
repeats and mask the nuclear localization signals (NLS) 
of NF-κB proteins to keep them sequestered in an inac-
tive state in the cytoplasm. Its activation is initiated by 
the signal-induced degradation of IκB proteins, via acti-
vation of a kinase called IKK (IκB kinase). Upon degra-
dation of IκB, the NF-κB complex translocates to the 
nucleus where it binds to specific DNA motifs, eventually 
resulting in the expression of specific genes involved in 
several physiological responses, including inflammatory 
response, cellular development, maturation, survival and 
proliferation [49]. Furthermore, NF-κB plays a key role 
both in regulating the immune response to infection and 
in the processes of synaptic plasticity and memory [50]. 
By turning on the expression of its own repressor IκBα, 
NF-κB activity is self-regulated through an auto feedback 
loop [51].

As discussed previously, NF-κB is responsible for the 
transcription of many genes involved in inflammation. 
It is thus not surprising that it is found to be chronically 

active in many inflammatory diseases, such as inflamma-
tory bowel disease [52], arthritis [53], and asthma [54].

Together with the inflammatory response, NF-κB acti-
vation is involved in the control of apoptosis. In fact, 
upon nuclear translocation, NF-κB induces the tran-
scription of anti-apoptotic proteins that lead to increased 
cellular proliferation (cyclins and CDKs), angiogen-
esis (VEGF, IL-6, MCP-1 and MMPs), and invasion and 
metastasis (VCAM-1, ICAM-1, MMPs or proteins 
involved in the maintenance of the epithelial mesenchy-
mal transition) [55, 56]. Indeed, constitutive activation 
of NF-κB is observed in a wide variety of cancers, such 
as lymphoma, liver cancer, lung cancer and breast cancer 
[57]. Furthermore, by positively affecting the expression 
of the major inflammatory factors, such as TNFα, IL-6, 
IL-1 and IL-8, constitutive activation of NF-κB contrib-
utes to creating a microenvironment favorable for tumor 
cells: chronic inflammation is in fact implicated in all 
stages of cancer development and progression [58, 59]. 
In general, chronic inflammation, as defined by elevated 
levels of both local and systemic cytokines and other pro-
inflammatory factors, is a hallmark of aging in virtually 
all higher animals including humans and is recognized as 
a major risk factor for developing age-associated diseases.

Nuclear factor-E2-related factor 2 (Nrf2) is another 
nuclear factor critically involved in inflammation, 
belonging to a family of cap’n’collar proteins that regu-
lates the endogenous antioxidant defense. It promotes 
the transcription of a set of detoxifying genes (ARE, anti-
oxidant response elements) codifying for proteins (such 
as enzymes, drug transporters, antiapoptotic proteins 
and proteasomes) involved in the regulation of physi-
ological and pathophysiological cellular events following 
exposure to oxidant and xenobiotics agents [60]. There-
fore Nrf2 activation results in a protective activity against 
cellular damage(s) potentially leading to a number of 
human pathologies, such as cancer, neurodegenera-
tive diseases, cardiovascular diseases, acute lung injury, 
chronic obstructive pulmonary diseases, autoimmune 
diseases, infection and inflammation [61].

Depending on the context of cellular stimulation, 
activation and/or differentiation, two forms of Nrf2 are 
observed: inactive or active. In its inactive form, Nrf2 
is retained in the cytoplasm associated with Keap1, a 
cytoskeletal protein that interacts directly with actin 
[62], is ubiquitinated, and targeted for degradation by 
the 26S proteasome. Also Keap1 binds to Cul3 to pro-
mote directly the degradation of Nrf2 [63]. In response 
to cellular insults, like in the presence of ROS (reac-
tive oxygen species), the redox-stress sensitive cysteine 
residues in Keap1 are modified, Nrf2 is released from 
its repressor and translocates to the nucleus, where it 
forms heterodimers with bZIP proteins such as small 
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musculoaponeurotic fibrosarcoma (Maf) proteins 
[64]. This heterodimer recognizes and binds to a spe-
cific sequence element called “antioxidant electrophile 
responsive element” (ARE) [63]. Other proteins, such as 
c-Jun [65] and ATF4 [66], are able to interact with Nrf2 
as molecular partners to promote its transcriptional 
activity. As a result, the binding of the heterodimer to 
the ARE elements promotes the transcription of many 
genes which codify for proteins with different key cel-
lular defensive functions, thus enhancing the removal 
of cytotoxic electrophiles or ROS [67]. These proteins 
include NADPH quinone oxidoreductase (NQO1), glu-
tathione S-transferase (GST), heme oxygenase-1 (HO-
1), superoxide dismutase (SOD), glutathione peroxidase 
(GPx), catalase (CAT), GSH reductase (GR), glutamate 
cysteine ligase (GCL), peroxiredoxin I (PrdxI) and and 
γ-glutamycysteine synthase.

Furthermore, besides its protective role against oxida-
tive and electrophilic stresses, recent studies have dem-
onstrated that Nrf2 responds to pro-inflammatory stimuli 
by inhibiting the production/expression of pro-inflam-
matory mediators including cytokines, chemokines, cell 
adhesion molecules, matrix metalloproteinases, cycloox-
ygenase-2 and inducible nitric oxide synthase [68]. In the 
case of Mycoplasma infection, it has been shown that 
Nrf2 activation plays a relevant role in the modulation 
of the downstream inflammatory response [69]. Many 
other researches have demonstrated, in different cell 
types and tissue contexts, that Nrf2 induction can inhibit 
the NF-κB pathway and thus indirectly modulate inflam-
matory cytokines and chemokines signaling [70]. This 
inhibition of NF-κB likely occurs through ARE-driven 
reduction in oxidative stress, which has been shown 
to activate the NF-κB signaling pathway [71]. Further 
supporting a role for Nrf2, several studies have demon-
strated increased NF-κB activation and dysregulation of 
cytokines and chemokines in Nrf2−/− mice after inflam-
matory various insults [72].

Based on its multiple anti-inflammatory functions, 
Nrf2 is currently used as a pharmacological and nutri-
tional target to prevent and treat chronic diseases, such 
as multiple sclerosis, chronic kidney diseases and cardio-
vascular diseases [73, 74].

Hydrogen sulfide (H2S)
The gasotransmitters family includes nitric oxide (NO), 
carbon monoxide (CO) and hydrogen sulfide (H2S). In 
particular, H2S, commonly found in nature, especially 
dissolved in the hydrothermal water [75], is increasingly 
being recognized as an important signaling molecule in 
the regulation of the cellular metabolism, the immuno-
logical and inflammatory responses, and several impor-
tant transcription factors [76].

H2S is a ubiquitous gas produced endogenously in 
the human body in all tissues, the highest produc-
tion being in the brain, in the cardiovascular system, in 
the liver and in the kidney [77]. H2S is produced during 
cysteine metabolism mediated by various non-enzy-
matic and enzymatic steps involving key enzymes CBS 
(cystathionine-β-synthase) and CSE (cystathionine-
γ-lyase) [78]. H2S being a gasotransmitter, it does not 
require specific transporters or receptors. It travels rap-
idly through the cell membranes, exerting multiple bio-
logical effects on various biological targets.

As a gaseous signaling molecule, H2S freely diffuses 
across cell membranes in a receptor-independent man-
ner and activate various cellular targets, exerting many 
different biological effects (from cytotoxic effects to 
cytoprotective actions). This distinct ability makes H2S 
an attractive pharmacological agent for the treatment of 
different disease conditions. Many studies showed H2S 
involvement in several physiological and pathological 
contexts, including oxidative stress regulation via scav-
enging reactive oxygen species, inflammation, vasodi-
lation, and neuronal survival [79]. In this regard, data 
obtained using many different cell types have shown 
its effects on the cell viability, proliferation, activation, 
cytokines secretion and cell adhesion [1]. H2S has widely 
been demonstrated to have cardio-protective [3] and pro-
angiogenic effects [4, 80] both in in vivo and in vitro, and 
also to have inhibitory effects on platelet aggregation [7], 
antiapoptotic activity [8] and cytoprotective effects [9].

Moreover, H2S acts as vasorelaxant molecule through 
a mechanism involving the opening of smooth muscle 
KATP channels with the consequent increased ionic flux, 
resulting in membrane hyperpolarization [6]. This activ-
ity also explains the cardio-protective properties of H2S 
[81].

A protective effect on neuronal cells and also an acti-
vation of primary afferent neurons by soluble H2S have 
been reported, making H2S worthy of consideration as a 
new neurotransmitter [82].

The potential modulation of cancer incidence and pro-
gression by H2S-releasing drugs has been shown in differ-
ent types of tumors. Nevertheless, there are some other 
studies that suggest a promotion of tumor growth under 
some circumstances, presumably because of its effects on 
angiogenesis [83].

Recent studies focused on lifespan elongation, reported 
a regulatory role of H2S (50  ppm) in C. elegans ageing, 
involving both direct and indirect mechanisms [84]. 
Some key regulatory molecules, such as Sirtuins and 
Klotho, contribute to the direct effects of H2S, whereas 
the anti-oxidative and anti-inflammatory nature of H2S 
might protects the ageing of cells and tissues indirectly 
[85].
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The precise role of H2S in inflammation is still far 
from clear. In fact, many studies are trying to under-
stand its precise molecular mechanism(s) of action and 
its biological relevance, since it appears to have pro- or 
anti- inflammatory effects under different conditions. 
This dichotomy may be dependent on dose–response 
relationship and suggests that H2S affects different cel-
lular pathways as well as different cellular targets [86]. 
For example, some data showed that H2S donors have the 
ability of suppressing leukocyte adherence to the vascu-
lar endothelium, with the consequent reduction of the 
infiltration to the sites of inflammation [87], while others 
showed their ability to promote the survival of cultured 
granulocytes by the inhibition of caspase-3 cleavage 
and p38 phosphorylation [88]. In our previous study we 
tested the anti-inflammatory effects of H2S in an in vitro 
model of macrophages infected with Mycoplasma, a pro-
inflammatory micro-organism capable of triggering the 
rapid recruitment of a large number of macrophages 
especially in the lung and airways [89]. Our data showed 
that exogenous H2S is able to inhibit the activation and 
the nuclear translocation of NF-κB, reducing the tran-
scription of pro-inflammatory genes and the production 
of several pro-inflammatory cytokines (including MCP-1 
gene).

New findings
Based on the results obtained while studying the effects 
of H2S on the NF-κB pathway, we wanted to further elu-
cidate the role of Nrf2 and its response to H2S treatment 
in a cellular model of acute infection with Mycoplasma 
fermentans.

To test the hypothesis that H2S activated the Nrf2 path-
way, a human monocytic cell line (U937) was infected 
with Mycoplasma fermentans and concomitantly treated 
with NaHS, a fast releasing H2S donor, usually used for 
short term treatments (up to 24 h), at non-toxic concen-
tration of 1  mM. Cells were harvested at several time 
points (3, 6, 18 and 24  h) after the infection/treatment. 
Uninfected cells were used as negative controls. RT-PCR 
analysis was used to monitor the expression of Nrf2 at 
the different time points. We observed an increase in 
Nrf2 expression in U937 Mycoplasma-infected cells over 
time, and this effect was enhanced by the treatment with 
H2S donor. No statistically significant difference was 
observed after 3 and 6  h of infection/treatment, while 
a statistically significant increase was observed at 18  h 
(p ≤  0.01) (Fig. 1a). To substantiate these results, a real 
time RT-PCR assay was employed to measure the expres-
sion of the Nrf2-ARE inducible detoxifying enzymes: 
HO-1 (heme oxygenase 1), Prdx (peroxiredoxin) and 
SOD1 (superoxide dismutases 1). We observed signifi-
cant increases of all three enzymes mRNA expression 

levels, though at different time points. The mRNA level of 
HO-1 increased noticeably after 3 h of infection follow-
ing NaHS treatment (8.5 versus 1.15 fold in treated ver-
sus not-treated, respectively) (p ≤ 0.005) while the effect 
of H2S on the mRNA level of HO-1 was less noticeable at 
late time points (18 and 24 h) (Fig. 1b). We also observed 
increased SOD1 mRNA levels in Mycoplasma infected 
cells treated with NaHS. The highest increase was 
observed after 6  h with 8.86-fold peak, versus 1.13-fold 
increase in the corresponding Mycoplasma-infected cells 
(p ≤ 0.001) (Fig. 1d). In contrast, Prdx mRNA levels were 
significantly increased at 18 h (2.04 fold increase versus 
0.68-fold increase in the not treated cells) (p ≤ 0.001) and 
24  h (1.87-fold increase versus 1.07-fold increase in the 
not treated cells) (p ≤  0.01). Consequently, Prdx might 
play a protective role at these late time points. Taken 
together, these data indicate that the Nrf2 pathway is 
stimulated by exogenous H2S in Mycoplasma-infected 
cells, leading to increased production of antioxidant/
detoxificant enzymes.

To determine whether H2S treatment, and the conse-
quent increased production of antioxidant/detoxificant 
enzymes, had an effect on levels of ROS (Reactive Oxy-
gen Species), well known cell-damaging oxidative agents, 
U937 cells were infected with Mycoplasma and simulta-
neously treated with 0.1  mM GYY4137, a water-soluble 
molecule that, unlike NaHS, decomposes slowly to gen-
erate small amounts of H2S both in vitro and in vivo [90]. 
This H2S donor allowed us to perform long term experi-
ments for a period up to 6 days.

Reactive oxygen species levels were measured at dif-
ferent time points (24, 48, 72  h, 5 and 6  days) using a 
marker for oxidative stress (DCFH-DA). In early time 
points (24 and 48 h) and in late time points (6 days) there 
was no significant change in ROS levels in all the sam-
ples analyzed (data not shown). In contrast, upon Myco-
plasma infection we measured a significant increase of 
ROS production after 72  h, compared to non-infected 
cells (p ≤  0.05) (Fig.  2). At the same time point, there 
was a significant decrease in ROS production in the cells 
treated with GYY4137 (p ≤  0.05) (Fig.  2). Cells treated 
with GYY4137 and infected with Mycoplasma showed a 
very statistically significant reduction of ROS production 
after 5 days (p = 0.002) (Fig. 2).

Our data demonstrate the positive effect on anti-
oxidant/detoxifying cellular functions exerted by H2S 
treatment during acute bacterial infection. Previous 
studies demonstrated a protective role of H2S on vari-
ous cell types against oxidative stress [91], though the 
mechanism(s) are not clearly understood. A possible 
hypothesis is that H2S acts both as a direct scaven-
ger of ROS and as an inducer of endogenous antioxi-
dant defenses. The date presented here indicate that 
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in infected monocytes, at least partially, H2S anti-
oxidant effects are related to Nrf2/HO-1 pathway 
upregulation.

While other groups have shown the ability of H2S to 
upregulate cellular antioxidants in an Nrf2-dependent 
manner in other tissues [92, 93], this is the first time 
that the same effect has been shown in monocytes/mac-
rophages infected by a bacteria. It is worth noting that 
macrophages are not only key players in the initiation of 
inflammation during microbial infection, but also orches-
trate its resolution.

Our previous studies have shown that H2S has an anti-
inflammatory effect in Mycoplasma infected monocytes 
through inhibiting NF-κB pathway and the release of pro-
inflammatory cytokines. Furthermore, we have shown 

that H2S improves redox homeostasis in the same model 
via the activation of Nrf2 pathway. Considering the func-
tional cross-talk between these two important pathways, 
we propose the possible effectiveness of H2S in helping 
immune cells to regulate the fine balance of cellular redox 
status and responses to stress and inflammation due to 
bacterial infection (Fig. 3).

An important question that remains unanswered 
relates to the mechanism by which H2S induces Nrf2 
activity. It has been proposed that H2S induces modifica-
tion of critical cysteine residues in Keap1, which results 
in the release of Nrf2 [94]. Whether H2S alters Keap1 
and/or Nrf2 directly or through upstream signaling, and 
how this can modulate NF-κB activity, will require fur-
ther studies.
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Fig. 1  Induction of Nrf2 (a), HO-1 (b), Prdx (c) and SOD1 (d) mRNA by H2S in Mycoplasma fermentans infected U937 cells, analyzed by real time RT-
PCR. RNA samples from Mycoplasma-infected U937 cells (M.F.) were collected at 3, 6, 18 and 24 h after NaHS treatments. Bars denote the standard 
deviation. The histograms shown are representative of data from three different experiments, with samples treated in duplicate, and normalized to 
endogenous GAPDH mRNA. The p values were calculated as unequal variance t test of Mycoplasma infected cells relative to Mycoplasma infected 
cells treated with NaHS: ++p ≤ 0.001, +p ≤ 0.01, **p ≤ 0.005, *p ≤ 0.05
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(72 h and 5 days). The DCF fluorescence intensity is proportional to the ROS levels within the cell cytosol. Bars denote the standard deviation. The 
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Conclusions
Our data show that H2S inhibits the activation and 
the nuclear translocation of the NF-κB, reducing the 
transcription of pro-inflammatory genes. Moreover, 
it enhances Nrf2 functions by activating downstream 
enzymes such as HO-1 and SOD1, and by decreasing 
intracellular ROS levels.

Taken together, these results highlight the protective 
role of H2S as anti-inflammatory agent and support the 
ongoing efforts to develop new H2S-releasing compounds 
as novel therapeutic agents to reduce inflammation. Such 
compounds could be used for the treatment of conditions 
where chronic inflammation plays a major role in exac-
erbating cellular damage in conditions such as arthritis, 
inflammatory bowel disease, myocardial dysfunction and 
chemoprevention of cancer [95].

Methods
Mycoplasma strains and culture conditions
Mycoplasma fermentans PG18 (ATCC, American Type 
Culture Collection) was grown in 243 media: heart 
infusion broth (BD) media supplemented with 20% 
heat inactivated horse serum and 10% yeast extract 
solution (Invitrogen, Grand Island, NY, USA), at 37 °C, 
and with 5% CO2 in aerobic conditions. Mycoplasma 
cultures were harvested in late log phase and col-
lected by centrifugation (10  min at 10,000g at 4  °C), 
and washed three times with PBS before using. Cells 
were infected with Mycoplasma at a concentration of 
2 CFU/cell.

U937 cells were grown in RPMI 1640 Medium (Invit-
rogen, Grand Island, NY, USA) supplemented with 10% 
fetal bovine serum (FBS) (Gemini Bio-Products, Burling-
ton, Ontario, Canada).

H2S treatments
Cells were treated with two different H2S donors: NaHS 
(Sigma-Aldrich, St. Louis, MO, USA) at 1  mM and 
GYY4137 (Santa Cruz Biotechnology, Dallas, TX, USA) 
at 100  μM final concentrations, respectively. NaHCO3 
(Sigma-Aldrich, St. Louis, MO, USA) and PBS (Invitro-
gen, Grand Island, NY, USA) were used as controls for 
NaHS and GYY4137, respectively. Reagents were added 
directly into the culture medium at optimal and non-
toxic concentrations at the time of Mycoplasma infection. 
NaHS and GYY4137 concentrations were determined by 
treating U937 with 0.02, 0.1, 0.5, 1 or 2  mM NaHS and 
GYY4137 for 24  h. NaHS and GYY4137 range of con-
centrations were not toxic in our experimental condi-
tions and comparable to the physiological level of H2S in 
the organism [96]. Cell viability was determined by flow 
cytometry analysis after propidium iodide (PI) (2.5  μg/
ml) staining (cell exclusion).

All data have been normalized using not infected and 
not treated cells as control.

Real time quantitative RT‑PCR (qRT‑PCR)
For real time PCR assay, U937 cells (1 × 106 cells/well in 
6 wells-plates) were infected with Mycoplasma fermen-
tans, treated with the optimal concentrations of sulfide 
donors and then collected at 3, 6, 18 and 24 h after the 
infection/treatments. RNA was extracted with the RNe-
asy Mini Kit (Qiagen, Frederick, MD, USA), an aliquot 
(2  μg) was reverse transcribed (iScript cDNA Synthesis 
Kit, BioRad, Hercules, CA, USA) and then subjected to 
real time RT-PCR using the iQ SYBR Green Supermix 
(BioRad, Hercules, CA, USA).

The cDNAs were amplified with specific primers: 
GAPDH (Glyceraldehyde 3-phosphate dehydrogenase) 
(used as housekeeping gene control for Ct determination): 
forward 5′-CCATGGAGAAGGCTGGGG-3′, reverse 
5′-CAAAGTTGTCATGGATGACC-3′; Nrf2: forward 
5′-ACACGGTCCACAGCTCAT-3′, reverse 5′-CAGCT 
CATACTCTTTCCGTCG-3′; HO-1: forward 5′-ATGCC 
CCAGGATTTGTCAGA-3′, reverse 5′-GAAGAC 
TGGGCTCTCCTTGT-3′; Prdx: forward 5′-AAAGCCAC 
AGCTGTTATGCC-3′, reverse 5′-AAGCACCAATC 
ACTTGGCAG-3′; SOD1: forward 5′-CTAGCGAGTTA 
TGGCGACGA-3′, reverse 5′-CCACACCTTCACTGGT 
CCAT-3′. Primers were selected by using the NCBI/
primer-blast program (www.ncbi.nlm.nih.gov/tools/
primer-blast/), synthesized and desalted-purified (Sigma-
Aldrich, St. Louis, MO, USA). Amplification (30  s of 
denaturation at 95 °C, 35 s of annealing at 65 °C and 30 s 
of extension at 72  °C) was performed for 35 cycles with 
specific primers for SOD1. The same protocol was used 
with specific primers for Nrf2, HO-1 and Prdx, except 
for the annealing temperature that was set at 67 °C. PCR 
amplification with the primers specific for GAPDH was 
performed using the following protocol: 28 cycles of 30 s 
at 94 °C, 35 s at 60 °C and 30 s at 72 °C. All reactions were 
run in duplicate. Semi-quantitative analysis was based on 
the cycle number (Ct) whereby the SYBR Green fluores-
cent signal crossed a threshold in the log-linear range of 
the RT-PCR. The fold change in Nrf2, HO-1, Prdx and 
SOD1 mRNA in the U937 cell line was compared with 
the uninfected control cells at time of infection (time 
zero), and is shown normalized over GAPDH mRNA 
measured as internal control.

Intracellular reactive oxygen species (ROS) assay
The accumulation of ROS within the cells coupled with 
an increase in oxidative stress was measured using the 
OxiSelect Intracellular ROS Assay Kit (Green fluores-
cence) (Cell Biolabs, Inc, San Diego, CA, USA). The 
assay employs the cell-permeable fluorogenic probe 

http://www.ncbi.nlm.nih.gov/tools/primer-blast/
http://www.ncbi.nlm.nih.gov/tools/primer-blast/
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2′,7′-dichlorodihydrofluorescin diacetate (DCFH-DA). 
DCFH-DA is diffused into cells and is deacetylated by 
cellular esterases to non-fluorescent 2′,7′-dichlorodihy-
drofluorescin (DCFH), which is rapidly oxidized to highly 
fluorescent 2′,7′-dichlorodihydrofluorescein (DCF) by 
ROS. The fluorescence intensity is proportional to the 
ROS levels within the cell cytosol. The effect of anti-
oxidant or free radical compounds on DCF-DA was 
measured against the fluorescence of the provided DCF 
standard. U937 cells were plated in duplicate wells at a 
concentration of 25 × 104 cells/well and were harvested 
at different time points after Mycoplasma fermentans 
infection and H2S treatment: 24, 48, 72 h, 5 and 6 days. At 
each time point, the cells were washed and incubated for 
1 h at 37 °C with 100 µl of DCFH-DA, then washed and 
lysed for 5  min using reagents provided in the kit. The 
fluorescence was read at 480 nm excitation/530 nm emis-
sion and compared to that of the DCF standard curve.
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