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Abstract 

Background:  HIV-1-infected long-term nonprogressors (LTNPs) are characterized by infection with HIV-1 more than 
7–10 years, but keeping high CD4+ T cell counts and low viral load in the absence of antiretroviral treatment, while 
loss of CD4+ T cells and high viral load were observed in the most of HIV-1-infected individuals with chronic progres-
sors (CPs) However, the mechanisms of different clinical outcomes in HIV-1 infection needs to be further resolved.

Methods:  To identify microRNAs (miRNAs) and their target genes related to distinct clinical outcomes in HIV-1 infec-
tion, we performed the integrative transcriptome analyses in two series GSE24022 and GSE6740 by GEO2R, R, Tar-
getScan, miRDB, and Cytoscape softwares. The functional pathways of these differentially expressed miRNAs (DEMs) 
targeting genes were further analyzed with DAVID.

Results:  We identified that 7 and 19 DEMs in CD4+ T cells of LTNPs and CPs, respectively, compared with uninfected 
controls (UCs), but only miR-630 was higher in CPs than that in LTNPs. Further, 478 and 799 differentially expressed 
genes (DEGs) were identified in the group of LTNPs and CPs, respectively, compared with UCs. Compared to CPs, four 
hundred and twenty-four DEGs were identified in LTNPs. Functional pathway analyses revealed that a close connec-
tion with miRNA-mRNA in HIV-1 infection that DEGs were involved in response to virus and immune system process, 
and RIG-I-like receptor signaling pathway, whose DEMs or DEGs will be novel biomarkers for prediction of clinical 
outcomes and therapeutic targets for HIV-1.

Conclusions:  Integrative transcriptome analyses showed that distinct transcriptional profiles in CD4+ T cells are asso-
ciated with different clinical outcomes during HIV-1 infection, and we identified a circulating miR-630 with potential 
to predict disease progression, which is necessary to further confirm our findings in the future.
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Background
HIV-1 infection is characterized by the loss of number 
and dysfunction of CD4+ T cells and exhibits remark-
able differences in clinical outcomes of treatment-naïve 
individuals [1]. As chronic progressors (CPs) or nor-
mal progressors (NPs), the majority of HIV-1-infected 
patients with progressive virus replication have chronic 

loss of CD4+ T cells and develop to AIDS in several years 
without any antiretroviral therapy (ART) [2, 3]. How-
ever, long-term nonprogressors (LTNPs) (≈5% of HIV-
1-infected individuals), without progression of AIDS, 
maintain normal counts of CD4+ T cells (>500  cells/μl) 
and low viral load (LVL) without ART for many years 
[4, 5]. Moreover, several studies have found that LTNPs 
display a higher level of HIV-specific CD4+ and CD8+ 
T cell responses than that in chronic progressors [6, 7], 
which greatly slows disease progression to AIDS [5, 
8, 9]. Although there are some known protective fac-
tors involved inHIV-1 disease progression or pathogen-
esis, such as specific protective HLA-B*57/B*27 alleles 
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[10], the CCR5delta32 [11] and defective viruses [12] 
in LTNPs, the mechanisms of nonprogression in HIV-1 
infection remains to be further explored.

MiRNAs are a class of small non-coding RNAs with the 
length of ≈22 nucleotides, which plays important roles in 
post-transcriptional regulation of genes. MiRNAs func-
tion to pair to 3′-untranslated regions (3′-UTR) of target 
mRNA, and almost all of miRNAs result in decreased 
target mRNA levels and/or protein translated [13]. MiR-
NAs have been demonstrated to suppress HIV-1 via 
decreasing HIV dependency factors (HDFs), miR-198 
targets Cyclin T1 [14], miR-17/92 regulates P300/CBP-
associated factor (PCAF) [15], and miR-15a/b, miR-16, 
miR-20a, miR-93, miR-106b bind to Pur-α and repress its 
expression [16]. It has also been proposed that miRNAs 
could either directly bind to HIV-1 RNA or affect cellular 
factors involved in HIV-1 replication [17]. MiRNAs can 
also modulate key regulatory molecules related to T cell 
exhaustion following HIV-1 infection [18]. MiR-9 regu-
lates the expression level of Blimp-1 that considered as a 
T cell exhaustion marker [19], and let-7 miRNAs play a 
regulatory role in post-transcription of an immune inhib-
itory molecule, IL-10 [20]. MiR-125b, miR-150, miR-223, 
miR-28 and miR-382 [21], and miR-29a [22] have high 
abundance in resting CD4+ T cells, which contributes 
to inhibition of HIV-1. Furthermore, several miRNAs in 
peripheral blood mononuclear cells (PBMC) and plasma 
can predict the disease progression of HIV-1 infection, 
such as miR-31, miR-200c, miR-526a, miR-99a, miR-
503 [23], and miR-150 [24]. Therefore, identification of 
deregulated miRNA expression profiles in different clini-
cal outcomes of HIV-1 infection may be useful for fur-
ther understanding the possible mechanisms associated 
with disease progression, pathogenesis and immunologic 
control.

However, there is no evidence that miRNA-mRNA 
co-expression profiles in different clinical outcomes of 
HIV-1 infection. Considering that CD4+ T cells are target 
cells of HIV-1 and the CD4+ T cell counts is employed 
to surveiller disease progression, we integrated miRNA 
and transcriptomic expression profiles data of CD4+ T 
cells in two series selected from GEO datasets in order 
to identify miRNA-mRNA crosstalk in HIV-1 infection. 
We have found numerous HIV-1 disease progression and 
pathogenesis-associated miRNAs and differentially regu-
lated genes, then we constructed functional network of 
potential miRNA-mRNA pairs. Identification of genetic 
and/or epigenetic biomarkers may not only facilitate 
understanding of interaction between HIV-1 and host 
CD4+ T cells, but lead to develop novel markers for pre-
diction of disease progression or therapeutic targets for 
HIV-1.

Methods
Dataset collection
The series GSE6740 was downloaded from the Gene 
Expression Omnibus (GEO) datasets (http://www.ncbi.
nlm.nih.gov/geo/), contained 15 gene chips from 5 unin-
fected controls (UCs), 5 chronic progressors (CPs) and 
5 long-term nonprogressors (LTNPs), which was ana-
lyzed using the platform, GPL96 (HG-U133A) Affyme-
trix Human Genome U133A Array. The series GSE24022 
included miRNA microarray data of CD4+ T cells from 
8 UCs, 7 LTNPs and 7 CPs, whose platform is Agi-
lent-019118 Human miRNA Microarray 2.0 G4470B 
(miRNA ID version). These samples in the aforementioned 
series were divided into three comparison groups to per-
form subsequent analyses: the group of LTNPs versus 
UCs, CPs versus UCs, and LTNPs versus CPs, respectively.

Analyses of differentially expressed miRNAs (DEMs) 
and prediction of target genes
For the aberrantly miRNA expression profile analyses, 
the web analytical tool, GEO2R, was applied to identify 
DEMs with fold change (FC)  >  2.0 and an adjusted p 
value <0.01. GEO2R (http://www.ncbi.nlm.nih.gov/geo/
geo2r) is an R-based interactive web tool to identify dif-
ferentially expressed genes via analyzing GEO data [25]. 
There are several softwares for prediction of miRNA 
targeting genes, but their algorithms are different and 
each of them has advantages and disadvantages. There-
fore, it is necessary to combine with different software 
to reduce errors or biases. In this study, miRNA target 
genes were predicted using TargetScan v7.0 (http://www.
targetscan.org/) [26] and miRDB v5.0 (http://www.mirdb.
org/miRDB) [27]. Both of them utilize the latest miRNA 
data provided by miRBase v21. To reduce false-positive 
results, only common genes predicted by both softwares 
were chosen as target genes of deregulated miRNA for 
subsequent analysis.

Quality control, data preprocessing and analysis 
of differentially expressed genes (DEGs)
For the analyses of differentially expressed genes, the 
original data of the series GSE6740 were analyzed using 
the software Rv3.2.2 (https://www.r-project.org/). Ini-
tially, both index, including Relative Log Expression 
(RLE) and the Normalized Unscaled Standard Error 
(NUSE), were used to assess the quality of this microar-
ray data [28]. Then, the method of Robust Multi-array 
Average (RMA) was applied to perform background 
adjustment, normalization and log transformation of the 
original microarray data [29]. Finally, the Linear Models 
for Microarray Data (LIMMA) package (http://biocon-
ductor.org/biocLite.R) was used to identify differentially 
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expressed genes (DEGs), which is a software package for 
constructing linear regression model [30]. The genes with 
FC > 1.5 and an adjusted p value <0.05 were regarded as 
DEGs.

Functional annotation and pathway enrichment analysis
The dysregulated genes in different disease stages were 
extracted as DEGs, which needed further functional 
annotation. Only genes that exhibited significant expres-
sion differences (p value <0.05 and FC > 1.5) were func-
tionally annotated. These DEGs were analyzed using 
Database for Annotation, Visualization, and Integrated 
Discovery v6.7 (DAVID v6.7) that is a useful bioinformat-
ics enrichment tool for GO terms, KEGG pathway, and 
gene-disease association (http://david.abcc.ncifcrf.gov/) 
[31]. To functionally annotate DEGs identified by the 
aforementioned three comparison groups, Kyoto Ency-
clopedia of Genes and Genomes (KEGG) pathway and 
Gene Ontology (GO) were analyzed with DAVID v6.7 
[32]. Cytoscape (http://www.cytoscape.org/) was used in 
miRNA-mRNA network analysis [33].

Results
Identification of DEMs for prediction of disease 
progression during HIV‑1 infection
Through a comprehensive analysis of miRNA expres-
sion profiling in different disease stages following HIV-1 

infection, a list of aberrantly expressed miRNAs was 
included (Table  1). With at least twofold change and 
FDR-adjust p value of <0.01, we identified that 7 differ-
entially expressed miRNAs (DEMs) in LTNPs, whose 
miR-342 was down-regulated and 6 miRNAs (miR-487b, 
miR-212, miR-494, miR-939, miR-1225 and miR-513a) 
were overexpressed in the LTNPs, compared with UCs, 
except of miR-768-5p because it overlaps an annotated 
snoRNA (HBII-239). Twenty DEMs were identified 
between CPs and UCs. Twelve miRNAs were higher 
and 7 DEMs were down-regulated in UCs, compared 
with CPs, whereas miR-923 that appeared to be a frag-
ment of the 28S rRNA was removed, and miR-768-5p 
overlapped an annotated snoRNA (HBII-239) was not 
included. However, only miR-487b was overexpressed 
in LTNPs when 5 up-regulated miRNAs that also found 
in the group of CPs versus UCs were excluded. In addi-
tion, only miR-630 showed significantly differential 
expression among LTNPs, UCs and CPs, and the expres-
sion level of miR-630 was higher in CPs than that in 
LTNPs and UCs. It is well known that miR-630 relates to 
tumor cell growth, proliferation and metastasis [34, 35], 
involves in growth arrest of cancer cells [36], and can 
server as a prognostic marker for colorectal cancer [37] 
and gastric cancer [38], which implies that miR-630 may 
be a potential biomarker for prediction of disease pro-
gression during HIV-1 infection.

Table 1  Aberrantly expressed miRNAs and their predicted target gene numbers

LTNPs long-term nonprogressors, UCs uninfected controls, CPs chronic progressors, NR not report

Comparison 
groups

Up-regulated 
miRNA

Target  
scan v7.0

miRDB v5.0 Common Down-regulated 
miRNA

Target  
scan v7.0

miRDB v5.0 Common

LTNPs versus UCs miR-487b-3p 412 26 24 miR-342-5p 3346 238 182

miR-212-3p 1304 366 134

miR-494-3p 5763 504 475

miR-939-5p 4170 398 296

miR-1225-5p 2412 148 139

miR-513a-5p 5509 481 453

CPs versus UCs miR-212-3p 1304 366 134 let-7a-5p 354 435 27

miR-575 3293 238 132 let-7f-5p 101 439 29

miR-574-5p 3687 246 225 let-7g-5p 120 434 19

miR-572 679 14 12 miR-342-5p 3346 238 182

miR-513b-5p 5156 322 306 let-7c-5p 23 435 2

miR-940 3046 1024 276 let-7d-5p 1062 438 117

miR-939-5p 4170 398 296

miR-638 1866 10 7

miR-494-3p 5763 504 475

miR-630 3071 182 175

miR-513a-5p 5509 481 453

miR-1225-5p 2412 148 139

LTNPs versus CPs NR NR NR NR miR-630 3071 182 175

http://david.abcc.ncifcrf.gov/
http://www.cytoscape.org/
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Analyses of the gene expression profiles of DEMs predicted 
target genes
Firstly, TargetScan v7.0 and miRDB v5.0 were used to 
predict deregulated miRNA target genes, and the com-
mon genes in both software were chosen. Totally, 1703 
common genes were predicted as 7 DEMs target genes 
in the group of LTNPs versus UCs; 3006 common genes 
were predicted for 18 DEMs in the group of CPs versus 
UCs; and 175 target genes in the group of LTNPs versus 
CPs (Table 1).

After allowing for overlap between groups, 2629 target 
genes were predicted from differentially expressed miR-
NAs, however, the predicted target gene expression pro-
files still needed to be analyzed in order to elucidate the 
real miRNA-mRNA relationships in a pairwise manner. 
Next, we downloaded the series GSE6740 to perform 
identification of DEGs and functional annotation. To 
avoid the potential biases caused by inadequate quality of 
DNA array, both RLE and NUSE box plots were used to 
check the quality of these DNA arrays. Two DNA arrays 
GSM155202 (C102, Fig.  1b-1) and GSM155224 (L128, 
Fig. 1b-2) were excluded by the NUSE box plots analysis 
because of the arrays quality problems, which were not 
suitable for subsequent analysis. Finally, the gene expres-
sion profiles were divided into three different comparison 
groups, LTNPs versus UCs, CPs versus UCs, and LTNPs 
versus CPs, respectively. We identified that 478 genes were 
differentially expressed in LTNPs and 9 genes (RHOB, 
NCOA6, ATP8B1, CCL4, SEC31B, PTGER2, AVPR1B, 
MPI, and LOC285830) were up-regulated in LTNPs, 
compared with UCs. Besides, 799 differentially expressed 
genes (DEGs) were identified in the group of CPs versus 
UCs, and 424 DEGs were found in the comparison group 
of LTNPs versus CPs. It’s worth noting that 184 unique 
DEGs were only identified in the group of LTNPs ver-
sus CPs, including 38 up-regulated genes in LTNPs, such 
as CCL22, LILRB3, CCL7/MCP-3, TRAP1, TUBB1 and 
KLRG1; and 146 down-regulated genes, such as TMPO, 
BST2, RBX1, CCNA2, OAS2, FOXM1, EZH2, PAFF1, and 
so on, which may be involved in disease progression dur-
ing HIV-1 infection (Additional file 2).

Functional pathway analysis of DEGs in HIV‑1 infection
GO and KEGG pathway analyses were performed with 
DAVID v6.7 to analyzed the differentially expressed genes 
(Additional file 1), which revealed that the DEGs between 
LTNPs and UCs were significantly enriched in plasma 
membrane, cytoplasm and nucleoplasm, including 9 

up-regulated genes (RHOB, NCOA6, ATP8B1, CCL4, 
SEC31B, PTGER2, AVPR1B, MPI, and LOC285830), 
which involved in plasma membrane part (GO:0044459, 
p value =  0.016) and plasma membrane (GO:0005886, p 
value =  0.022). Further, gene ontology biological process 
(GO BP) analysis indicated that, compared to UCs, DEGs 
were significantly enriched in CPs’ immune system pro-
cess (GO:0002376, p value = 1.6 × 10−8), defense response 
(GO:0006952, p value  =  6.1  ×  10−5), response to other 
organism (GO: 0051707, p value = 3.3 × 10−13), response 
to biotic stimulus (GO: 0009607, p value =  2.7 ×  10−12), 
response to virus (GO: 0009615, p value =  9.2 ×  10−9), 
response to external stimulus (GO:0006954, p 
value  =  2.6  ×  10−5), and inflammatory response 
(GO:0006954, p value  =  6.6  ×  10−6). Additionally, GO 
BP analysis showed that DEGs between CPs and LTNPs 
were related to immune system process (GO:0002376, 
p value =  8.5 ×  10−5), response to other organism (GO: 
0051707, p value = 2.5 × 10−6), response to biotic stimu-
lus (GO: 0009607, p value = 9.9 × 10−6), response to virus 
(GO: 0009615, p value = 2.5 × 10−6), response to external 
stimulus (GO:0006954, p value = 4.1 × 10−4), and inflam-
matory response (GO:0006954, p value  =  7.1  ×  10−5), 
(Additional file 1). These results indicated that, in the CPs 
group, excessive immune activation may accelerate dis-
ease progression in chronic infection (genes: OAS1, ISG15, 
IFIT1, IFI27, IFI44L, and so on. Additional file 2). Further-
more, the DEGs between different groups were also sub-
jected to KEGG pathway enrichment analysis. The KEGG 
pathway, RIG-I-like receptor signaling pathway was sig-
nificantly enriched in CPs, compared to UCs (hsa04622, p 
value = 0.0038), and LTNPs (hsa04622, p value = 0.0039), 
revealing excessive innate immune response (genes: AZI2, 
DDX58, ISG15 and IRF7) in chronic infection compared to 
that in nonprogression or negative infection (Table 2).

Screening of inversely correlated miRNA‑mRNA pair 
candidates
Potential target genes identified based on microarray 
gene expression profiles were included in miRNA-mRNA 
crosstalk analysis if they met the two following crite-
ria: (1) the expression level of miRNA and target genes 
are inversely correlated, because miRNAs function to 
degrade mRNA and/or inhibition of mRNA transla-
tion; (2) and the expression of target genes showed at 
least 1.5-fold change in different comparison groups, 
and an adjusted p value <0.05. Compared to UCs, we 
acquired 34 putative down-regulated target genes from 

(See figure on next page.) 
Fig. 1  RLE and NUSE box plots of GSE6740. a RLE box plots. b NUSE box plots. NUSE is a very sensitive measure of noise or variation in the array 
data. C chronic progressors, L long-term nonprogressors, N uninfected controls
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up-regulated miRNAs that were identified in LTNPs, and 
84 underexpressed genes in CPs (Additional file 2). The 
functional annotation of putative target genes showed 
differentially enriched GO terms between LTNPs and 
CPs. The highly enriched BP terms include regulation 
of cell communication (GO: 0010646), regulation of sig-
nal transduction (GO: 0009966), negative regulation of 
signal transduction (GO: 0009968), regulation of devel-
opmental process (GO: 0050793), and positive regula-
tion of cell differentiation (GO: 0045579) in LTNPs but 
not UCs, while enzyme linked receptor protein signaling 
pathway (GO: 0007167), receptor quanylyl cyclase sign-
aling pathway (GO: 0007168), regulation of body fluid 
level (GO: 0050878), and cellular amino acid derivative 
metabolic process (GO: 0006575) were enriched in CPs 
but not UCs. In addition, the most enriched MF terms 
were ion binding (GO: 0043167), quanylate cyclase activ-
ity (GO: 0004383), metal ion binding (GO: 0046872), and 
cation binding (GO: 0043169) were in CPs, and KEGG 
pathway analysis found two pathways endocytosis and 
purine metabolism, indicating miRNA-regulated genes 
may be involved in metabolism of chronic progressors 
(Table 3). After combining the gene expression profiles of 
the miRNA-mRNA pair candidates, the interactive net-
works of putative miRNA-mRNA pairs constructed with 
Cytoscape were shown in Fig. 2 and Additional file 3.

Discussion
In our study, we firstly analyzed the differentially miR-
NAs profiles in LTNPs, CPs and UCs. Based on the cut-
off value at >twofold change and the p value at <0.01, we 
investigated that 6 miRNAs were differentially expressed 
both in LTNPs and CPs, miR-342-5p (↓), miR-212-3p 

(↑), miR-494-3p (↑), miR-939-5p (↑), miR-1225-5p (↑), 
an miR-513a-5p (↑) in LTNPs and CPs, compared with 
UCs, indicating these deregulated miRNAs may be HIV-
1-specific miRNAs of CD4+ T cells following HIV-1 
infection. We also found that the expression levels of 
miR-575, miR-574-5p, miR-572, miR-513b-5p, miR-
940 and miR-638 were higher in CPs than that in UCs, 
although they were not altered between LTNPs and CPs. 
Previous evidence indicated that suppressor of cytokine 
signaling 1 (SOCS1) protein is a target of miR-572 [39], 
and Miller et al. [40] have found that the expression level 
of suppressor of cytokine signaling 1 (SOCS1) protein 
in CD4+ T cells is lower in HIV-1 infected patients than 
that in healthy people, but SOCS1 mRNA level is higher 
in HIV-1 infection, indicating miR-572 may be related to 
sustained immune activation that promoted disease pro-
gression and pathogenesis following HIV-1 infection by 
directly targeting SOCS1. Besides, miR-940 can inhibit 
the growth of pancreatic ductal adenocarcinoma via tar-
geting MyD88 [41] that involved in IL-33 mediated type 
1 helper T cells (Th1) differentiation [42] (Th1 is pivotal 
in cellular immunity). We confirmed that let-7 family was 
down-regulated in CPs compared with UCs, which is 
consistent to findings of Swaminathan et al. [20].

Next, we applied TargetScan v7.0 and miRDB v5.0 to 
predict target genes of differentially expressed miRNAs 
and 2629 unique target genes predicted from three dif-
ferent comparison groups. Transcriptomic analysis of 
ex vivo CD4+ T cells from different clinical outcomes dur-
ing HIV-1 infection, like LTNPs and CPs, we also found 
higher expression level of interferon-stimulated genes 
(ISGs), such as ISG-15 [43–45], IFI44, IFI44L, HERC6, 
IFI6, and so on, in CPs [46], indicating chronic immune 

Table 2  Enrichment of KEGG pathways with p < 0.05

KEGG Kyoto encyclopedia of genes and genomes, NR not report

Comparison  
groups

Up-regulated 
genes

Terms P value Down-regulated 
genes

Terms P value

LTNPs versus UCs 9 NR NR 469 TGF-beta signaling pathway 0.013

Complement and  
coagulation cascades

0.015

P53 signaling pathway 0.047

CPs versus UCs 97 RIG-I-like receptor signaling 
pathway

0.0038 702 Ribosome 2.6 × 10−5

O-Glycan biosynthesis 0.0079 Fatty acid elongation in 
mitochondria

0.0042

Cytosolic DNA-sensing 
pathway

0.025 Cytokine-cytokine receptor 
interaction

0.046

LTNPs versus CPs 118 Beta-Alanine metabolism 0.018 306 Pyrimidine metabolism 0.028

Cytokine-cytokine receptor 
interaction

0.035 One carbon pool by folate 0.033

RIG-I-like receptor signaling 
pathway

0.039
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activation, which is also differentially expressed between 
pathogenic (rhesus macaques [47–49]) and non-patho-
genic (sooty mangabeys [50] or African green monkeys 
[51]) SIV infection, demonstrated by highly enriched GO 
terms and KEGG pathways, including response to virus 
(GO: 0009615), immune system process (0002376), and 
RIG-I-like receptor signaling pathway (hsa04622). Our 
findings confirm earlier studies that showed that a chronic 
interferon response or immune activation contributed to 
CD4+ T cells loss, pathogenesis and immune exhaustion in 
HIV-1 chronic infection [43, 44, 52, 53]. Moreover, it has 
been shown that immune inhibitory molecules, including 
LAG-3 [54] and CD160 [55], have higher levels in CPs than 
in LTNPs and UCs and are involved in immune exhaus-
tion that accelerated HIV-1 disease progression. Addition-
ally, we also identified 184 unique DEGs in LTNPs, which 
were involved in HIV/AIDS disease control or progres-
sion, including 38 up-regulated genes such as CCL22 (a 
soluble HIV-suppressive factor [56], LILRB3 (related to 
immune protection for HIV-1 infection) [57] and CCL7/

MCP-3 (competed for HIV-1 gp120 binding) [58], and 146 
down-regulated genes such as TMPO (involved in HIV-1 
Tat-induced apoptosis of T cells) [59], BST2 (increased in 
SIV-infected rhesus monkeys) [60], RBX1 (involved in pro-
teasomal degradation of APOBEC3G) [61], CCNA2 (con-
tributed to loss of SAMHD1 ability to inhibit HIV-1) [62] 
and some unreported genes such as FOXM1, EZH2 and 
PAFF1 (Additional file 2).

Further, we analyzed negatively correlated miRNA-
mRNA pair candidates, and the potential target genes 
were selected from the series GSE6740. We identified that 
thirty-four deregulated target genes with 5 up-regulated 
miRNAs were identified from the group of LTNPs ver-
sus UCs, and eighty-four repressed target genes from 10 
up-regulated miRNAs in the group of LTNPs versus UCs, 
whose expression of miRNA and target genes showed 
negative correlation. The functional annotation revealed 
that miRNA-regulated genes may be involved in meta-
bolic processes in chronic infection. There are several 
studies that have shown that down-regulation of CPPED1 

Table 3  Functional annotation of putative target genes with p < 0.05

KEGG Kyoto encyclopedia of genes and genomes, NR not report

Comparison groups GO ID Function P value KEGG ID Function P value

LTNPs versus UCs miR-212-3p, 
miR-494-3p, miR-939-5p,  
miR-1225-5p, miR-513a-5p

Biological process 0010646 Regulation of cell  
communication

0.0042 NR NR NR

0009966 Regulation of signal  
transduction

0.0079

0009968 Negative regulation  
of signal transduction

0.010

0050793 Regulation of developmental 
process

0.011

0045579 Positive regulation of  
cell differentiation

0.011

Cellular component 0044424 Intracellular part 0.046

Molecular function NR NR NR

CPs versus UCs miR-212-3p, 
miR-575, miR-574-5p, miR-
513b-5p, miR-940, miR-
939-5p, miR-494-3p, miR-630, 
miR-513a-5p, miR-1225-5p

Biological process 0007167 Enzyme linked receptor protein 
signaling pathway

0.024 Hsa04144 Endocytosis 0.025

0007168 Receptor quanylyl cyclase 
signaling pathway

0.029 Hsa00230 Purine metabolism 0.046

0050878 Regulation of body fluid level 0.031

0006575 Cellular amino acid derivative 
metabolic process

0.046

Cellular component 0044464 Cell part 0.0058

0005623 Cell 0.0058

0009898 Internal side of plasma  
membrane

0.015

0044459 Plasma membrane part 0.039

0044424 Intracellular part 0.043

Molecular function 0043167 Ion binding 0.030

0004383 Quanylate cyclase activity 0.034

0046872 Metal ion binding 0.040

0043169 Cation binding 0.044

0046914 Transition metal ion binding 0.049
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Fig. 2  Genetic interactive networks for miRNA/mRNA pair candidates. a miRNA-mRNA interaction network from the group of LTNPs versus UCs; 
b miRNA-mRNA interaction network from the group of CPs versus UCs. CPs chronic progressors, LTNPs long-term nonprogressors, UCs uninfected 
controls
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expression improves glucose metabolism in adipocyte 
[63]; PCP4 plays an anti-apoptotic role in human breast 
cancer cells [64], and CBLL1 promotes cell prolifera-
tion in the early stages of tumor progression [65], whose 
genes were deregulated in CD4+ T cells of HIV-1-infected 
chronic progressors in our current study. We also dem-
onstrate that the putative miRNA-mRNA pair candidates 
are involved in disease progression and pathogenesis. 
Inhibitory cytokine IL-10 contributes to dysregulated 
cytotoxic T cell function to HIV-1 infection, and IL-10 
was verified to be the target gene of let-7 [20], which was 
down-regulated in CPs, compared with UCs. We have 
found that dysregulated CD100 in chronic HIV-1 infec-
tion, which is the putative target gene of miR-1225a-5p 
or miR-513a-5p. Loss of Sema4D/CD100 expression plays 
key roles in dysfunctional immunity during HIV-1 infec-
tion [66]. As the positive modulator of cellular apoptosis 
[67], MOAP1 was down-regulated in chronic infection, 
which implied that HIV-1 might employ cellular miRNAs 
to support persistent infection. The ubiquitin ligase Peli1 
encoded by PELI1 inversely regulated T lymphocyte acti-
vation [68], whose expression level was decreased in our 
study, partly indicating hyperactivation of CD4+ T cells 
related to pathogenesis in HIV-1 infection [69].

However, we understood that there were limitations 
in our bioinformatics-based study. There were only 22 
subjects (7 LTNPs, 7 CPs and 8 health controls) in the 
series of GSE24022 for miRNAs analysis and 13 sub-
jects (4 LTNPs, 4CPs and 5 normal controls) in the series 
GSE6740 for DEGs. It is necessary to recruit more sub-
jects in the future. We also recognized that there were a 
few differences between two series including the duration 
of infection, the definitions of disease stages of HIV-1 
infection and chronic progression, viral load and CD4+ 
T cell counts. Therefore, it is necessary to be confirmed 
whether the level of deregulated miRNAs and putative 
target genes expression is actually altered in distinct dis-
ease progression of HIV-1 infection. The bioinformatics-
based methods to obtain disease progression-related 
gene expression profiles and the interactive networks of 
miRNA-mRNA pair candidates via integrative analysis 
of miRNA-mRNA expression should be applied in inte-
grative analyses of miRNA-mRNA expression profiles in 
different stages of HIV-1 infection, which will not only 
facilitate the understanding of the genetic basis of inter-
action between HIV-1 and host cells, but lead to the 
development of genetic markers for prediction of disease 
progression and therapy of HIV-1 in the future.

Conclusions
In summary, our integrative bioinformatics study showed 
that distinct transcriptional profiles in CD4+ T cells, includ-
ing microRNAs and mRNAs, associated with different 

disease progression during HIV-1 infection, and identified 
a potential biomarker, miR-630, that may be employed to 
predict disease progression in HIV-1 infection.
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